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Reexamining the isospin-relaxation time in intermediate-energy heavy-ion collisions
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Isospin-relaxation times characterizing isospin transport processes between the projectile and the target
with different N/Z ratios and that between the neck and the spectator with different isospin asymmetries
and densities in intermediate-energy heavy-ion collisions are studied within an isospin-dependent Boltzmann-
Uehling-Uhlenbeck transport model using the lattice Hamiltonian approach. The respective roles and timescales
of the isospin diffusion and drift as the major mechanisms of isospin transport in intermediate-energy heavy-ion
collisions are discussed. Effects of nuclear symmetry energy and neutron-proton effective mass splitting on the
isospin relaxation times are examined.
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I. INTRODUCTION

Understanding properties of isovector nuclear interactions
as well as the related nuclear symmetry energy and the
neutron-proton effective mass splitting in neutron-rich mat-
ter is a major thrust of nuclear science. In particular, the
density dependence of nuclear symmetry energy Esym(ρ) has
important ramifications in not only nuclear structures and
nuclear reactions but also several areas of astrophysics and
cosmology. Despite the great efforts made over the past few
decades, Esym(ρ) at both subsaturation and suprasaturation
densities are still uncertain; see, e.g., Refs. [1–11] for re-
views. The nucleon effective mass is a fundamental quantity
characterizing the nucleon’s propagation in nuclear medium
[12–14], and it is related to the momentum or energy de-
pendence of the nucleon potential in the nonrelativistic ap-
proach. In recent years, whether the neutron-proton effective
mass splitting m∗

n−p(m∗
n−p ≡ m∗

n − m∗
p ) is negative, zero, or

positive in neutron-rich matter becomes a hotly debated topic.
It affects the isospin dynamics in nuclear reactions [15–21],
thermodynamic and transport properties of neutron-rich mat-
ter [22–26], and isovector giant dipole resonances in neutron-
rich nuclei [27,28]. Moreover, based on the Hugenholtz–Van
Hove theorem, the isospin splitting of the nucleon effec-
tive mass is closely related to the nuclear symmetry en-
ergy [29,30]. For a very recent review on the nucleon effective
mass in neutron-rich medium, we refer the reader to Ref. [31].

Heavy-ion reactions at intermediate energies provide a
means to probe the nuclear symmetry energy and the neutron-
proton effective mass splitting in neutron-rich matter. In par-
ticular, both the degree and timescale for isospin transport
in heavy-ion reactions are known to be affected by nuclear
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isovector interactions [32–34]. There are two driving mecha-
nisms for isospin transport, i.e., the isospin diffusion and the
isospin drift. The isospin diffusion is the dominating effect
when the projectile and the target nuclei have different N/Z
ratios [35]. The degree of isospin mixing as a result of isospin
transport between the two nuclei is quantitatively described by
the so-called isospin transport ratio. The latter was proposed
to be a useful probe of the nuclear symmetry energy [36,37].
It was later realized that the isospin transport ratio is affected
by the momentum dependence of the nucleon potential [38],
the in-medium nucleon-nucleon scattering cross section [39],
and the neutron-proton effective mass splitting [18]. On the
other hand, since different density regions can be reached in
intermediate-energy heavy-ion collisions, they generally have
different isospin asymmetries due to the isospin fractionation
effect depending on the density dependence of the nuclear
symmetry energy; i.e., the low-density neck region in non-
central heavy-ion collisions is more neutron-rich compared to
the normal-density spectator. The isospin transport between
the neck and the spectator is driven by both the isospin
diffusion and the isospin drift. While various observables have
been proposed to measure the degree of isospin transport in
heavy-ion reactions, it has been rather challenging to obtain
experimental information about the timescale of isospin trans-
port. Very interestingly, the isospin relaxation time for the
neck and the spectator in the projectile-like fragment (PLF)
or target-like fragment (TLF) to reach isospin equilibrium
was recently extracted by a group at Texas A&M University
(TAMU) [40]. It is thus physically useful and timely to
know how sensitive the isospin relaxation time in PLF or
TLF is to the Esym(ρ) and/or m∗

n−p, and whether the new
data are precise enough for constraining the properties of
isovector nuclear interactions within the model considered.
For these purposes, we carry out a study within an isospin-
dependent Boltzmann-Uehling-Uhlenbeck (IBUU) transport
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model using an improved isospin- and momentum-dependent
interaction (ImMDI) [24]. In order to improve the stability for
the momentum-dependent mean-field potential at lower beam
energies, the lattice Hamiltonian (LH) method [41] was em-
ployed for calculating the mean-field potential. Appreciable
effects of Esym(ρ) and m∗

n−p on the isospin relaxation time
are observed. However, they are much smaller than the current
uncertainty range of the isospin relaxation time extracted from
the experiment by the TAMU group.

The rest part of the paper is organized as follows. Sec-
tion II briefly introduces the ImMDI interaction as well as
the LH method in calculating the mean-field potential for the
IBUU transport simulation. We discuss the isospin transport
process between projectile and target in central 40Ca + 124Sn
collisions, and study the isospin transport process between
neck and spectator within the PLF in noncentral 70Zn + 70Zn
collisions in Sec. III. A summary is made in Sec. IV.

II. THEORETICAL FRAMEWORK

A. An improved isospin- and momentum-dependent interaction

The potential energy density of the ImMDI interaction
can be obtained from an effective two-body interaction
with a zero-range density-dependent term and a finite-
range Yukawa-type term based on the Hartree-Fock calcula-
tion [42,43]. In the asymmetric nuclear matter with isospin
asymmetry δ and nucleon number density ρ, it has the follow-
ing form [24,42]:

V (ρ, δ) = Auρnρp

ρ0
+ Al

2ρ0

(
ρ2

n + ρ2
p

) + B

σ + 1

ρσ+1

ρσ
0

× (1 − xδ2) + 1

ρ0

∑
τ,τ ′

Cτ,τ ′

×
∫ ∫

d3pd3p′ fτ (�r, �p)fτ ′ (�r, �p′)
1 + ( �p − �p′)2/�2

. (1)

In the above, ρn and ρp are number densities of neutrons and
protons, respectively, ρ0 is the saturation density, δ = (ρn −
ρp )/ρ is the isospin asymmetry, and fτ (�r, �p) is the phase-
space distribution function, with τ = 1(−1) for neutrons (pro-
tons) being the isospin index. The single-particle mean-field
potential for a nucleon with momentum �p and isospin τ
in the asymmetric nuclear matter with isospin asymmetry δ
and nucleon number density ρ can be obtained from Eq. (1)
through the variational principle as

Uτ (ρ, δ, �p) = Au

ρ−τ

ρ0
+ Al

ρτ

ρ0
+ B

(
ρ

ρ0

)σ

× (1 − xδ2) − 4τx
B

σ + 1

ρσ−1

ρσ
0

δρ−τ

+2Cτ,τ

ρ0

∫
d3p′ fτ (�r, �p′)

1 + ( �p − �p′)2/�2

+2Cτ,−τ

ρ0

∫
d3p′ f−τ (�r, �p′)

1 + ( �p − �p′)2/�2
, (2)

where the four parameters Au, Al, Cτ,τ , and Cτ,−τ can be
expressed as [24]

Al (x, y) = A0 + y + x
2B

σ + 1
, (3)

Au(x, y) = A0 − y − x
2B

σ + 1
, (4)

Cτ,τ (y) = Cl0 − 2yp2
f 0

�2 ln
[(

4p2
f 0 + �2

)/
�2

] , (5)

Cτ,−τ (y) = Cu0 + 2yp2
f 0

�2 ln
[(

4p2
f 0 + �2

)/
�2

] . (6)

In the above, pf 0 = h̄(3π2ρ0/2)1/3 is the nucleon Fermi
momentum in symmetric nuclear matter at saturation density.
The isovector parameters x and y are introduced to mimic the
density dependence of the symmetry energy, i.e., the slope
parameter L = 3ρ0(dEsym/dρ)ρ=ρ0 , and the momentum de-
pendence of the symmetry potential or the neutron-proton ef-
fective mass splitting. The values of the parameters are A0 =
−66.6973 MeV, Cu0 = −99.67 MeV, Cl0 = −60.36 MeV,
B = 141.697 MeV, σ = 1.2658, and � = 2.423pf 0, in order
to obtain the empirical nuclear matter properties: the satura-
tion density ρ0 = 0.16 fm−3, the binding energy E0(ρ0) =
−16 MeV, the incompressibility K0 = 230 MeV, the sym-
metry energy Esym(ρ0) = 32.5 MeV, the isoscalar potential at
infinitely large momentum U0,∞ = 75 MeV, and the isoscalar
effective mass at saturation density m∗

s = 0.7m, with m being
the nucleon mass in vacuum. The nonrelativistic k mass in the
present study is defined as

m∗
n(p)

m
=

(
1 + m

p

∂Un(p)

∂p

)−1

. (7)

B. Lattice Hamiltonian approach within the IBUU
transport model

The IBUU transport model [1] has incorporated prop-
erly the isospin degree of freedom into the BUU transport
model [44], with the latter basically solving numerically the
BUU equation

∂f

∂t
+ ∇ �pU · ∇�rf − ∇�rU · ∇ �pf

= − 1

(2π )6

∫
d3 �p2d

3 �p2′d�
dσ

d�
v12[ff2(1 − f1′ )

× (1 − f2′ ) − f1′f2′ (1 − f )(1 − f2)]

× (2π )3δ(3)( �p + �p2 − �p1′ − �p2′ ), (8)

where dσ
d�

and v12 are respectively the nucleon-nucleon differ-
ential cross section and relative velocity. The left-hand side of
the above BUU equation describes the time evolution of the
phase-space distribution function f (�r, �p) in the mean-field
potential, and this can be approximately realized by solving
the canonical equations of motion for test particles [44,45].
In this approach, the phase-space distribution f (�r, �p) as well
as the local density can be obtained by averaging N parallel
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collision events:

f (�r, �p) = 1

N

AN∑
i

h(�r − �ri )δ( �p − �pi ), (9)

ρ(�r ) = 1

N

AN∑
i

h(�r − �ri ), (10)

where h is a smooth function in coordinate space and A is
the number of real particles, with each represented by N test
particles.

In order to improve the stability for the momentum-
dependent mean-field potential especially at lower collision
energies, we improve the calculation by using a better function
h based on the lattice Hamiltonian framework as in Ref. [41].
The average density ρL at the sites of a three-dimensional
cubic lattice is defined as

ρL(�rα ) =
AN∑
i

S(�rα − �ri ), (11)

where α is a site index and �rα is the position of site α. S is the
shape function describing the contribution of a test particle at
�ri to the value of the average density ρL(�rα ) at �rα , i.e.,

S(�r ) = 1

N (nl)6
g(x)g(y)g(z) (12)

with

g(q ) = (nl − |q|)�(nl − |q|). (13)

In the above, l is the lattice spacing, n determines the range of
S, and � is the Heaviside function. In the following study, we
adopt the values of l = 1 fm and n = 2.

After using the above smooth function ρL(�rα ), the
Hamiltonian of the system can be expressed as

H =
AN∑
i

�p2
i

2m
+ NṼ , (14)

with the total potential energy expressed as

Ṽ = l3
∑

α

Vα

= l3
∑

α

{
AuρL,n(�rα )ρL,p(�rα )

ρ0

+ Al

2ρ0

[
ρ2

L,n(�rα ) + ρ2
L,p(�rα )

]

+ B

σ + 1

ρσ+1
L (�rα )

ρσ
0

(1 − xδ2)

+ 1

ρ0

∑
i,j

∑
τi ,τj

Cτi ,τj

S(�rα − �ri )S(�rα − �rj )

1 + ( �pi − �pj )2/�2

}
, (15)

where ρL,n(�rα ) and ρL,p(�rα ) are respectively the number
density of neutrons and protons at �rα . The canonical equations
of motion for the ith test particle of isospin τi from the above

Hamiltonian can thus be written as

d�ri

dt
= ∂H

∂ �pi

= �pi

m
+ N

∂Ṽ

∂ �pi

= �pi

m
− Nl3

∑
α

4

ρ0

∑
j

∑
τj

Cτi ,τj
S(�rα − �ri )

× S(�rα − �rj )( �pi − �pj )

[1 + ( �pi − �pj )2/�2]2/�2
, (16)

d �pi

dt
= −∂H

∂�ri

= −N
∂Ṽ

∂�ri

= −Nl3
∑

α

∂S(�rα − �ri )

∂�ri

{
Au

ρL,−τi
(�rα )

ρ0

+Al

ρL,τi
(�rα )

ρ0
+ B

[
ρL(�rα )

ρ0

]σ

(1 − xδ2)

−4τix
B

σ + 1

ρσ−1
L (�rα )

ρσ
0

δρL,−τi
(�rα ) + 2

ρ0

×
∑

j

∑
τj

Cτi ,τj

S(�rα − �rj )

1 + ( �pi − �pj )2/�2

}
. (17)

III. RESULTS AND DISCUSSIONS

In the following study, we employ the improved IBUU
transport model using the LH approach for the mean-field
potential from the ImMDI interaction to investigate the
isospin transport in heavy-ion collisions at intermediate en-
ergies. Generally speaking, effects of the isospin transport
in intermediate-energy heavy-ion collisions may manifest in
both the single-nucleon momentum spectra and fragment dis-
tributions in the final state [46–55]. While the IBUU transport
model does not have the dynamical cluster formation mecha-
nism, it is a useful tool for investigating the isospin transport
dynamics by tracing the evolution of the isospin asymmetry
during the reaction. Our following study is divided into two
parts. In the first part, we study effects of the symmetry energy
Esym(ρ) and the neutron-proton effective mass splitting m∗

n−p

on the isospin transport process between the projectile and the
target with different N/Z ratios. The degree and timescale
of the isospin transport are investigated by using a method
similar to that used in Ref. [35]. In the second part, we inves-
tigate the isospin transport process between the low-density
neutron-rich neck and the normal-density but less neutron-rich
spectator in the projectile-like fragment as in the recent exper-
iment done at TAMU [40]. By varying values of the x and y
parameters in the ImMDI interaction, heavy-ion collisions are
simulated with different slope parameters L of the symmetry
energy and the neutron-proton effective mass splittings m∗

n−p.
Typical isospin splittings of the nucleon effective mass used
in the following studies are m∗

n−p/m = 0.426δ by setting
y = −115 MeV as an example of m∗

n−p > 0 and m∗
n−p/m =

−0.251δ by setting y = 115 MeV as an example of m∗
n−p <

0. We note that the parameter sets (x = 0, y = −115 MeV)
and (x = 1, y = 115 MeV) give the same symmetry energy
with L = 60 MeV but different m∗

n−p [24]. The initial density
distribution of the projectile and the target nucleus is sampled
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FIG. 1. Time evolution of the ratio of the particle number in the
resides (Ares) to the total particle number (Atarg + Aproj) in 40Ca +
124Sn collisions at different beam energies using the parametrization
(x = 0, y = −115 MeV) for the ImMDI interaction.

according to that generated from the Skyrme-Hartree-Fock
calculation with the same nuclear matter properties as in the
ImMDI interaction, so the neutron skin effect is properly taken
into account. The initial nucleon momentum distribution is
sampled using the local Thomas-Fermi approximation with
the isospin-dependent nucleon Fermi momentum determined
by the local neutron or proton density.

A. Isospin transport between projectile and target
with different N/Z ratios

As an example for studying the isospin transport process
between the projectile and the target with different N/Z
ratios, 40Ca + 124Sn collisions at an impact parameter of 1 fm
and beam energies from 25 to 300 AMeV are simulated with
the improved IBUU transport model, with each case 10 runs
and each run 100 test particles. Similar to Ref. [35], the rela-
tive neutron/proton ratios in the bounded residue (defined as
regions where ρ > ρ0/8) at forward and backward rapidities
in the center-of-mass frame of the projectile-target system

λ(t ) ≡ (n/p)y>0

(n/p)y<0
(18)

is used to measure the degree of isospin equilibrium.
The fractions of particles in the resides in 40Ca + 124Sn

collisions at beam energies from 25 to 300 AMeV using
the parameter set (x = 0, y = −115 MeV) for the ImMDI
interaction are shown in Fig. 1. The time evolutions of these
fractions mainly reflect the timescales of particle emissions.
Reaching a flat fraction of bounded particles indicates that
the particle emission is over. It is seen that this timescale
drops quickly with increasing beam energy. As the beam
energy changes from 25 to 300 AMeV, the particle emission
timescale changes approximately from 150 fm/c to about
75 fm/c. Such timescales set a useful reference for discussing
the isospin relaxation times.

FIG. 2. Time evolution of the isospin equilibration meter [λ(t ) −
1]/[λ(0) − 1] in 40Ca + 124Sn collisions and beam energies of 25 (a),
100 (b), 200 (c), and 300 AMeV (d) from calculations using different
symmetry energies and neutron-proton effective mass splittings.

In order to reveal the symmetry energy effect on the isospin
relaxation, we have done the same calculations with the
parametrization (x = 1, y = −115 MeV), which leads to the
same neutron-proton effective mass splitting as (x = 0, y =
−115 MeV) but a softer Esym(ρ) with a slope parameter L =
10 MeV. With different slope parameters L of the symmetry
energy and the neutron-proton effective mass splittings, the
time evolutions of the isospin equilibration meter [λ(t ) −
1]/[λ(0) − 1] are displayed in Fig. 2 as functions of time at
various beam energies. As in Ref. [35], the isospin relaxation
time τ is defined as the time when [λ(t ) − 1]/[λ(0) − 1]
approaches 0 for the first time. It is an approximate mea-
sure of how fast the isospin transport happens. Obviously,
the complete isospin equilibrium does not occur even at
the lowest energy considered as indicated by the oscillating
[λ(t ) − 1]/[λ(0) − 1] values. Moreover, as indicated in Fig. 1,
the fraction of masses in the resides are still decreasing
as the isospin oscillations continue. More quantitatively, with
the parameter set of (x = 0, y = −115 MeV), the fractions
of masses in the residues at 25 AMeV are about 84% and
71%, respectively, when [λ(t ) − 1]/[λ(0) − 1] reaches zero
for the first and the second time, respectively. For the reaction
at 300 AMeV, they are about 89% and 13%, respectively.

The isospin relaxation times from simulations using dif-
ferent L and m∗

n−p at beam energies from 25 to 300 AMeV
are compared in Fig. 3. The decreasing trend of the isospin
relaxation time with the increasing collision energy, as al-
ready observed in Fig. 2, is due to stronger dissipations as
a result of more successful nucleon-nucleon collisions at
higher beam energies. Generally, a softer symmetry energy
with L = 10 MeV leads to a shorter isospin relaxation time.
This is understandable since the symmetry energy at the
dominating low-density phase acts as a restoring force for the
system to reach isospin equilibrium, and the time for reaching
isospin equilibrium becomes shorter if this force is stronger.
The case with m∗

n−p < 0 generally leads to a longer isospin
relaxation time, especially at higher collision energies. This

054608-4



REEXAMINING THE ISOSPIN-RELAXATION TIME IN … PHYSICAL REVIEW C 98, 054608 (2018)

FIG. 3. Beam energy dependence of the isospin relaxation time
in 40Ca + 124Sn collisions from calculations using different symme-
try energies and neutron-proton effective mass splittings.

is due to the weaker symmetry potential at lower momenta
for m∗

n−p < 0 than that from m∗
n−p > 0, especially when the

density increases, as can be seen from Fig. 8 of Ref. [24]. The
above calculations were done with the isospin-dependent in-
medium nucleon-nucleon scattering cross sections scaled by
the nucleon effective mass [39]. We have also tried free-space
nucleon-nucleon scattering cross sections in the calculations
and found that the difference is much smaller compared to
those caused by the nuclear symmetry energy and the neutron-
proton effective mass splitting. Generally speaking, smaller
in-medium cross sections reveal more about the mean-field
potential effects on the isospin transport.

B. Isospin transport between neck and spectator in noncentral
70Zn + 70Zn collisions

Because the symmetry energy generally increases with
increasing density, a more neutron-rich neck compared to
the less neutron-rich spectator is expected to be formed in
noncentral heavy-ion reactions as a result of the isospin
fractionation effect. Such effect has been studied extensively
in the literature and is well understood; see, e.g., Refs. [2,4]
for reviews. However, it is not so clear how fast the neutron-
rich neck exchanges its isospin asymmetry with the specta-
tor and how this process may depend on the properties of
isovector nuclear interactions. Interestingly, an experimental
investigation on the isospin transport process between the
neck and the spectator in noncentral 70Zn + 70Zn collisions
at a beam energy of 35 AMeV was recently carried out by
the TAMU group [40]. It was assumed that the PLF will
rotate in a constant angular frequency after the breakup of the
neck while the more neutron-rich light fragment (LF) from
the neck and the less neutron-rich heavy fragment (HF) from
the spectator evolve toward an isospin equilibrium state. The
alignment angle serves as a clock once the angular momentum
of the PLF is known, and the difference in isospin asymmetry

between the LF and the HF was found to decrease with the
increasing alignment angle.

The neck formation and fragmentation were previ-
ously investigated using the constrained molecular dynam-
ics model [56]. Although the fragmentation process is not
properly described in the IBUU transport model, some useful
information can still be obtained by tracing the isospin asym-
metry in heavy-ion collisions. Plotted in Fig. 4 are the isospin
asymmetry contours from calculations using different sym-
metry energies and neutron-proton effective mass splittings,
from averaging 200 runs for each case and 200 test particles
for each run. The rotation of the whole system can be clearly
observed. Moreover, the time evolutions of the less neutron-
rich normal-density phase and the more neutron-rich low-
density phase are vividly shown. A stiffer symmetry energy
with a larger slope parameter L generally leads to a more
neutron-rich neck, while the neutron-proton effective mass
splitting seems to have only small effects on the evolution of
the isospin asymmetry. To further examine effects of the sym-
metry energy and isospin splittings of the nucleon effective
mass on the isospin fractionation, the correlation between the
isospin asymmetry δ and the reduced nucleon number density
ρ/ρ0 is shown in Fig. 5. It is more clearly seen that a stiffer
symmetry energy leads to a more neutron-rich low-density
phase, while the isospin asymmetry of the low-density phase
is insensitive to the isospin splitting of the nucleon effective
mass. The case with L = 90 MeV for the first half of the
reaction but L = 60 MeV for the latter half in the bottom row
of Fig. 4 is to study the isospin transport between the neck
and the spectator with different symmetry energies but starting
from the same initial isospin asymmetry difference. This will
be further discussed later.

As seen from Fig. 4, the neutron-rich neck is gradually
assimilated by the spectator in the later stage, and the PLF
will eventually reach an isospin equilibrium. In our IBUU cal-
culations, the PLF, defined as bounded nucleons (ρ > ρ0/8)
at z > 0, does not break up into a neutron-rich LF and a less
neutron-rich HF. In order to describe quantitatively the isospin
relaxation within the PLF, we examine the isovector dipole
moment

�D(t ) ≡ �RZ (t ) − �RN (t ), (19)

where �RZ (t ) and �RN (t ) are the centers of mass of neu-
trons and protons in the PLF, respectively. This quantity is
similar to the operator for isovector giant dipole resonances
(IVGDR) [28]. The full isospin equilibrium in the PLF is
reached when | �D(t )| is 0. Figure 6 displays the time evolution
of | �D(t )| in the later stage of noncentral 70Zn + 70Zn reac-
tions from simulations using different symmetry energies and
neutron-proton effective mass splittings, corresponding to the
four scenarios in Fig. 4. The instant t = 170 fm/c is taken
as the initial time when the norm of the dipole moment is
the largest. The different initial | �D(t )| values correspond to
different isospin asymmetries of the neck from using different
symmetry energies. The | �D(t )| shows not only an exponential
decay but also a damped oscillation, with the latter similar to
that of an IVGDR. Based on this observation, we fit the time

054608-5



HAN-SHENG WANG, JUN XU, BAO-AN LI, AND WEN-QING SHEN PHYSICAL REVIEW C 98, 054608 (2018)

FIG. 4. Contours of the isospin asymmetry δ = (ρn − ρp )/ρ in the reaction plane (x − o − z) at different times in 70Zn + 70Zn collisions
at the beam energy of 35 AMeV and the impact parameter of 4 fm with (L = 60 MeV, m∗

n > m∗
p) (first row), (L = 60 MeV, m∗

n < m∗
p) (second

row), and (L = 90 MeV, m∗
n > m∗

p) (third row). The fourth row is for testing purposes by setting (L = 90 MeV, m∗
n > m∗

p) at t = 0 − 170
fm/c and (L = 60 MeV, m∗

n > m∗
p) at t = 170 − 300 fm/c.

evolution of | �D(t )| using

| �D(t )| = a exp[−(t − 170)/τ1]

+ b cos[ω(t − t0)] exp[−(t − 170)/τ2]. (20)

FIG. 5. Correlation between the isospin asymmetry δ and the
reduced nucleon number density ρ/ρ0 at t = 170 fm/c in noncen-
tral 70Zn + 70Zn collisions at the beam energy of 35 AMeV from
calculations using different symmetry energies and neutron-proton
effective mass splittings, corresponding to the reactions in Fig. 4.

The second term in the above expression is also used in
our previous study of IVGDR [28]. The simulation results
of | �D(t )| are fitted reasonably well with Eq. (20) as shown
by the solid black lines in Fig. 6. The fitting parameters in
the four scenarios are given in Table I. Comparing results
from using the same L but different m∗

n−p, it is seen that the

FIG. 6. Time evolution of the magnitude of the isovector dipole
moment for the projectile-like fragment in the later stage of non-
central 70Zn + 70Zn collisions from simulations using different sym-
metry energies and neutron-proton effective mass splittings corre-
sponding to the four scenarios in Fig. 4. The scatters are results
from simulations, while the solid lines are from the fit according to
Eq. (20).
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TABLE I. The slope paramters of the symmetry energy L, the neutron-proton effective mass splitting m∗
n−p , and the parameters from fitting

the isovector dipole moment according to Eq. (20), corresponding to the four scenarios in Figs. 4 and 6, as well as the final isospin relaxation
time τ .

L (MeV) m∗
n−p (m) a (fm) b (fm) τ1 (fm/c) τ2 (fm/c) ω [rad(fm/c)−1] τ (fm/c)

60 0.426 δ 0.064 ± 0.001 0.012 ± 0.001 67.43 ± 0.62 71.11 ± 4.53 0.089 ± 0.001 68.00 ± 1.22
60 −0.251 δ 0.071 ± 0.002 0.011 ± 0.001 66.03 ± 1.64 155.14 ± 25.62 0.062 ± 0.002 73.52 ± 3.45
90 0.426 δ 0.102 ± 0.002 0.036 ± 0.001 59.47 ± 0.86 61.61 ± 1.59 0.068 ± 0.001 60.02 ± 1.05
90 and 60 0.426 δ 0.079 ± 0.001 0.056 ± 0.001 60.34 ± 0.10 51.05 ± 1.02 0.074 ± 0.001 56.30 ± 0.51

difference is mainly in the oscillation part, i.e., the second
term in Eq. (20). A slower decay of the oscillation magnitude
and a lower frequency are observed for the case of m∗

n <
m∗

p compared with the m∗
n > m∗

p case. This is qualitatively
consistent with that observed in Ref. [28], as a result of
the weaker symmetry potential in the case of m∗

n < m∗
p at

lower nucleon momenta [24]. From Fig. 6, | �D(t )| is seen to
decrease more slowly for m∗

n < m∗
p than for m∗

n > m∗
p, due

to the difference in the second term of Eq. (20) as discussed
above. This means that in the presence of oscillations the
measure of the isospin relaxation time τ should consider the
second term. Here, we define the isospin relaxation time τ
as the time needed for the upper envelope of | �D(t )|, i.e.,
a exp[−(t − 170)/τ1] + b exp[−(t − 170)/τ2], to decrease to
1/e of its initial value, i.e., (a + b)/e. The values of τ are
shown in the final column of Table I. It is worth noting
that the isospin relaxation time τ is quite long for m∗

n < m∗
p,

qualitatively consistent with our findings in Sec. III A.
It is interesting to note that for the same m∗

n−p, the calcu-
lation with L = 90 MeV leads to a shorter isospin relaxation
time τ than that with L = 60 MeV. However, this seems to
be opposite to what we found in Sec. III A. This discrep-
ancy is mainly due to different initial | �D(t )| values from
different L. Neglecting the effective mass difference between
neutrons and protons, the isovector current can be expressed
as [4,33,34,49]

�jn − �jp = (
Dρ

n − Dρ
p

)∇ρ − (
DI

n − DI
p

)∇δ, (21)

where the difference of the drift coefficient D
ρ
N and the diffu-

sion coefficient DI
N between neutrons and protons is related

to the nuclear symmetry energy via

Dρ
n − Dρ

p ∝ 4δ
∂Esym

∂ρ
,

DI
n − DI

p ∝ 4ρEsym. (22)

In the analysis in Sec. III A, it is understood that the isovector
current is dominated by the isospin diffusion, i.e., mainly due
to the gradient of the isospin asymmetry ∇δ as a result of
different N/Z ratios between the projectile and the target.
A smaller L corresponding to a larger symmetry energy at
the dominating low-density phase leads to a larger isovector
diffusion coefficient DI

n − DI
p, and thus a stronger isovector

current �jn − �jp. In the analysis of isospin transport between
the neck and the spectator, the isovector current is driven by
both the isospin diffusion and the isospin drift, i.e., due to the

gradients of both the isospin asymmetry ∇δ and the density
∇ρ. For different L values, the dynamics leads to similar
∇ρ but different ∇δ values. The longer isospin relaxation
time from L = 90 MeV is likely due to the larger ∇δ and
the larger isovector drift coefficient D

ρ
n − D

ρ
p , although the

isovector diffusion coefficient DI
n − DI

p is smaller, compared
to the L = 60 MeV case. To further understand the difference,
we perform a simulation with L = 90 MeV from 0 to 170
fm/c, and L = 60 MeV for the rest of the reactions. As shown
in Fig. 4, the evolution of the isospin asymmetry becomes dif-
ferent for t > 170 fm/c, as expected. In Fig. 6, it is seen that
| �D(t )| is the same in the initial stage, but drops more quickly
and oscillates more strongly in the later stage, compared to the
scenario with a fixed L = 90 MeV throughout the simulation.
After considering the oscillation, the overall isospin relaxation
time τ is shorter as shown Table I, due to the same initial ∇δ
from L = 90 MeV at t = 170 fm/c but a stronger restoring
force from L = 60 MeV at t > 170 fm/c.

The above analyses were done at the impact parameter
of 4 fm, which is larger than the average value of minibias
70Zn + 70Zn collisions. This is similar to the experimental
situation where more peripheral collision events were cho-
sen [57]. With a smaller impact parameter, there will be more
participating nucleons, a higher density and less neutron-rich
neck, and thus a weaker isovector current due to the smaller
gradients of the density and isospin asymmetry according
to Eq. (21). From our simulations with similar analytical
method, we found that the isospin relaxation time generally
increases with a smaller impact parameter.

IV. SUMMARY

Within an improved isospin-dependent Boltzmann-
Uehling-Uhlenbeck transport model using the lattice
Hamiltonian method to calculate the mean-field potential,
we have studied the effects of the nuclear symmetry energy
and the neutron-proton effective mass splitting on the
isospin relaxation time in two different isospin transport
processes in intermediate-energy heavy-ion collisions. In the
isospin transport process dominated by the isospin diffusion
between the projectile and the target with different N/Z
ratios, the isospin-relaxation time is generally shorter for
a softer symmetry energy compared with a stiffer one,
and longer for m∗

n < m∗
p compared with m∗

n > m∗
p. The

situation is different in the isospin transport process between
the low-density neutron-rich neck and the normal-density
but less neutron-rich spectator driven by both the isospin
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diffusion and the isospin drift mechanisms in noncentral
heavy-ion collisions. In this case, the isospin-relaxation time
is shorter for a stiffer symmetry energy because the isospin
asymmetry of the neck is also affected by the symmetry
energy, while the effect from the isospin splitting of the
nucleon effective mass is qualitatively similar. Although the
extracted isospin relaxation time in 70Zn + 70Zn collisions
from the present study is within the experimental uncertainty
range, i.e., 0.3±0.7

0.2 zs (100±233
67 fm/c) from Ref. [40],

significant improvement of the accuracy for measuring
experimentally the isospin relaxation time and additional
information about the collision centrality are necessary to
extract useful information about the symmetry energy and
the neutron-proton effective mass splitting from comparing
quantitatively the model calculations with the experimental
result. Meanwhile, our study may help us better understand
the isospin diffusion and the isospin drift mechanisms

for the isospin transport in intermediate-energy heavy-ion
collisions.
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Issue on Nuclear Symmetry Energy, Eur. Phys. J. A 50(2), 9
(2014).

[7] C. J. Horowitz, E. F. Brown, Y. Kim, W. G. Lynch, R. Michaels,
A. Ono, J. Piekarewicz, M. B. Tsang, and H. H. Wolter, J. Phys.
G 41, 093001 (2014).

[8] M. Baldo and G. F. Burgio, Prog. Part. Nucl. Phys. 91, 203
(2016).

[9] M. Oertel, M. Hempel, T. Klähn, and S. Typel, Rev. Mod. Phys.
89, 015007 (2017).

[10] B. A. Li, Nucl. Phys. News 27, 7 (2017).
[11] W. G. Lynch and M. B. Tsang, arXiv:1805.10757 [nucl-ex].
[12] J. P. Jeukenne, A. Lejeune, and C. Mahaux, Phys. Rep. 25, 83

(1976).
[13] M. Jaminon and C. Mahaux, Phys. Rev. C 40, 354 (1989).
[14] O. Sjöberg, Nucl. Phys. A 265, 511 (1976).
[15] J. Rizzo, M. Colonna, and M. Di Toro, Phys. Rev. C 72, 064609

(2005).
[16] V. Giordano, M. Colonna, M. Di Toro, V. Greco, and J. Rizzo,

Phys. Rev. C 81, 044611 (2010).
[17] Z. Q. Feng, Phys. Rev. C 84, 024610 (2011).
[18] Y. X. Zhang, M. B. Tsang, Z. X. Li, and H. Liu, Phys. Lett. B

732, 186 (2014).
[19] W. J. Xie and F. S. Zhang, Phys. Lett. B 735, 250 (2014).
[20] H. Y. Kong, Y. Xia, J. Xu, L. W. Chen, B. A. Li, and Y. G. Ma,

Phys. Rev. C 91, 047601 (2015).
[21] D. D. S. Coupland, M. Youngs, Z. Chajecki, W. G. Lynch, M. B.

Tsang, Y. X. Zhang, M. A. Famiano, T. K. Ghosh, B. Giacherio,
M. A. Kilburn et al., Phys. Rev. C 94, 011601(R) (2016).

[22] L. Ou, Z. Li, Y. Zhang, and M. Liu, Phys. Lett. B 697, 246
(2011).

[23] B. Behera, T. R. Routray, and S. K. Tripathy, J. Phys. G 38,
115104 (2011).

[24] J. Xu, L. W. Chen, and B. A. Li, Phys. Rev. C 91, 014611
(2015).

[25] H. F. Zhang, U. Lombardo, and W. Zuo, Phys. Rev. C 82,
015805 (2010).

[26] J. Xu, Phys. Rev. C 91, 037601 (2015).
[27] Z. Zhang and L. W. Chen, Phys. Rev. C 93, 034335 (2016).
[28] H.-Y. Kong, J. Xu, L.-W. Chen, B.-A. Li, and Y.-G. Ma, Phys.

Rev. C 95, 034324 (2017).
[29] C. Xu, B. A. Li, and L. W. Chen, Phys. Rev. C 82, 054607

(2010).
[30] B. A. Li and X. Han, Phys. Lett. B 727, 276 (2013).
[31] B. A. Li, B. J. Cai, L. W. Chen, and J. Xu, Prog. Part. Nucl.

Phys. 99, 29 (2018).
[32] B. A. Li and S. J. Yennello, Phys. Rev. C 52, 1746(R) (1995).
[33] L. Shi and P. Danielewicz, Phys. Rev. C 68, 064604 (2003).
[34] J. Rizzo, M. Colonna, V. Baran, M. Di Toro, H. H. Wolter, and

M. Zielinska-Pfabe, Nucl. Phys. A 806, 79 (2008).
[35] B. A. Li and C. M. Ko, Phys. Rev. C 57, 2065 (1998).
[36] M. B. Tsang, T. X. Liu, L. Shi, P. Danielewicz, C. K. Gelbke,

X. D. Liu, W. G. Lynch, W. P. Tan, G. Verde, A. Wagner et al.,
Phys. Rev. Lett. 92, 062701 (2004).

[37] M. B. Tsang, Y. Zhang, P. Danielewicz, M. Famiano, Z. Li,
W. G. Lynch, and A. W. Steiner, Phys. Rev. Lett. 102, 122701
(2009).

[38] L. W. Chen, C. M. Ko, and B. A. Li, Phys. Rev. Lett. 94, 032701
(2005).

[39] B. A. Li and L. W. Chen, Phys. Rev. C 72, 064611 (2005).
[40] A. Jedele, A. B. McIntosh, K. Hagel, M. Huang, L. Heilborn,

Z. Kohley, L. W. May, E. McCleskey, M. Youngs, A. Zarrella,
and S. J. Yennello, Phys. Rev. Lett. 118, 062501 (2017).

[41] R. J. Lenk and V. R. Pandharipande, Phys. Rev. C 39, 2242
(1989).

[42] C. B. Das, S. Das Gupta, C. Gale, and B. A. Li, Phys. Rev. C
67, 034611 (2003).

[43] J. Xu and C. M. Ko, Phys. Rev. C 82, 044311 (2010).
[44] G. F. Bertsch and S. Das Gupta, Phys. Rep. 160, 189 (1988).
[45] C. Y. Wong, Phys. Rev. C 25, 1460 (1982).
[46] F. S. Zhang, L. W. Chen, Z. Y. Ming, and Z. Y. Zhu, Phys. Rev.

C 60, 064604 (1999).

054608-8

https://doi.org/10.1142/S0218301398000087
https://doi.org/10.1142/S0218301398000087
https://doi.org/10.1142/S0218301398000087
https://doi.org/10.1142/S0218301398000087
https://doi.org/10.1016/j.physrep.2004.12.004
https://doi.org/10.1016/j.physrep.2004.12.004
https://doi.org/10.1016/j.physrep.2004.12.004
https://doi.org/10.1016/j.physrep.2004.12.004
https://doi.org/10.1016/j.physrep.2005.02.004
https://doi.org/10.1016/j.physrep.2005.02.004
https://doi.org/10.1016/j.physrep.2005.02.004
https://doi.org/10.1016/j.physrep.2005.02.004
https://doi.org/10.1016/j.physrep.2008.04.005
https://doi.org/10.1016/j.physrep.2008.04.005
https://doi.org/10.1016/j.physrep.2008.04.005
https://doi.org/10.1016/j.physrep.2008.04.005
https://doi.org/10.1142/S0218301312300032
https://doi.org/10.1142/S0218301312300032
https://doi.org/10.1142/S0218301312300032
https://doi.org/10.1142/S0218301312300032
https://doi.org/10.1140/epja/i2014-14009-x
https://doi.org/10.1140/epja/i2014-14009-x
https://doi.org/10.1140/epja/i2014-14009-x
https://doi.org/10.1140/epja/i2014-14009-x
https://doi.org/10.1140/epja/i2014-14009-x
https://doi.org/10.1088/0954-3899/41/9/093001
https://doi.org/10.1088/0954-3899/41/9/093001
https://doi.org/10.1088/0954-3899/41/9/093001
https://doi.org/10.1088/0954-3899/41/9/093001
https://doi.org/10.1016/j.ppnp.2016.06.006
https://doi.org/10.1016/j.ppnp.2016.06.006
https://doi.org/10.1016/j.ppnp.2016.06.006
https://doi.org/10.1016/j.ppnp.2016.06.006
https://doi.org/10.1103/RevModPhys.89.015007
https://doi.org/10.1103/RevModPhys.89.015007
https://doi.org/10.1103/RevModPhys.89.015007
https://doi.org/10.1103/RevModPhys.89.015007
https://doi.org/10.1080/10619127.2017.1388681
https://doi.org/10.1080/10619127.2017.1388681
https://doi.org/10.1080/10619127.2017.1388681
https://doi.org/10.1080/10619127.2017.1388681
http://arxiv.org/abs/arXiv:1805.10757
https://doi.org/10.1016/0370-1573(76)90017-X
https://doi.org/10.1016/0370-1573(76)90017-X
https://doi.org/10.1016/0370-1573(76)90017-X
https://doi.org/10.1016/0370-1573(76)90017-X
https://doi.org/10.1103/PhysRevC.40.354
https://doi.org/10.1103/PhysRevC.40.354
https://doi.org/10.1103/PhysRevC.40.354
https://doi.org/10.1103/PhysRevC.40.354
https://doi.org/10.1016/0375-9474(76)90558-3
https://doi.org/10.1016/0375-9474(76)90558-3
https://doi.org/10.1016/0375-9474(76)90558-3
https://doi.org/10.1016/0375-9474(76)90558-3
https://doi.org/10.1103/PhysRevC.72.064609
https://doi.org/10.1103/PhysRevC.72.064609
https://doi.org/10.1103/PhysRevC.72.064609
https://doi.org/10.1103/PhysRevC.72.064609
https://doi.org/10.1103/PhysRevC.81.044611
https://doi.org/10.1103/PhysRevC.81.044611
https://doi.org/10.1103/PhysRevC.81.044611
https://doi.org/10.1103/PhysRevC.81.044611
https://doi.org/10.1103/PhysRevC.84.024610
https://doi.org/10.1103/PhysRevC.84.024610
https://doi.org/10.1103/PhysRevC.84.024610
https://doi.org/10.1103/PhysRevC.84.024610
https://doi.org/10.1016/j.physletb.2014.03.030
https://doi.org/10.1016/j.physletb.2014.03.030
https://doi.org/10.1016/j.physletb.2014.03.030
https://doi.org/10.1016/j.physletb.2014.03.030
https://doi.org/10.1016/j.physletb.2014.06.050
https://doi.org/10.1016/j.physletb.2014.06.050
https://doi.org/10.1016/j.physletb.2014.06.050
https://doi.org/10.1016/j.physletb.2014.06.050
https://doi.org/10.1103/PhysRevC.91.047601
https://doi.org/10.1103/PhysRevC.91.047601
https://doi.org/10.1103/PhysRevC.91.047601
https://doi.org/10.1103/PhysRevC.91.047601
https://doi.org/10.1103/PhysRevC.94.011601
https://doi.org/10.1103/PhysRevC.94.011601
https://doi.org/10.1103/PhysRevC.94.011601
https://doi.org/10.1103/PhysRevC.94.011601
https://doi.org/10.1016/j.physletb.2011.01.062
https://doi.org/10.1016/j.physletb.2011.01.062
https://doi.org/10.1016/j.physletb.2011.01.062
https://doi.org/10.1016/j.physletb.2011.01.062
https://doi.org/10.1088/0954-3899/38/11/115104
https://doi.org/10.1088/0954-3899/38/11/115104
https://doi.org/10.1088/0954-3899/38/11/115104
https://doi.org/10.1088/0954-3899/38/11/115104
https://doi.org/10.1103/PhysRevC.91.014611
https://doi.org/10.1103/PhysRevC.91.014611
https://doi.org/10.1103/PhysRevC.91.014611
https://doi.org/10.1103/PhysRevC.91.014611
https://doi.org/10.1103/PhysRevC.82.015805
https://doi.org/10.1103/PhysRevC.82.015805
https://doi.org/10.1103/PhysRevC.82.015805
https://doi.org/10.1103/PhysRevC.82.015805
https://doi.org/10.1103/PhysRevC.91.037601
https://doi.org/10.1103/PhysRevC.91.037601
https://doi.org/10.1103/PhysRevC.91.037601
https://doi.org/10.1103/PhysRevC.91.037601
https://doi.org/10.1103/PhysRevC.93.034335
https://doi.org/10.1103/PhysRevC.93.034335
https://doi.org/10.1103/PhysRevC.93.034335
https://doi.org/10.1103/PhysRevC.93.034335
https://doi.org/10.1103/PhysRevC.95.034324
https://doi.org/10.1103/PhysRevC.95.034324
https://doi.org/10.1103/PhysRevC.95.034324
https://doi.org/10.1103/PhysRevC.95.034324
https://doi.org/10.1103/PhysRevC.82.054607
https://doi.org/10.1103/PhysRevC.82.054607
https://doi.org/10.1103/PhysRevC.82.054607
https://doi.org/10.1103/PhysRevC.82.054607
https://doi.org/10.1016/j.physletb.2013.10.006
https://doi.org/10.1016/j.physletb.2013.10.006
https://doi.org/10.1016/j.physletb.2013.10.006
https://doi.org/10.1016/j.physletb.2013.10.006
https://doi.org/10.1016/j.ppnp.2018.01.001
https://doi.org/10.1016/j.ppnp.2018.01.001
https://doi.org/10.1016/j.ppnp.2018.01.001
https://doi.org/10.1016/j.ppnp.2018.01.001
https://doi.org/10.1103/PhysRevC.52.R1746
https://doi.org/10.1103/PhysRevC.52.R1746
https://doi.org/10.1103/PhysRevC.52.R1746
https://doi.org/10.1103/PhysRevC.52.R1746
https://doi.org/10.1103/PhysRevC.68.064604
https://doi.org/10.1103/PhysRevC.68.064604
https://doi.org/10.1103/PhysRevC.68.064604
https://doi.org/10.1103/PhysRevC.68.064604
https://doi.org/10.1016/j.nuclphysa.2008.02.307
https://doi.org/10.1016/j.nuclphysa.2008.02.307
https://doi.org/10.1016/j.nuclphysa.2008.02.307
https://doi.org/10.1016/j.nuclphysa.2008.02.307
https://doi.org/10.1103/PhysRevC.57.2065
https://doi.org/10.1103/PhysRevC.57.2065
https://doi.org/10.1103/PhysRevC.57.2065
https://doi.org/10.1103/PhysRevC.57.2065
https://doi.org/10.1103/PhysRevLett.92.062701
https://doi.org/10.1103/PhysRevLett.92.062701
https://doi.org/10.1103/PhysRevLett.92.062701
https://doi.org/10.1103/PhysRevLett.92.062701
https://doi.org/10.1103/PhysRevLett.102.122701
https://doi.org/10.1103/PhysRevLett.102.122701
https://doi.org/10.1103/PhysRevLett.102.122701
https://doi.org/10.1103/PhysRevLett.102.122701
https://doi.org/10.1103/PhysRevLett.94.032701
https://doi.org/10.1103/PhysRevLett.94.032701
https://doi.org/10.1103/PhysRevLett.94.032701
https://doi.org/10.1103/PhysRevLett.94.032701
https://doi.org/10.1103/PhysRevC.72.064611
https://doi.org/10.1103/PhysRevC.72.064611
https://doi.org/10.1103/PhysRevC.72.064611
https://doi.org/10.1103/PhysRevC.72.064611
https://doi.org/10.1103/PhysRevLett.118.062501
https://doi.org/10.1103/PhysRevLett.118.062501
https://doi.org/10.1103/PhysRevLett.118.062501
https://doi.org/10.1103/PhysRevLett.118.062501
https://doi.org/10.1103/PhysRevC.39.2242
https://doi.org/10.1103/PhysRevC.39.2242
https://doi.org/10.1103/PhysRevC.39.2242
https://doi.org/10.1103/PhysRevC.39.2242
https://doi.org/10.1103/PhysRevC.67.034611
https://doi.org/10.1103/PhysRevC.67.034611
https://doi.org/10.1103/PhysRevC.67.034611
https://doi.org/10.1103/PhysRevC.67.034611
https://doi.org/10.1103/PhysRevC.82.044311
https://doi.org/10.1103/PhysRevC.82.044311
https://doi.org/10.1103/PhysRevC.82.044311
https://doi.org/10.1103/PhysRevC.82.044311
https://doi.org/10.1016/0370-1573(88)90170-6
https://doi.org/10.1016/0370-1573(88)90170-6
https://doi.org/10.1016/0370-1573(88)90170-6
https://doi.org/10.1016/0370-1573(88)90170-6
https://doi.org/10.1103/PhysRevC.25.1460
https://doi.org/10.1103/PhysRevC.25.1460
https://doi.org/10.1103/PhysRevC.25.1460
https://doi.org/10.1103/PhysRevC.25.1460
https://doi.org/10.1103/PhysRevC.60.064604
https://doi.org/10.1103/PhysRevC.60.064604
https://doi.org/10.1103/PhysRevC.60.064604
https://doi.org/10.1103/PhysRevC.60.064604


REEXAMINING THE ISOSPIN-RELAXATION TIME IN … PHYSICAL REVIEW C 98, 054608 (2018)

[47] M. Di Toro, V. Baran, M. Colonna, S. Maccarone, M.
Zielinska-Pfabe, and H. H. Wolter, Nucl. Phys. A 681, 426c
(2001).

[48] J. Y. Liu, W. J. Guo, Y. Z. Xing, and H. Liu, Nucl. Phys. A 726,
123 (2003).

[49] V. Baran, M. Colonna, M. Di Toro, M. Zielinska-Pfabe, and
H. H. Wolter, Phys. Rev. C 72, 064620 (2005).

[50] P. Napolitani, M. Colonna, F. Gulminelli, E. Galichet, S.
Piantelli, G. Verde, and E. Vient, Phys. Rev. C 81, 044619
(2010).

[51] M. Colonna, V. Baran, and M. Di Toro, Eur. Phys. J. A 50, 30
(2014).

[52] Z. Kohley and S. J. Yennello, Eur. Phys. J. A 50, 31 (2014).
[53] E. De Filippo and A. Pagano, Eur. Phys. J. A 50, 32 (2014).
[54] S. Hudan and R. T. de Souza, Eur. Phys. J. A 50, 36 (2014).
[55] K. Hagel, J. B. Natowitz, and G. Ropke, Eur. Phys. J. A 50, 39

(2014).
[56] K. Stiefel, Z. Kohley, R. T. deSouza, S. Hudan, and K.

Hammerton, Phys. Rev. C 90, 061605(R) (2014).
[57] S. J. Yennello (private communication).

054608-9

https://doi.org/10.1016/S0375-9474(00)00549-2
https://doi.org/10.1016/S0375-9474(00)00549-2
https://doi.org/10.1016/S0375-9474(00)00549-2
https://doi.org/10.1016/S0375-9474(00)00549-2
https://doi.org/10.1016/S0375-9474(03)01621-X
https://doi.org/10.1016/S0375-9474(03)01621-X
https://doi.org/10.1016/S0375-9474(03)01621-X
https://doi.org/10.1016/S0375-9474(03)01621-X
https://doi.org/10.1103/PhysRevC.72.064620
https://doi.org/10.1103/PhysRevC.72.064620
https://doi.org/10.1103/PhysRevC.72.064620
https://doi.org/10.1103/PhysRevC.72.064620
https://doi.org/10.1103/PhysRevC.81.044619
https://doi.org/10.1103/PhysRevC.81.044619
https://doi.org/10.1103/PhysRevC.81.044619
https://doi.org/10.1103/PhysRevC.81.044619
https://doi.org/10.1140/epja/i2014-14030-1
https://doi.org/10.1140/epja/i2014-14030-1
https://doi.org/10.1140/epja/i2014-14030-1
https://doi.org/10.1140/epja/i2014-14030-1
https://doi.org/10.1140/epja/i2014-14031-0
https://doi.org/10.1140/epja/i2014-14031-0
https://doi.org/10.1140/epja/i2014-14031-0
https://doi.org/10.1140/epja/i2014-14031-0
https://doi.org/10.1140/epja/i2014-14032-y
https://doi.org/10.1140/epja/i2014-14032-y
https://doi.org/10.1140/epja/i2014-14032-y
https://doi.org/10.1140/epja/i2014-14032-y
https://doi.org/10.1140/epja/i2014-14036-7
https://doi.org/10.1140/epja/i2014-14036-7
https://doi.org/10.1140/epja/i2014-14036-7
https://doi.org/10.1140/epja/i2014-14036-7
https://doi.org/10.1140/epja/i2014-14039-4
https://doi.org/10.1140/epja/i2014-14039-4
https://doi.org/10.1140/epja/i2014-14039-4
https://doi.org/10.1140/epja/i2014-14039-4
https://doi.org/10.1103/PhysRevC.90.061605
https://doi.org/10.1103/PhysRevC.90.061605
https://doi.org/10.1103/PhysRevC.90.061605
https://doi.org/10.1103/PhysRevC.90.061605

