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Distributions of the largest fragment size in multifragmentation: Traces of a phase transition
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Distributions of the largest fragment charge are studied using the ALADIN data on fragmentation of 197Au
projectiles at relativistic energies. The statistical measures skewness and kurtosis of higher-order fluctuations
provide a robust indication of the transition point, linked to a phase transition in the thermodynamic limit.
Extensive comparisons with predictions of a bond percolation model corroborate the high accuracy of this model
in reproducing the distributions as well as the whole fragmentation pattern as represented by the measured charge
correlations. In analogy to percolation, the pseudocritical and critical points are identified in the fragmentation
data. Questions concerning the distinction between different models and between first- and second-order phase
transitions are discussed.
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I. INTRODUCTION

In nuclear multifragmentation studies, the mass of the
largest fragment and its distribution have received special
attention. The largest fragment is often identified with the
liquid phase in a mixed-phase configuration and thus assumed
to play the role of the order parameter in a liquid-gas phase-
transition scenario. Its distributions are expected to provide
valuable insight into the phase behavior of the investigated
systems [1–10]. A transition from a “liquid” to a “gaseous”
state is associated with a rapid decrease in the largest frag-
ment size. It may correspond to the order-parameter dis-
continuity in the case of a first-order phase transition or to
the power-law disappearance near a second-order transition
point (a critical point). Besides the characteristic evolution
of its mean value, event-to-event fluctuations reflected in
the probability distribution of the largest fragment size are
of considerable interest. Experimental examinations have fo-
cused on the appearance of particularly large fluctuations
[6,9,11–15], on bimodal characteristics representative of a
two-phase coexistence [6,8,10,16–18], on so-called �-scaling
features [1,5,6,8], and on the connection with dynamical
observables, e.g., radial flow [19].

Although the presence of a phase transition is often de-
duced, its kind is usually not unambiguously identified. In
small systems the asymptotic behavior is strongly modified
by finite size and surface effects, so that the distinction be-
tween first- and second-order phase transitions becomes very
difficult. Simulations with lattice gas models have shown that
critical-like features are observed in finite systems not only
along the Kertész line [20,21] but also within the liquid-gas
coexistence region, i.e., the first-order phase transition can
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mimic critical behavior [3,7,22–24]. Moreover, the control pa-
rameter, the temperature or energy content in a thermodynam-
ical phase transition, cannot be precisely measured and must
be substituted by another measurable quantity. Sorting events
according to a substitute control parameter will additionally
blur the observed signals.

The present work is motivated by percolation studies
suggesting new signatures of a critical behavior associated
with the distribution properties of the largest fragment size
or mass [25]. They are exhibited by the cumulant ratios up
to fourth order, i.e., the normalized variance, skewness, and
kurtosis. Specific features of these dimensionless cumulants
characterizing the distribution provide a robust indication of
the pseudocritical point in finite systems and permit esti-
mates of the location of the critical point in the continuous
limit. Fluctuation observables up to fourth order have also
been proposed for probing the QCD chiral transition and for
searching for the QCD critical point with experimental data at
much higher energies [26,27]. They are presently widely used
to characterize the hot medium generated in ultrarelativistic
heavy-ion collisions [28,29]. The rich phenomenology of
fluctuation observables near a critical point has recently been
explored in a description of the liquid-gas phase transition
of nuclear matter with a model based on the van der Waals
equation [30].

These new signatures are applicable to very small sys-
tems and can be tested with various measurable sorting
variables. Therefore, they are well suited for an application
to nuclear multifragmentation. Within this context, proper-
ties of the largest fragment size in multifragmentation are
investigated using the results of the ALADIN Collabora-
tion [31]. In addition, comparisons between predictions of a
bond percolation model and the experimental data are not re-
stricted to the largest fragment characteristics [32]. The whole
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fragmentation pattern is verified in detail to obtain a quan-
titative reference, permitting comparisons with other models
representing alternative multifragmentation scenarios.

A brief review of the main cumulant features near the
percolation transition is given in the next section. To obtain
some information on the question of their uniqueness or
universality, percolation results are compared with predictions
of a thermodynamic model known to contain a first-order
phase transition [16,33,34].

II. DISTRIBUTION OF THE LARGEST FRAGMENT SIZE

Percolation calculations presented in [25] and in this work
are performed with a three-dimensional bond percolation
model on simple cubic lattices [35,36]. Events are generated
using a Monte Carlo procedure. The sites are arranged on
the lattice in the most compact configuration; the bonds are
created randomly with probability p. Clusters are recognized
with the Hoshen-Kopelman algorithm [37]. Free boundary
conditions are applied to account for the presence of surface
in real systems.

Given a control parameter value p and the total number
of sites A0 (the system size), the probability distribution
P (Amax) of the largest cluster size Amax is determined from a
large sample of events. Statistical measures such as the mean,
variance, skewness, and kurtosis contain the most significant
information about the distribution. Of particular interest are
the dimensionless cumulant ratios

K2 ≡ μ2/〈Amax〉2 = κ2/κ
2
1 ,

K3 ≡ μ3/μ
3/2
2 = κ3/κ

3/2
2 ,

K4 ≡ μ4/μ
2
2 − 3 = κ4/κ

2
2 , (1)

where 〈Amax〉 denotes the mean value, μi = 〈(Amax −
〈Amax〉)i〉 is the ith central moment, and κi is the ith cumulant
of P (Amax). K2 is the variance normalized to the squared
mean, K3 is the skewness, which indicates the distribution
asymmetry, and K4 is the kurtosis excess measuring the
degree of peakedness. The cumulants are simple functions of
the central moments with κ1 = 〈Amax〉, κ2 = μ2, κ3 = μ3, and
κ4 = μ4 − 3μ2

2. In the transition region, these quantities obey
with a good accuracy finite-size scaling relations even for very
small systems with open boundaries [25]. This permits the
identification of universal (independent of the system size)
features of Ki at the transition point or region.

This form of universality can be illustrated with the help
of Fig. 1(a). The cumulant ratios Ki are plotted as a function
of the bond-breaking probability pb ≡ 1 − p for three system
sizes. Increasing pb corresponds to increasing the temperature
in a physical application that contains the temperature as a
control parameter, as is the case here for nuclear multifrag-
mentation. The location of the critical point in the contin-
uous limit pc � 0.751 is marked by the long vertical line.
According to finite-size scaling, the values of the cumulants
Ki at pc are expected to be independent of the system size.
This is quite precisely shown in Fig. 1(a) as the crossing
of the curves. A prominent feature of K2 is its maximum
located very close to pc. Maxima of other quantities used as
criticality signals show much larger deviations from pc (e.g.,

0.5

1 (a) Bond percolation

〈A
m

ax
〉/A

0 A0= 1000
A0= 216
A0= 64

(b) Thermodynamic model

1

0.1K
2(

A
m

ax
)

pc

0

5

K
3(

A
m

ax
)

0

5

0.6 0.7 0.8

pb

K
4(

A
m

ax
)

6 6.5 7 7.5

T [MeV]

FIG. 1. Cumulants of Eq. (1) for three system sizes. (a) Perco-
lation results plotted as a function of the bond-breaking probability.
The long vertical line indicates the critical point pc in the continuous
limit. Short lines indicate the transition (pseudocritical) points for the
finite systems. (b) Results of the thermodynamic model as a function
of the temperature. Vertical lines mark the transition temperatures
corresponding to the maximum specific heats of the three systems.
For A0 = 1000, the kurtosis excess K4 reaches a maximum value of
78 at T � 7.2 MeV (bottom right panel).

the maximum variance of the fragment mass distribution; see
examples given in Ref. [25]). The transition point in finite sys-
tems can be associated with the broadest and most symmetric
P (Amax) distribution observed near the pseudocritical point
defined by the maximum of the mean cluster size being the
analog of the susceptibility [25]. This transitional distribution
is indicated by K3 = 0 and the minimum value of K4 of
about −1. Figure 2(a) shows examples of such distributions.
The distance of the pseudocritical point from pc increases
with decreasing system size according to finite-size scaling
[Fig. 1(a)]. The cumulant features characterizing the critical
and pseudocritical points are approximately preserved for the
corresponding points when events are sorted by measurable
variables correlated with the control parameter, such as the
total multiplicity or the total mass of complex fragments.
Near-critical events are indicated by the maximum of K2

while events associated with the pseudocritical point are
characterized by K3 = 0 and the minimum value of K4 of
about −1.

It is instructive to compare the percolation results with pre-
dictions of the thermodynamic model [33] which is a simpli-
fied version of the statistical multifragmentation model [38].
Calculations have been performed for the canonical
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FIG. 2. Probability distributions of the largest fragment size at
the transition points.

ensemble of noninteracting one-component fragments.
The model permits computation of the partition function
and, thus, obtainment of the thermodynamic properties of
the system. The presence of a first-order phase transition
is well established [33,34,39]. The results for a freeze-out
density one-third the normal nuclear density are presented
in Fig. 1(b). The transition temperatures for systems with
64, 216, and 1000 nucleons, derived from the locations of
the specific heat maximum, are 6.09, 6.55, and 7.11 MeV,
respectively. These values are represented by the vertical
lines. In the thermodynamic limit, the maximum location
is expected at T � 8 MeV as calculated within the grand
canonical approach and shown in Fig. 4 in Ref. [39]. In this
model, the critical temperature is assumed to be Tc = 18 MeV.

As shown in the top panel in Fig. 1(b), 〈Amax〉 shows the
fastest decrease at the transition point. A step discontinuity de-
velops with increasing system size [33]. Similarly to the case
of percolation, the transition point is precisely indicated by
K3 = 0 and the minimum of K4. Here, K4 reaches somewhat
lower values, suggesting a bimodal structure of the probability
distribution as expected for a first-order phase transition in
the canonical ensemble. Figure 2(b) shows that, for a system
as large as A0 = 1000, a distinct bimodality is observed.
The two-peak structure gradually vanishes as the system size
decreases.

The above examples illustrate that the transition point
in small systems, associated with a phase transition in the
thermodynamic limit, is well indicated by K3 = 0 together
with a minimum of K4 for both types of transition, i.e.,
first and second order. The comparisons suggest that some

evidence for the transition order can be obtained from the
evolution of P (Amax) with the system size. In particular, in the
vicinity of the transition point the cumulants exhibit maxima
whose amplitudes increase with the system size in the case of
the thermodynamic model. This is in contrast to percolation,
where the amplitudes are bounded according to the second-
order finite-size scaling.

III. EXPERIMENTAL DATA

The present work examines the ALADIN data on fragmen-
tation of projectile spectators in 197Au + Cu, In, Au peripheral
collisions at incident energies of 600A MeV (Cu, In, Au
targets), 800A MeV (Au), and 1000A MeV (Cu, Au). Details
of the experiment and general characteristics of the data are
presented in Ref. [31]. Fragments with the atomic numbers
Z � 2 were detected with high efficiencies, close to 100% at
the bombarding energy of 1000 MeV/nucleon, and fully Z
identified. For the present work, the event-sorted data files that
formed the basis of the results reported in the experimental pa-
per were used [31]. The magnitude of potential effects caused
by the minute but finite acceptance losses on higher-order
correlations was investigated and results are shown below.

It is a prominent feature of the data that the fragment mul-
tiplicities and correlations are independent of the projectile
energy and the target nucleus when plotted as a function of
Zbound. This universality has been interpreted as indicating
a high degree of equilibration attained prior to or during
the fragmentation stage [31]. The quantity Zbound is defined
as the sum of the atomic numbers Z of all fragments with
Z � 2. It serves as a sorting variable, correlated with the size
of the projectile spectator and inversely correlated with the
excitation energy per nucleon [40].

The correlation between the largest fragment charge, Zmax,
and Zbound is illustrated in Fig. 3. All the studied data sets
are included. At low excitation energies, corresponding to
the largest Zbound values, evaporation processes are dominant
(events with one large fragment). There is also a small fraction
of fission events with Zmax around 40. At excitation ener-
gies approaching and exceeding the nuclear binding energy
(Zbound < 40), the systems are disassembled into many small
fragments. The transition between the two extreme regimes is
characterized by a rapidly decreasing Zmax associated with an
increasing number of fragments.

Experimental information on the size of the fragmenting
system (spectator remnant) is important for testing theoretical
predictions. An estimation of the mean system mass 〈A0〉 as
a function of Zbound in several Zmax windows was made for
the 600A MeV 197Au + Cu reaction [41]. Assuming a charge-
to-mass ratio Z0/A0 = 0.4, the value of 197Au projectiles,
the results converted to the mean system charge 〈Z0〉 and
averaged over Zmax bins are shown in Fig. 3 by the solid
line. A similar result (dashed line) was obtained by Campi
et al., who used a sum-rule approach for extrapolating from
the measured Zbound to Z0 [42].

In the present work the system sizes are deduced from com-
parisons between the experimental data and the predictions of
the percolation model. These results are indicated in the figure
by filled circles.
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FIG. 3. Distribution of Zmax vs Zbound for the ALADIN data (with
shadings in a logarithmic scale). The solid white line shows the
mean values of Zmax; broken lines indicate the rms dispersions. Solid
and dashed black lines represent two estimates of the mean system
size Z0 obtained from the experimental data with different meth-
ods [41,42]; filled circles show the result obtained with percolation
(see text).

IV. PERCOLATION ANALYSIS

In the experimental data, the atomic number serves as a
measure of the fragment size. The corresponding measure
in the percolation analysis performed here is the number of
sites contained within a cluster. In other words, the number
of sites is considered as the number of proton charges. In the
following, the same notation is used for percolation quantities
as for their experimental counterparts. Percolation events are
generated for the bond probabilities uniformly distributed in
the interval [0,1] and then sorted according to Zbound.

The cumulant ratios Ki of the largest-fragment size distri-
bution P (Zmax) are examined in Fig. 4. The percolation results
are plotted in the left panels as a function of Zbound, normal-
ized to the system size Z0, for three system sizes that span over
a range expected to be in the transition region. In this repre-
sentation, the Ki distributions show a weak dependence on the
system size, which vanishes at the pseudocritical point located
at Zbound/Z0 � 0.84 (squares). The results corresponding to
the true critical point are located near the maximum of K2

(cf. Fig. 1) but their positions on the Zbound/Z0 axis depend
somewhat on the system size (filled circles in Fig. 4, left
panels).

The experimental results are shown in the right panels for
the 197Au + 197Au systems at 600 and 1000 MeV/nucleon
and for the summed data sets (all targets and all energies).
Here, the cumulant ratios Ki are plotted as a function of
Zbound. System sizes are considered unknown quantities that
are to be determined. The comparison of the different data sets

indicates significant systematic differences only for K2 below
Zbound � 50. The statistical errors are small and comparable to
the apparent scatter of the data points. They are smallest near
the pseudocritical point Zbound = 54 and there smaller than
the size of the data symbols. Larger errors are expected for
smaller Zbound. At Zbound = 31, e.g., the error analysis for the
197Au + 197Au system at 1000 MeV/nucleon yields 0.0091,
0.077, and 0.347 for the statistical uncertainties of K2, K3,
and K4, respectively. For clarity, these errors are not displayed
in Fig. 4 .

Overall, the percolation and experimental patterns of Ki

are very similar. The specific characteristics of the perco-
lation pseudocritical point are well observed in the data at
Zbound � 54. With this correspondence, the mean system size
at Zbound � 54 may be estimated as Z0 � Zbound/0.84 � 64.
For the percolation “critical” point, an approximate corre-
spondence can be established relying on K3 and K4. It indi-
cates Zbound � 36 and a system size Z0 around 36/0.69 � 52.

The experimental values of K2 in the region of small Zbound

depend slightly on the projectile energy. It may be related to
a sensitivity of K2 to existing small changes in the reaction
dynamics or perhaps simply to a residual energy dependence
of the detection efficiency. At small Zbound, i.e., at high exci-
tation energies, secondary evaporation effects may also be of
importance. In order to test the sensitivity of Ki to such effects
a simple simulation was performed and applied to percolation
events. The result is shown in Fig. 5. The largest cluster was
divided into two fragments: Zmax → (Zmax − 1) + 1, with
probability p1, and Zmax → (Zmax − 2) + 2, with probability
p2. Such calculations with various assumptions on p1 and
p2 indicate that K2 significantly increases at small Zbound,
while K3 and K4 remain nearly unchanged. As an example,
for Z0 = 64 with p1 = 0.6 and p2 = 0.3, the maximum of
K2 increases from 0.23 to 0.27 and its position is shifted
towards lower Zbound by ∼ 5% (Fig. 5; dashed lines). These
observations support the conclusion that K3 and K4 are more
reliable than K2 as quantitative indicators of the transition
points.

The results of a test investigating the effects of the small
detection inefficiencies of the spectrometer are shown in the
same panels in Fig. 5 (dotted lines). It consisted of modifying
the percolation event files by randomly deleting fragments
with probabilities 1 − ε(Z) and redoing the cumulant analysis
with these modified files. The detection efficiencies ε(Z) were
assumed to have the values of the geometrical acceptance
of the time-of-flight wall of the spectrometer as determined
for 800 MeV/nucleon incident energy [43]. They increase
smoothly from ε(2) = 0.93 to ε(7) = 0.99 and ε(Z) = 1.00
for Z � 8. This test cannot restore the original event structure
nor can it take account of additional sources of uncertainties
mentioned in experimental reports [31,43], e.g., reactions
in the detector material. However, these processes are esti-
mated to cause similarly small effects on the percentage level
whose magnitude can equally be estimated from the deviation
of the test result. Both tests indicate that the modifications can
be expected to be small, corresponding to an uncertainty of
the order of 1 unit of Zbound on the abscissa. The coincidence
of the 0 crossing of K3 with the minimum of K4 is not
affected.
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The pairwise correspondence exhibited by the K3 and K4

cumulant ratios implies very similar P (Zmax) distributions but
is even more general. A close resemblance between the whole
fragmentation patterns is observed, as demonstrated in Fig. 6
for the data sets with Zbound = 36 and 54. The percolation
calculations are performed for the estimated system sizes
Z0 = 52 and 64, respectively. All the experimental data sets
are summed for better statistics.

The top row of panels shows the fragment size distribu-
tions. The model describes the data rather well over four
orders of magnitude. At Zbound = 54, as expected for the per-
colation pseudocritical point, the distribution follows for Z <
15 an asymptotic power-law dependence with the exponent
τ = 2.189 and the normalization constant q0 = 0.173 [25].

The next row shows the Zipf-type plots, i.e., the mean
size of the largest, the second largest, and up to the rth
largest fragments plotted vs their rank r . Such plots have been
examined in the context of the expected appearance of Zipf’s
law near a critical point [6,9,44–47]. Zipf’s law states that
〈Zr〉 ∼ 1/rλ with λ � 1. The percolation results are shown
for the rank numbers 1 to 11. The total fragment multiplicity
m is at least 11 in all the percolation events. This is implied
by the condition m > Z0 − Zbound. The experimental data
contain information only on fragments with Z > 1. Since
their mean multiplicities for Zbound = 36 and 54 are about 9.1
and 7.7, the mean total multiplicities including Z = 1 isotopes

may be estimated as 25.1 and 17.7, respectively, by assuming
mZ=1 = Z0 − Zbound. It was, therefore, assumed that events
containing fewer than eight fragments can be supplemented
with fragments of Z = 1 up to the rank of 8. At Zbound = 36,
one observes an approximate behavior according to Zipf’s
law with the exponent λ � 0.93 determined from a fit to the
percolation results. It is noteworthy that this feature appears at
the “critical” point, while a trace of the asymptotic power-law
behavior in the fragment size distribution (with the largest
fragment excluded) is observed at the pseudocritical point
Zbound = 54.

The percolation model very well describes not only mean
values but also event-to-event fluctuations. As an example,
the third row of panels in Fig. 6 shows the probability (yield
fraction) distributions of the second largest fragment. The bot-
tom row shows the multiplicity distributions of fragments with
Z > 2. At Zbound = 36 where the excitation energy is high, the
calculated multiplicity distribution is shifted to values slightly
larger than the experimental results, while they practically
coincide at Zbound = 54.

For such comparisons that can be extended to other Zbound

values, only knowledge of the relation between Zbound and Z0

is required. Here, this relation is determined on the basis of the
K3 and K4 equalities. The analysis can also be performed in a
slightly different manner. In Fig. 7 the cumulants are plotted
as a function of Zbound for experimental data and percolation
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of the detection efficiency of the spectrometer (dotted lines).

systems of different sizes. For a given Z0, the crossing of the
percolation and experimental lines determines the correspond-
ing Zbound. The relation found by this procedure is displayed
in Fig. 3 by the filled circles. It shows good agreement with
the experimental estimates in Ref. [41].

In reality, the system sizes at fixed Zbound are dispersed.
To evaluate the significance of this dispersion for the analysis,
percolation calculations have been performed for a Gaussian
distribution of Z0 with a mean of 57 and standard deviation
of 2. Such a deviation is suggested by statistical multifrag-
mentation model simulations performed with input conditions
established in Ref. [48]. The results are plotted in Fig. 7 by
the dashed lines, showing that the dispersion effects are not
substantial.

The model predictions are examined in more detail in
Fig. 8. Comparisons are made under the matching conditions
determined from Fig. 7. So as not to obscure the histograms,
errors bars are omitted from the figure. Their magnitude is
evident from the scatter of the data symbols. The top diagrams
show the P (Zmax) distributions. Overall, the agreement is very
good, although the experimental distributions exhibit some
local enhancements which are not accounted for by the model.
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FIG. 6. Comparison of percolation predictions (solid lines) for
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perimental data for all systems (filled circles), selected with the
conditions Zbound = 36 and 54, respectively. From top to bottom:
mean fragment multiplicity as a function of the fragment size Z

(the largest fragment excluded), mean fragment size as a function
of the fragment rank r , probability distribution of the size of the
second largest fragment Z2, and multiplicity distribution mZ>2 of
fragments with Z > 2. Dotted lines represent power-law descriptions
as indicated. Statistical errors are shown where they are larger than
the data symbols.

They are seen for Zbound = 36 and 43 at the largest Zmax,
which corresponds to events with one large fragment and few
light particles. Such evaporationlike events are not unexpected
even for high excitation energies, since neutron-rich projectile
spectators can be cooled by neutron emissions. Another en-
hancement which is seen at Zbound = 66 near Zmax � 36 is
most likely associated with a contribution from fission events.

The next panels in Fig. 8 examine various fragment size
characteristics and correlations as a function of Zmax. They
are the mean and variance of the multiplicity of fragments
with Z > 2, the mean fragment size S2 defined as the second
moment of the fragment size distribution normalized to the
first moment (the largest fragment excluded) [35], the mean
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and variance of the second largest fragment size, and the size
asymmetry between the second and the third largest fragments
a23 ≡ (Z2 − Z3)/(Z2 + Z3) averaged over events with Z3 >
2. In these calculations only fragments with Z > 2 are taken
into account to avoid contributions from light particles coming
from other sources.

One may ask whether simultaneously fixed Zbound and
Zmax will severely limit the possibilities for the fragment size
partitioning, leading to rather trivial results. This is the case
when Zmax is close to its limiting minimum or maximum
value. The number of possible partitions is largest for Zmax in
the middle of its range, around Zbound/2. This least restrictive
condition allows for a better test of fragmentation patterns.
Without additional Zmax selection the characteristics would be
dominated by the trivial contributions in cases where P (Zmax)
distributions are peaked near the limiting Zmax values (cf. top
rows in Fig. 8).

This very detailed quantitative analysis confirms that the
bond percolation model remarkably well describes the exper-
imental fragment sizes and their fluctuations. This was noted
early on after the first ALADIN data on projectile fragmen-
tation become available and is reported for a set of fragment
distributions and asymmetries in Ref. [32]. The percolation
results may serve as a reference for further analysis with
other models and for sensitive tests of their performance. In
fact, calculations performed with the lattice-gas model and
with the statistical multifragmentation model have shown that
the characteristic coincidence of the zero transition of the
skewness and the minimum of the kurtosis excess is observed
with these models as well [24,49]. Considered indicators of a
second-order phase transition, they are simultaneously present

in these statistical models that are believed to exhibit a phase
transition of first order in the thermodynamic limit.

The cumulant analysis indicates Zbound = 54 as the tran-
sition point for nuclear systems with Z0 � 64. Based on
estimations performed for the 197Au + 197Au reaction at
600 MeV/nucleon [31,41], this point corresponds to an ex-
citation energy around 6 MeV per nucleon, which can be
associated with a temperature within the range 5 − 7 MeV
[41,50,51]. In the percolation context, the transition point
can be interpreted as the pseudocritical point. The analy-
sis suggests that near-critical events are rather located at
Zbound � 36, for which the estimated excitation energy is
about 10 MeV per nucleon, corresponding to temperatures in
the range 6 to 7 MeV. These temperatures are much lower
than the critical temperature of about 14–15 MeV, calculated
with relativistic mean-field models for asymmetric nuclear
matter with a proton fraction of the 197Au nucleus [52,53].
However, in finite nuclear systems the critical temperature can
be reduced by more than 5 MeV due to the presence of the
Coulomb and surface effects [54]. The estimated temperatures
depend on the method and the size of the studied system.
For example, according to calculations with the fermionic
molecular dynamics model performed for 16O, the critical
temperature deduced from observing the disappearance of the
liquid-gas coexistence is about 10 MeV [55]. A somewhat
larger value, Tc � 12 MeV, has been concluded from a study
of a system of mass number A = 36 with antisymmetrized
molecular dynamics [56].

V. DISCUSSION

A. Shapes of the Zmax distributions and � scaling

The behavior of the cumulants is of interest in the con-
text of � scaling proposed for studying criticality in finite
systems [1,57,58]. Probability distributions P (smax) of the
extensive order parameter smax for different “system sizes”
〈smax〉 obey � scaling if they can be converted to a single
scaling function �(z(�) ) by the transformation

〈smax〉�P (smax) = �(z(�) ) ≡ �

(
smax − 〈smax〉

〈smax〉�
)

, (2)

where 1/2 � � � 1.
The �-scaling method has been applied to distributions

of the largest fragment charge with expectations that the
distributions obey the � = 1/2 scaling in the ordered (low-
temperature) phase and the � = 1 scaling in the disordered
(high-temperature) phase [1,5,6,8,19]. The transition between
the two scaling regimes would signal the presence of a phase
transition. The percolation model contradicts such expecta-
tions [25]. In the percolation disordered phase no � scaling is
observed for the largest cluster size. Concerning the ordered
phase, � = 1/2 scaling can only be observed for different
system sizes at a fixed value of the control parameter. This
requirement is difficult to realize experimentally. Moreover,
in systems of small sizes corresponding to nuclear systems,
this limiting scaling behavior is violated as a consequence of
surface effects.

The present experimental data with events sorted accord-
ing to Zbound do not show �-scaling features in any Zbound
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a function of Zmax. From top to bottom: Zmax distribution; mean and variance of the fragment multiplicity; mean fragment size; mean and
variance of the second largest fragment size; mean size asymmetry between the second and the third largest fragments. Statistical errors are of
the order of the scatter of the data symbols.

range. This can be concluded from Fig. 4, considering that
K3 = const and K4 = const are necessary conditions for �

scaling [25]. Another condition required for � scaling is a
linear correlation of the natural logarithms of the variance and

squared mean value of the variable considered as an order pa-
rameter. This correlation is shown in Fig. 9 for the experimen-
tal results for 197Au + 197Au and 131Xe + 27Al collisions, both
at 600 MeV/nucleon and after sorting according to Zbound.
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FIG. 9. Natural logarithm of the variance as a function of the
natural logarithm of the squared mean value of the largest atomic
number Zmax recorded in 197Au + 197Au (filled circles) and 131Xe +
27Al collisions (open circles) at 600 MeV/nucleon (top panel) and
after shifting of the 131Xe data with the value 0.76 in both dimensions
(see text). Symbols represent the results for individual values of
Zbound in the range from 4 to Zproj + 1. The positions of the pseu-
docritical points are indicated for the two systems in the top panel,
and the critical (cr) and pseudocritical (pc) points for 197Au + 197Au
are shown in the bottom panel (dashed vertical lines).

The positions of the pseudocritical points are indicated in the
top panel in the figure. For 197Au + 197Au, the corresponding
Zbound is directly taken from Fig. 4. For 131Xe + 27Al, the
pseudocritical Zbound reported for 124Sn + Sn in Ref. [49] was
used and an 8% correction was applied, corresponding to the
ratio of the atomic numbers of the Xe and Sn projectiles.

The similarity of the two correlations is even better ap-
preciated if the 131Xe + 27Al result is scaled according to
the atomic numbers Z of the Au and Xe projectiles. Their
ratio 79/54, which enters squared in the arguments of the
logarithms, leads to a linear shift by 0.76 in both the x and
the y dimensions (Fig. 9, bottom panel). The similarity of
the two functions reflects the invariance with respect to the
projectile Z that was observed for the fragment multiplicities
and correlations in Ref. [31]. The smooth variation of the
slopes of the correlations is very similar to the percolation
result reported in Fig. 7 in Ref. [25]. On the basis of the
observed near-perfect descriptions of the experimental data

with percolation (cf. Figs. 6 and 8), even the remarkable
quantitative agreement is not surprising. The location of the
turnover at ln(〈Zmax〉2) � 7 and ln(σ 2) � 5 near the pseudo-
critical point is well reproduced. The observed experimental
correlation is also similar to the results reported in Ref. [5]
for Xe + Sn reactions at incident energies between 25 and
50 MeV/nucleon (Fig. 4 in Ref. [5]). With these reactions,
after sorting according to the measured total transverse energy
of light charged particles, an interval of approximately 5.4 <
ln(〈Zmax〉2) < 7.6 was covered, while in the present case,
the correlation extends as far down as ln(〈Zmax〉2) � 2. The
definition of Zbound causes the staggering that is observed
there for very small values of Zbound.

The trend towards positively skewed Zmax distributions
expected in the disordered regime is approximately real-
ized, both in the experimental data and in the percolation
model describing them. The asymptotic value K3 � 1.6 of
the skewness for small Zbound (Fig. 4) or large bond-breaking
probabilities pb (Fig. 1) is larger than the K3 = 1.14 of the
Gumbel distribution in the continuous limit but of the same
order of magnitude. The Gumbel distribution permits rather
satisfactory descriptions of the experimental Zmax probability
distributions in this range of Zbound as illustrated in Fig. 10 for
selected cases. Only the sharp drop in the distribution at small
Zmax cannot be reproduced. Calculations were performed for
system sizes Z0 = 31, 36, 48, 52, 57, 64, 70, and 73 for
Zbound = 16, 21, 31, 36, 43, 54, 61, and 66, respectively.

In Ref. [5], scaling has been further studied for the
recorded most central collisions as a function of the
bombarding energy. For 197Au + 197Au at incident energies
40 to 80 MeV/nucleon, a linear scaling with � = 1 has been
observed (Fig. 13 in Ref. [5]). This trend is qualitatively
continued by the present data taken at 600 MeV/nucleon.
If extended to ln(〈Zmax〉2) � 2, the linear fit shown in that
figure will reach ln(σ 2) � −1, there coinciding with the
most central bins of the present data set (Fig. 9). Gaussian
distributions are, however, not observed here. At small pb,
neither the skewness nor the kurtosis excess approaches the
vanishing values K3 = K4 = 0 characterizing the Gaussian
distribution (Figs. 1 and 4). The Gaussian distribution is
reached as the asymptotic value with bond percolation only
in the continuous limit or for large systems with periodic
boundary conditions [25]. The experimental situation is
dominated by the transition to negatively skewed Zmax

distributions (Fig. 10). At very large Zbound, corresponding to
lower excitation energies in the experiment, the partitioning
probability decreases approximately exponentially with
decreasing Zmax. This is well reproduced with percolation.

B. Remarks on bimodality

Bimodality in distributions of the largest fragment size
or other quantities expected to be closely correlated with
the order parameter is considered as a promising signa-
ture of first-order phase transition [18,59,60]. Experimen-
tal examinations of the largest-fragment charge distribution
have, however, not ascertained such a signal up to now.
The presence of bimodality has been reported for distribu-
tions of some other quantities, e.g., the charge asymmetry
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experimental data for all systems (filled circles) and with Gumbel distributions fitted to the experimental data for the cases where Zbound � 43
(dashed lines).

between the two or three largest fragments and the asymme-
try ratio between heavy and light fragments [6,8,17,18,61].
In the ALADIN data on 197Au + 197Au at 1000A MeV, a
bimodal distribution of Zmax − Z2 − Z3 has been found in
the transition region Zbound = 53–55 [18,62]. The bimodal
behavior of this variable is also observed in bond per-
colation in which only a second-order phase transition is
present. It has been identified as a finite-size effect obeying
a power law with the known value ν = 0.88 [35] of the
critical exponent describing the divergence of the correlation
length [62].

As expected for the continuous percolation transition, the
distribution of Zmax does not exhibit bimodality. The shape of
the transitional distribution is characterized by a wide plateau
as illustrated in Figs. 2(a) and 11. Such characteristics are
observed when events are sorted according to the control pa-
rameter pb. If pb is dispersed in a sample of events, the shape
of P (Zmax) can be very different. In particular, a bimodal
shape may be observed as illustrated in Fig. 11. It serves as
a warning against using wide bins for event sorting (see, e.g.,

Ref. [63]) or sorting variables that are not well correlated with
the control parameter.

The latter applies to the study of projectile fragmen-
tation in 197Au + 197Au collisions at energies between 60
and 100 MeV/nucleon that reported on bimodal behavior
of the heaviest-fragment distributions [10]. Since a strict
canonical sampling is not possible in the experiment a
scheme of selecting and weighting event groups has been
applied with the aim of generating equivalent-to-canonical
data samples. The obtained enhancements of the Zmax dis-
tributions at values of 0.9 Z0 and 0.3 Z0 with excita-
tion energies below 2 and above 8 MeV/nucleon, respec-
tively, correspond to residue production in peripheral colli-
sions and in highly fragmented processes at the threshold
to vaporization. Without the strict sorting conditions that
have been applied, these event groups will be characterized
by rather different temperatures and system sizes. The re-
ported observations, based on retaining only tails of their
distributions, thus represent the studied reactions only very
indirectly [64].

054606-10



DISTRIBUTIONS OF THE LARGEST FRAGMENT SIZE IN … PHYSICAL REVIEW C 98, 054606 (2018)

0

0.01

0.02

0.03

0 0.2 0.4 0.6 0.8 1

Z0 = 64

pb = 0.65

pb = 0.55 - 0.75

P
(Z

m
ax

)

Zmax / Z0
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Even when percolation events are sorted by the control
parameter, various size asymmetry variables exhibit bimodal
behavior in the transition region. As an example, Fig. 12
shows the correlation between Zmax and the size asymmetry
of the two largest fragments (Zmax − Z2)/(Zmax + Z2). A bi-
modal structure of this distribution is clearly observed at pb =
0.68. It should be noted that the projection onto the Zmax axis
does not reveal this bimodality. A similar degree of bimodality
is observed for a much larger system, with 163 sites, suggest-
ing that this feature is not generated by finite-size effects. Cor-
relations of this kind were examined experimentally for frag-
mentation of projectiles in 197Au + 197Au and Xe + Sn reac-
tions at 80 MeV/nucleon with qualitatively similar results [8].

Another example concerns the asymmetry between the
total size of large and that of small fragments. Following
the prescription applied to Xe + Sn central collisions [17],
fragments with Z � 13 are considered large, and fragments
with 3 � Z � 12 small. The evolution of their normalized
difference distributions near the percolation transition is

illustrated in the left panel in Fig. 13. The system size of 100
sites is comparable to the total charge of the investigated nu-
clear system. Also in this case a bimodal structure is predicted
by the percolation model. The right panel shows the qualita-
tively similar result that is observed when clusters with Z =
1–2 are additionally included in the group of light fragments.

The presented percolation simulations demonstrate that
bimodalities observed in distributions of the asymmetry vari-
ables are not necessarily associated with a first-order phase
transition. A similar conclusion was reached in Ref. [65]
based on calculations with the quantum molecular dynam-
ics transport model for 197Au + 197Au collisions. There the
authors concluded that fluctuations introduced by elementary
nucleon-nucleon collisions cause the bifurcation observed
in the distributions of fragment-charge asymmetries. Given
the good reproduction even of the higher-order distribution
parameters, these effects are realistically also included in the
percolation description.

C. Critical behavior in the coexistence zone

The simultaneous appearance of signals expected for first-
and second-order phase transitions in finite systems has been
known since long ago [7,22,23,39]. It has very recently been
discussed again by investigating the lattice-gas model in
addition to the percolation and thermodynamic models used
here (cf. Figs. 1 and 2) [66]. All three models were shown
to provide qualitative descriptions of experimental data, while
the transition points are indicative of either a first- or a second-
order transition, depending on the model that is applied.

A possible solution to the puzzle appeared when calcula-
tions with the lattice-gas model demonstrated the existence of
critical-like regions within the coexistence zone of the phase
diagram [3,7,22–24]. Scaling behavior was observed along a
line that, in the case of small systems, extends from near the
thermodynamical critical point of the phase diagram toward
lower temperatures and lower densities into the coexistence
region. It appears as an extension of the so-called Kertész
line that is observed in lattice-gas and molecular dynamics
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FIG. 12. Bond percolation for Z0 = 64. Correlations between Zmax and the size asymmetry of the two largest clusters in the transition
region.
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FIG. 13. Bond percolation for Z0 = 100: distributions of the
normalized differences between the sum of atomic numbers of large
fragments with Z � 13 and the sum of atomic numbers of small
fragments with 3 � Z � 12 (left panel) or with 1 � Z � 12 (right
panel), calculated for three values of the bond-breaking probability
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models at temperatures and densities above their critical
points [20,21,67].

According to the lattice-gas applications to fragmentation
reactions, the associated critical temperatures are of the order
of 5 MeV [24] or 6 to 8 MeV [23], i.e., far below the ex-
pected critical temperature in a temperature-vs-density phase
diagram, even for small systems (cf., e.g., Refs. [54–56]. As
noted by Le Neindre et al., these temperatures are comparable
to the critical temperatures appearing in analyses based on
Fisher scaling [9]. In fact, the values reported in Refs. [68–70]
are between 4.75 and about 8 MeV. Apparently, the “critical”
disassemblies identified by searching for the scaling features
of power-law-type fragment spectra are located at or near
the extension of the Kertész line into the coexistence zone.
The observed broad range of reported temperatures is to be
expected because different reaction types and experimental
techniques will lead to different approaches of the critical
line or region. There are, in addition, uncertainties associated
with determining temperatures from the observed fragment
properties and yields.

Also in the case studied here, the location of the line
of critical-like behavior in a temperature-vs-density phase
diagram is rather uncertain. However, the precision observed
for the reproduction of fluctuation properties of percolation
up to fourth order is remarkable. Campi et al., in their
search for generic properties of the fragmentation of simple
fluids, argue that the random breaking of bonds may be
the simplest explanation for the appearance of percolation
features in nuclear fragmentation [15]. The nucleon-nucleon
collision dynamics introduces the required stochastic element
in the present case of spectator fragmentation at relativistic
energies. In their later study [67], based on classical molecular
dynamics calculations, the same authors have presented a
scenario that involves the out-of-equilibrium expansion of the
system, starting from an equilibrium configuration outside the
coexistence zone. As the calculations show, the compositions
generated at an early, high density stage are largely preserved
in the final state. Systems expanding from near the percolation
critical region, the Kertész line in infinite systems, may thus
appear with critical properties. In an alternative scenario,
the excited spectator matter equilibrates more rapidly than

it expands and cools, reaching the coexistence zone [55].
Quantum molecular dynamics calculations that reproduce
the experimental fragmentation patterns may be capable of
shedding more light on these possibilities.

VI. CONCLUSIONS

The analysis of the ALADIN data on fragmentation
processes of 197Au projectiles on heavy targets at energies
between 600 and 1000 MeV/nucleon has been focused on
the fluctuations of the largest fragment size (charge or atomic
number Z). Cumulants of the largest fragment size distri-
bution were examined as a function of Zbound. Particularly
valuable measures are the higer-order cumulants, skewness
K3, and kurtosis excess K4. The transitional distribution
indicated by K3 = 0 and a minimum of K4 is characteristic
of a phase transition. In percolation, it corresponds to the
pseudocritical point, and in a thermodynamic model, to
the maximum of the specific heat that is associated with a
first-order transition. Such a transition point is observed at
Zbound � 54, which, according to Ref. [41], corresponds to
excitation energies near 6 MeV/nucleon, associated with a
temperature between 5 and 7 MeV.

The cumulants K3 and K4 may be used as constraints
for comparisons with model predictions when system sizes
are not unequivocally determined. They are shown not to
be significantly affected by experimental conditions and sec-
ondary decay effects. Such constraints have been applied
in the comparisons made with the bond percolation model,
intended to test the whole fragmentation pattern.

Fragment sizes and their event-to-event fluctuations ob-
served in the experiment are remarkably well reproduced by
the bond percolation model. The system sizes determined
from the percolation analysis are found to be in good agree-
ment with experimental estimates. The analysis suggests that
near-critical events, corresponding to the true critical point,
are located at Zbound � 36. The associated excitation energy
is about 10 MeV/nucleon, leading to a percolation critical
temperature of, again, approximately 6 to 7 MeV [41,51].

Owing to the high accuracy in describing the fragment-size
properties, the simple percolation model, containing a
second-order phase transition, may still serve as a very
useful reference model for studying the phase behavior
of fragmenting systems. In particular, it permits verifying
the uniqueness of signatures proposed for revealing the
presence of a first-order phase transition. It needs to be
stressed, however, that model comparisons, to be applicable
for experimental verification, should rely on event samples
selected with measurable quantities. These sorting quantities
are inevitably dispersed over the control parameter of the
model, e.g., the temperature or the bond probability, which
may significantly modify the expected signatures.
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