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In this paper, the in-medium NN → N� cross section is calculated in the framework of the one-boson
exchange model by including the isovector mesons, i.e., δ and ρ mesons. Due to the isospin exchange in the
NN → N� process, the vector self-energies of the outgoing particles are modified relative to the incoming
particles in isospin asymmetric nuclear matter, and it leads to the effective energies of the ingoing NN pair
being different from the outgoing N� pair. This effect is investigated in the calculation of the in-medium
NN → N� cross section. With the corrected energy conservation, the cross sections of the �++ and �+

channels are suppressed, and the cross sections of the �0 and �− channels are enhanced relative to the results
obtained without properly considering the potential-energy changes. Our results further confirm the dependence
of medium correction factor R = σ ∗

NN→N�/σ free
NN→N� on the charge state of NN → N� especially around the

threshold energy, but the isospin splitting of medium correction factor R becomes weak at high beam energies.
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I. INTRODUCTION

The isospin dependence of an in-medium nucleon-nucleon
(NN ) cross section is the subject of much interest in the
field of intermediate-energy neutron-rich heavy-ion collisions
(HICs). As a key ingredient of the transport model [1,2],
the magnitudes of the in-medium NN cross sections largely
influence the frequency of nucleon-nucleon collisions, which
provides the short-range repulsion and competes with the
nucleonic mean-field potential in heavy-ion collisions. And
thus, the different medium corrections on the NN cross
sections can influence the predictions of HIC observables,
such as stopping power [3–6], collective flow [4,7,8], isospin
transport [9,10], nuclear reaction cross section [11], and the
understanding of the reaction mechanism.

Currently, one of the hot debates in the field of HICs is
the constraint of symmetry energy at suprasaturation den-
sity by comparing the π−/π+ ratio data from the FOPI
Collaboration [12] with calculations from transport mod-
els. Very different conclusions are inferred from differ-
ent models. For example, the isospin-dependent Boltzmann-
Uehling-Uhlenbeck (IBUU04) [13] and the isospin-dependent
Boltzmann-Langevin (IBL) [14] calculations favor the super-
soft symmetry energy, but the calculation from the improved
isospin-dependent quantum molecular dynamics model (Im-
IQMD) [15] needs a superstiff symmetry energy to repro-
duce the data. The calculations from the relativistic Vlasov-
Uehling-Uhlenbeck (RVUU) [16] and the Tübingen quantum
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molecular dynamics model [17] support the symmetry en-
ergy between supersoft and superstiff symmetry energies by
considering the medium threshold effects, corrected energy
conservation, and pion potential. However, the calculations
with the Boltzmann-Uehling-Uhlenbeck model from Michi-
gan State University (pBUU) [18] show the pion yield ratio is
not sensitive to the symmetry energy by including the strong
pion interaction.

This divergence has stimulated a lot of works to under-
stand pion production and propagation in HICs, such as the
threshold effect of � production [19], which is caused by
the different potential energies between the ingoing and the
outgoing colliding pairs in isospin asymmetric nuclear matter
and the pion optical potential [18,20], which is caused by the
pion self-energy. For reproducing the pion multiplicity data,
the in-medium NN → N� cross section (σ ∗

NN→N�) [16,19]
is needed. The issues of Pauli blocking, cluster formations
[21], energy conservation issues [22], and the strength of the
� symmetry potential [23] in the dynamics of the simulation
are also investigated. Among all those factors, the in-medium
NN → N� cross section is one of the key ingredients for
the π − N − � loop in the simulations because it will di-
rectly influence the first � production which can decay into
nucleon and pion or rescatter with nucleons. Most of the
transport codes adopted the free space NN → N� cross
section, i.e., σ free

NN→N� taken from Ref. [24], or phenomeno-
logical in-medium NN → N� cross section, i.e. σ ∗

NN→N� =
Rσ free

NN→N�, in the collision integral of transport models [16]
where the medium correction factor R is independent of the
channels of the NN → N� process. For reproducing the pion
yield, R < 1 is required, and it is consistent with what one
found in the theoretical calculations on σ ∗

NN→N� [25] from
the one-pion exchange model.
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However, for the further studies in this field and de-
veloping the isospin dependent transport models, it is re-
quired to include the isospin-dependent medium correc-
tion factor R as well as the considering of the isovector
mean-field potential in transport models. It stimulates the-
oretical studies of the isospin-dependent in-medium correc-
tion factor. Recently, the isospin dependence of elemen-
tary two-body cross section, i.e., σ̃ ∗

NN→N�, was studied in
the framework of relativistic Boltzmann-Uehling-Uhlenbeck
(RBUU) microscopic transport theory by Li and Li in
Ref. [26]. Their results showed σ̃ ∗

NN→N� has a sharp in-
crement around the threshold energy without considering
the � mass distribution, and the medium correction factor
R obviously depends on the isospin channels of NN →
N�, i.e., pp → n�++, pp → p�+, pn → n�+, pn →
p�0, nn → n�0, and nn → p�− in isospin asymmetric
nuclear matter. As a short-living resonance, � subsequently
decays into a nucleon and a pion. Thus, the measured cross
section for NN → N� is the elementary two-body cross
section averaged over the mass distribution of � resonance,
and the medium correction factor R in the transport models
also contains the effect of the � mass distribution. Further-
more, the isospin exchange process modifies the scalar and
vector self-energies of incoming and outgoing channels in the
NN → N� process in isospin asymmetric nuclear matter,
and it results in the difference in the effective energies be-
tween ingoing and outgoing particles. It requires that one has
to properly consider the energy conservation in the calculation
of σ ∗

NN→N� as well as for the � threshold energy [16,19,20],
but few theoretical works on the in-medium NN → N� cross
section considered it.

In this paper, we study the in-medium NN → N� cross
sections in isospin asymmetric nuclear matter by considering
the corrected energy conservation in the one-boson exchange
model [24,27] which is described in Sec. II. In the model we
used, the isovector-scalar δ and the isovector-vector ρ mesons
are included for describing isospin asymmetric nuclear matter
and the in-medium NN → N� cross section. In Sec. III, the
energy conservation issue caused by the ρ meson is discussed
in the calculation of the in-medium NN → N� cross section.
In Sec. IV, we present the results of the in-medium NN →
N� cross section in isospin asymmetric nuclear matter, and a
summary is given in Sec. V.

II. THE MODEL

A. In-medium N N → N� cross section

For the calculation of the NN → N� cross section in
isospin asymmetric nuclear matter, we use the one-boson ex-
change model with the relativistic Lagrangian which includes
the nucleon and � degree with the Rarita-Schwinger spinor
of the spin-3/2 [24,27,28] coupling to σ, ω, ρ, δ, and π
mesons. This theoretical framework is similar to the work in
Ref. [25], and the main difference between the two papers
is the form of effective Lagrangian. In this paper, the δ and
ρ mesons are included for describing isospin asymmetric
nuclear matter and the isospin dependence of the NN → N�

cross sections which were not considered in the symmetric
condition from Ref. [25].

FIG. 1. The left diagram is the direct term, and the right diagram
is the exchange term of the Feynmann diagram.

The Lagrangian we used is as follows:

L = LI + LF , (1)

where LF is

LF = �̄[iγμ∂μ − mN ]� + �̄λ[iγμ∂μ − m�]�λ

+ 1
2∂μσ ∂μσ − 1

2m2
σ σ 2 − 1

3g2σ
3 − 1

4g3σ
4

− 1
4ωμνω

μν + 1
2m2

ωωμωμ + 1
2

(
∂μπ ∂μπ − m2

ππ2)
− 1

4ρμνρ
μν + 1

2m2
ρρμρμ + 1

2

(
∂μδ ∂μδ − m2

δδ
2), (2)

and LI is

LI = LNN + L�� + LN�

= gσNN �̄�σ − gωNN �̄γμ�ωμ − gρNN �̄γμτ · �ρμ

+ gπNN

mπ

�̄γμγ5τ · � ∂μπ + gδNN �̄τ · �δ

+ gσ���̄μ�μσ − gω���̄μγν�
μων

− gρ���̄μγνT · �μρν + gπ��

mπ

�̄μγνγ5T · �μ∂νπ

+ gδ���̄μT · �μδ + gπN�

mπ

�̄μT · � ∂μπ

+ igρN�

mρ

�̄μγνγ5T · �(∂νρμ − ∂μρν ) + h.c. (3)

ωμν and ρμν in Eq. (2) are defined by ∂μων − ∂νωμ and
∂μρν − ∂νρμ, respectively. Here τ and T are the isospin ma-
trices of the nucleon and � [27,28], and T is the isospin tran-
sition matrix between the isospin 1/2 and the 3/2 fields [24].

In the quasiparticle approximation [29], the in-medium
cross sections are introduced via the replacement of the vac-
uum plane waves of the initial and final baryons by the plane
waves obtained by the solution of the nucleon and � equation
with the scalar and vector fields. In detail, the matrix elements
M∗ for the inelastic-scattering process NN → N� are ob-
tained by replacing the nucleon and � masses and momenta
in free space with their effective masses and kinetic momenta
[25], i.e., m∗ = m + �S and p∗μ = pμ − �μ, where �S and
�μ are the scalar and vector self-energies.

The Feynmann diagrams corresponding to the inelastic-
scattering NN → N� process are shown in Fig. 1, which
include the direct and exchange processes. The M∗ matrix
for the interaction Lagrangian Eq. (3) can be written by the
standard procedure [24],

M∗ = M∗π
d − M∗π

e + M∗ρ
d − M∗ρ

e , (4)
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where

M∗π
d = −i

gπNNgπN�Id

m2
π

(
Q∗2

d − m2
π

) [
�̄(p∗

3 )γμγ5Q
∗μ
d �(p∗

1 )
]

× [�̄ν (p∗
4 )Q∗ν

d �(p∗
2 )], (5)

M∗ρ
d = i

gρNNgρN�Id

mρ

[�̄(p∗
3 )γμ�(p∗

1 )]

× gμτ − Q
∗μ
d Q∗τ

d /m2
ρ

Q∗2
d − m2

ρ

× [
�̄σ (p∗

4 )γλγ5
(
Q∗λ

d δστ − Q∗σ
d δλτ

)
�(p∗

2 )
]
. (6)

The upper index in M∗meson
d/e refers to the exchanged boson,

the lower index represents the direct or exchange process, and
Q

∗μ
d = p

∗μ
3 − p

∗μ
1 is for the direct term. The exchange term

M∗
e is obtained by p

∗μ
1 ←→ p

∗μ
2 and Q

∗μ
e = p

∗μ
3 − p

∗μ
2 . The

isospin factors Id, Ie, and the spin projection matrix for the
spin-3/2 particles can be found from Ref. [24].

The in-medium NN → N� cross section can be written as

σ ∗
NN→N� =

∫ m∗
�,max

m∗
�,min

dm∗
�f (m∗

�)σ̃ ∗(m∗
�). (7)

σ̃ ∗(m∗
�) is the in-medium elementary two-body cross section,

and f (m∗
�) is the mass distribution of � resonance. In the

center-of-mass frame of colliding nucleons, the in-medium
elementary two-body cross section reads

σ̃ ∗(m∗
�) = 1

4F ∗

∫
d3p∗

3

(2π )32E∗
3

d3p∗
4

(2π )32E∗
4

× (2π )4δ4(p1 + p2 − p3 − p4)|M∗|2

= 1

64π2

∫ |p∗
out,c.m.|√

s∗
in

√
s∗

out|p∗
in,c.m.|

|M∗|2d�, (8)

where |M∗|2 = 1
(2s1+1)(2s2+1)

∑
s1s2s3s4

|M∗|2, p∗
in,c.m. and

p∗
out,c.m. are the center-of-mass momenta of the incoming

(1 and 2) and outgoing particles (3 and 4), respectively.

F ∗ =
√

(p∗
1p

∗
2 )2 − p∗2

1 p∗2
2 = √

s∗
in|p∗

in,c.m.| is the invariant

flux factors s∗
in = (p∗

1 + p∗
2 )2 and s∗

out = (p∗
3 + p∗

4 )2. Here,
one should note that the crucial requirement of the two-body
collisions is the energy-momentum conservation in terms of
the incoming and outgoing canonical momenta (pμ

1,2, p
μ
3,4),

i.e., δ4(p1 + p2 − p3 − p4) instead of the kinetic momentum
p∗μ. This will be discussed in more detail below in Sec. III.

B. The coupling constants used in the model

In our paper, we take the NLρδ parameter set given
in Ref. [30] by which the properties of isospin asym-
metric nuclear equation of state [31] can be well repro-
duced. The values of nuclear matter parameters, such as
K0 = 240 MeV, m∗/m = 0.75, S0 = 30.6 MeV, and L =
101.46 MeV and the values of S0 and L are close to the
symmetry energy constraints from the neutron-proton differ-
ential flow data [32]. The coupling constant gπN� is deter-
mined by analyzing the �-isobar decay width from Ref. [33].
Concerning the coupling constant gρN�, in this paper we

TABLE I. Parameters in the effective Lagrangian. The
masses used in the calculation are GeV, and mσ = 0.550,
mω = 0.783, mρ = 0.770, mδ = 0.980, mπ = 0.138, mN =
0.939, m0,� = 1.232. The coupling constants, g2/g

3
σNN =

0.033 02 fm−1, g3/g
4
σNN = −0.004 83, gmNN and gmN� are

dimensionless.

Meson gmNN gmN� gm��/gmNN

σ 8.9679 1
ω 9.2408 1
ρ 6.9256 4.9183 1
δ 7.8525 1
π 1.008 2.202 1

use the value derived from the static quark model [24,34]
gρN� ≈

√
3

2 gρNN
mρ

mN
. All the values of these parameters are

listed in the second and third columns of Table I. For the
coupling constant parameters of gm��, m = σ, ω, ρ, δ, we
simply take gm�� = gmNN as the same as in many studies
with the transport models [16,25,26].

The form factors are adopted for effectively considering
the contribution from the high-order terms and finite size of
the baryons [24,35], which read

FN (t∗) = �2
N

�2
N − t∗

exp
(−b

√
s∗ − 4m∗2

N

)
, (9)

F�(t∗) = �2
�

�2
� − t∗

. (10)

Here, FN (t∗) is the form factor for the nucleon-meson-
nucleon coupling, b = 0.046 GeV−1 for both ρNN and
πNN , and �ρNN ≈ �πNN = �N = 1.0 GeV. F�(t∗) is the
form factor for � and the cutoff parameter �� ≈ 0.41 GeV
for both ρN� and πN� which is determined by best fitting
the data of the NN → N� cross section in free space [36]
ranging from

√
s = 2.0 to 5.0 GeV.

III. ENERGY CONSERVATION IN σ ∗
N N→N�

For the NN → N� process, the energy-momentum con-
servation is in terms of the incoming and outgoing canonical
momenta (pμ

1,2, p
μ
3,4), i.e., δ4(p1 + p2 − p3 − p4), whatever

they are in the symmetric or asymmetric nuclear medium.
In the symmetric nuclear medium, it can also be fulfilled by
simply using the effective mass (m∗) and kinetic momentum
(p∗μ) because the self-energies of the incoming and outgoing
particles are the same. However, in the isospin asymmetric
nuclear medium, the scalar and vector self-energies between
the incoming and the outgoing channels may be different, and
thus the energy conservation should exactly use the canonical
momenta instead of the kinetic momenta p∗μ. This idea was
first proposed by Ferini et al. in Ref. [19] for calculating its
effects on the threshold energy for NN → N� and followed
by other works [16,20] in the transport models. However,
for calculating the in-medium NN → N� cross section, the
same effects should also be considered simultaneously with
that of isospin splitting effects. The details of this effect are
given in the following.
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TABLE II. Difference between the initial and the final scalar
and vector mean fields in the NN → N� process as well as
in the decay of � resonances (� → N + π ). ��S = �S

1 + �S
2 −

�S
3 − �S

�, ��0 = �0
1 + �0

2 − �0
3 − �0

�, ��S
d = �S

� − �S
N , and

��0
d = �0

� − �0
N . All entries are in MeV. It is similar to Table II

of Ref. [16].

Scattering ��S ��S (ρ0) ��0 ��0(ρ0)

pp → n�++ −2gδNN δ̄3 29.3 2gρNN ρ̄0
3 −39.8

pp → p�+ − 2
3 gδNN δ̄3 9.8 2

3 gρNN ρ̄0
3 −13.3

np → n�+ − 2
3 gδNN δ̄3 9.8 2

3 gρNN ρ̄0
3 −13.3

np → p�0 2
3 gδNN δ̄3 −9.8 − 2

3 gρNN ρ̄0
3 13.3

nn → n�0 2
3 gδNN δ̄3 −9.8 − 2

3 gρNN ρ̄0
3 13.3

nn → p�− 2gδNN δ̄3 −29.3 −2gρNN ρ̄0
3 39.8

Decay ��S
d ��0

d

�++ → pπ+ 0 0 0 0

�+ → pπ 0 2
3 gδNN δ̄3 −9.8 − 2

3 gρNN ρ̄0
3 13.3

�+ → nπ+ − 4
3 gδNN δ̄3 19.6 4

3 gρNN ρ̄0
3 −26.6

�0 → pπ− 4
3 gδNN δ̄3 −19.6 − 4

3 gρNN ρ̄0
3 26.6

�0 → nπ 0 − 2
3 gδNN δ̄3 9.8 2

3 gρNN ρ̄0
3 −13.3

�− → nπ− 0 0 0 0

Since all the calculations performed in this paper are in
the center of mass of the colliding particles, it coincides with
the nuclear matter rest frame where the effective momentum
p∗

i = pi due to the vanishment of the spatial components of
the vector field, i.e., � = 0. The effective energy reads as

p∗0
i = p0

i − �0
i , (11)

and

�0
i = gωNNω̄0 + gρNN t3,i ρ̄

0
3 . (12)

Here t3,i represents the third component of the isospin
of the nucleon and �, where t3,n = −1, t3,p = 1, t3,�++ =
1, t3,�+ = 1

3 , t3,�0 = − 1
3 , t3,�− = −1, and ρ̄0

3 = gρNN

m2
ρ

(ρp −
ρn).

For symmetric nuclear matter, the energy conserva-
tion p0

1 + p0
2 = p0

3 + p0
4 is equal to p∗0

1 + p∗0
2 = p∗0

3 + p∗0
4 .

This is because the scalar and vector self-energies be-
tween the incoming and the outgoing particles are the
same, i.e., �0

1 + �0
2 = �0

3 + �0
4 and �S

1 + �S
2 = �S

3 + �S
4

(or ��0 = �0
1 + �0

2 − �0
3 − �0

4 = 0, ��S = �S
1 + �S

2 −
�S

3 − �S
4 = 0) due to ρ̄0

3 = 0. Thus, using the kinetic momen-
tum, i.e., δ4(p∗

1 + p∗
2 − p∗

3 − p∗
4 ), in the formula of Eq. (8)

can fulfill the energy-momentum conservation.
In isospin asymmetric nuclear matter, the scalar and vector

self-energies of the incoming and outgoing particles may
differ as shown in Table II. For example, in the case of pp →
n�++, �0

p + �0
p �= �0

n + �0
�++ , i.e., ��0 �= 0 as shown in

the first row of Table II. ��S and ��0 have the opposite
contributions to the energy of particles in which ��S = 29.3
and ��0 = −39.8 MeV at the normal density. Consequently,
p∗0

1 + p∗0
2 differs from p∗0

3 + p∗0
4 and s∗

in �= s∗
out in Eq. (8). s∗

in
and s∗

out are related according to the following relationship:√
s∗

in + �0
N1

+ �0
N2

=
√

s∗
out + �0

N3
+ �0

�4
. (13)

It is derived from

s = (pN1 + pN2 )2

= (√
m∗2

N1
+ p∗2

N1
+

√
m∗2

N2
+ p∗2

N2
+ �0

N1
+ �0

N2

)2

− (
p∗

N1
+ p∗

N2

)2

= (
pN3 + p�4

)2
, (14)

in the center-of-mass frame, where p∗
N1

= −p∗
N2

and p∗
N3

=
−p∗

�4
. Thus, using δ4(p∗

1 + p∗
2 − p∗

3 − p∗
4 ) cannot be equiv-

alent to the energy-momentum conservation in isospin
asymmetric nuclear matter. Properly imposing the energy-
momentum conservation is to use the canonical momentum,
i.e., δ4(p1 + p2 − p3 − p4) as in Eq. (8).

In our paper, we use the energy conservation factor in the
calculation of in-medium cross section as δ(p0

1 + p0
2 − p0

3 −
p0

4 ) = δ(p∗0
1 + p∗0

2 − p∗0
3 − p∗0

4 + ��0) which is the same
idea as in the study of threshold effects [16,19,20]. We named
this corrected energy conservation “EC-C” in the following
text. In order to understand its effect, we also show the results
of the NN → N� cross section obtained by considering the
kinetic momentum conservation, i.e., δ(p∗0

1 + p∗0
2 − p∗0

3 −
p∗0

4 ), and we named it as “EC-K” in the following.
The minimum � mass m∗

�,min in the formula of the cross
section is determined by � → N + π in isospin asymmetric
nuclear matter as in Ref. [20] when both N and π are at rest,
and the modification of the scalar and vector self-energies
in this isospin exchange process should also be consid-
ered. Thus, m∗

�,min = m∗
N + �0

N + m∗
π + �P (ω, q) − �0

� =
m∗

N + m∗
π − ��0

d with ��0
d = �0

N + �P (ω, q) − �0
�. Con-

sidering m∗
π/mπ is less than ∼10% at the normal density

from the calculations by Kaiser and Weise [37] in isospin
asymmetric nuclear matter, we neglect the medium effect on
the pion’s mass and simply take m∗

π = mπ in this paper. Thus,
we have ��0

d = �0
� − �0

N . The values of ��0
d and ��S

d =
�S

� − �S
N at the normal density are also listed in Table II. The

maximal � mass m∗
�,max is evaluated based on the Eq. (14) for

producing N and � at rest, and it leads to

m∗
�,max = √

s − m∗
N3

− �0
N3

− �0
�4

. (15)

The in-medium � mass distribution f (m∗
�) is another im-

portant ingredient of the in-medium NN → N� cross section
for which the proper energy conservation is also necessary
since f (m∗

�) is related to the � → N + π process. In this
paper, the spectral function of � is taken as in Ref. [25],

f (m∗
�) = 2

π

m∗2
� �(m∗

�)(
m∗2

0,� − m∗2
�

)2 + m∗2
� �2(m∗

�)
. (16)

Here, m∗
0,� is the effective pole mass of �. The decay width

�(m∗
�) is taken as a parametrization form [25]

�(m∗
�) = �0

q3(m∗
�,m∗

N,m∗
π )

q3(m∗
0,�,m∗

N,m∗
π )

× q3(m∗
0,�,m∗

N,m∗
π ) + η2

q3(m∗
�,m∗

N,m∗
π ) + η2

m∗
0,�

m∗
�

, (17)
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FIG. 2. The effective masses of the nucleon and the effective pole
masses of � as a function of ρB/ρ0. The black solid lines are for
symmetric matter I = 0, and the red dashed or red dotted lines are
for I = 0.2.

where

q(m∗
�,m∗

N,m∗
π )

=
√√√√

[(
m∗

� + �0
� − �0

N

)2 + m∗2
N − m∗2

π

]2

4
(
m∗

� + �0
� − �0

N

)2 − m∗2
N (18)

is the center-of-mass momentum of the nucleon and pion from
the decay of � in its rest frame. The factor of (m∗

� + �0
� −

�0
N ) in Eq. (18) comes from properly considering the energy

conservation in the � → Nπ process in the isospin asym-
metric nuclear matter.1 The coefficients of �0 = 0.118 GeV
and η = 0.2 GeV/c are used in the above parametrization
formula.

IV. RESULTS AND DISCUSSION

A. N and � effective masses in isospin asymmetric matter

The Dirac effective masses of nucleons and �’s are cal-
culated in the relativistic mean-field approximation; they read

m∗
i = mi + �S

i , (19)

where

�S
i = −gσNN σ̄ − gδNN t3,i δ̄3, (20)

and δ̄3 = gδNN

m2
δ

(ρS
p − ρS

n ). Figure 2 presents the Dirac effective
masses for the nucleon and � in the symmetric nuclear
matter (black solid lines) and in the neutron-rich matter with
an isospin asymmetry I = (ρn − ρp )/ρB = 0.2 (red dashed
and dotted lines), where ρB = ρn + ρp. The left panel shows
the effective masses for the nucleons, and the right panel
is for the effective � pole masses. In symmetric nuclear
matter, there is no effective mass splitting for nucleons and

1In the rest frame of � in the isospin asymmetric nuclear matter,√
s = (m∗

� + �0
�) = √

m∗2
N + q2 + �0

N + √
m∗2

π + q2 + �P (ω, q).
In our approach, we assume the pion mass and momentum are not
affected by the nuclear mean field.

FIG. 3. (a) σ ∗
pp→n�++ as a function of Q for ρB = 0, ρ0,

and 2ρ0, and the experimental data are taken from Ref. [36];
(b) R = σ ∗

pp→n�++/σ free
pp→n�++ as a function of density at Q =

0.227 GeV (Eb = 0.8 GeV). All of these results are for symmetric
nuclear matter. The blue line with the triangles is the calculated
results in this paper, and the black lines with the squares and circles
correspond to the results from Refs. [25,26], respectively.

�’s, and m∗
i /mi = 0.75 with i = n, p, m∗

i /mi = 0.81 with
i = �++, �+, �0 and �− at the saturation density with
the parameter set in Table I. In the neutron-rich matter, the
effective masses of the nucleons and �’s are split due to
the contributions from the isovector-scalar δ meson. There is
m∗

p > m∗
n, m∗

0,�++ > m∗
0,�+ > m∗

0,�0 > m∗
0,�− in the neutron-

rich matter. The splitting magnitudes of the effective masses
for the nucleons and �’s depend on the coupling constant
gδNN .

B. Cross section and its medium correction

Figure 3(a) presents the pp → n�++ cross section as a
function of Q for symmetric nuclear matter at ρB = 0, ρ0,
and 2ρ0. Q is defined as

Q = √
sin − √

sth

= E∗
N1

+ E∗
N2

+ �0
N1

+ �0
N2

− m∗
N3

− m∗
�,min − �0

N3
− �0

�

	 (
E∗

N1
− m∗

N1

) + (
E∗

N2
− m∗

N2

)
+mN1 + mN2 − mN3 − m�,min + ��S + ��0, (21)

which represents the kinetic energy above the pion pro-
duction threshold energy

√
sth = m∗

N3
+ m∗

�,min + �0
N3

+ �0
�.

The blue solid line represents the calculated pp → n�++
cross section in free space. The black circles are the exper-
imental data [36]. The calculation can well reproduce the
data of σ

exp
NN→N� except for the highest data point around

Eb = 1 GeV. The dashed and dotted lines are the results
for ρB = ρ0 and ρB = 2ρ0, respectively. Comparing with the
free space pp → n�++ cross section, the in-medium pp →
n�++ cross sections in symmetric nuclear matter decrease
with the density increasing for all channels. This is because
the elementary two-body cross section σ̃ ∗(m∗

�) decreases with
the reduction of m∗

N and m∗
0,�, which is consistent with the

results in Ref. [26]. The in-medium cross section for nn →
p�− is equal to pp → n�++, and other channels can be
obtained based on the product of the isospin Clebsch-Gordan
coefficients, which is 1/3 of σ ∗

pp→n�++ .
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FIG. 4. σ ∗
NN→N� for different channels at I = 0.2, obtained with

the EC-K (black solid lines) and the EC-C at (red dashed lines)
ρB = ρ0.

In Fig. 3(b), we show the medium correction factor of
R = σ ∗

NN→N�/σ free
NN→N� as a function of density for Q =

0.227 GeV (Eb = 0.8 GeV). The blue line is the result ob-
tained in this paper. For the symmetric nuclear matter, all
the channels have the same reduction factor. The R values
decrease with the density increasing; this behavior is consis-
tent with the theoretical results from the RBUU (line with the
circles) [26] and the one-pion exchange model [25] (line with
the squares), and this behavior has also been verified in the
calculations of transport models [16,25] for reproducing the
pion yield data [12,38], whereas the reduction in our case is
smaller than that obtained in the transport model calculations
[16]. It may hint that the form factor in the Lagrangian needs
to consider the in-medium correction.

Figures 4(a)–4(f) present the results of σ ∗
NN→N� at

ρ0 with the isospin asymmetry I = 0.2 for six chan-
nels, i.e., pp → n�++, pp → p�+, np → n�+, np →
p�0, nn → n�0, and nn → p�−, respectively. The red
dashed lines are the results obtained with the EC-C, and
the black solid lines are for the EC-K. For the pp → n�++
channel, the cross section obtained with the EC-C is reduced
relative to that with the EC-K; but for nn → p�−, the cross
section obtained with the EC-C is enhanced relative to that
with the EC-K. This can be simply understood from the
isospin effects on Q which is the input of the formula of the
in-medium cross section. In the case of the EC-C, Q has an
additional term ��0 compared to the EC-K where the isospin
effects mainly come from the difference in ��S . For example,
for the pp → n�++ channel, the Q values are reduced for the
EC-C relative to that in the EC-K due to ��0 < 0. Thus, a
larger E∗ − m∗(≈p2/2m∗) is needed for the EC-C than that
for the EC-K at a given Q value by using Eq. (21). This effect
is similar to the decrease in the effective mass which will

FIG. 5. The medium correction factor R as a function of density
for different channels (with different colors) for the beam energy at
Q = 0.052, 0.227, and 0.389 GeV (Eb = 0.4, 0.8 and 1.2 GeV) in
isospin asymmetric matter at I = 0.2. The left panels are for the EC-
K, and the right panels are for the EC-C.

result in the reduction of the in-medium pp → n�++ cross
section relative to that for the EC-K. For nn → p�−, ��0 >
0 and the opposite behavior can be observed. Consequently,
the medium correction factor R will be influenced as well.

In Fig. 5, we present R as a function of density at
I = 0.2 for different channels. The upper, middle, and bot-
tom panels correspond to the results for Q = 0.052 (Eb =
0.4 GeV), 0.227 (Eb = 0.8 GeV), and 0.389 GeV (Eb =
1.2 GeV), respectively. The left panels are the results for
the EC-K, and the right panels are the results for the
EC-C. As shown in the left panels of Fig. 5, the R ra-
tios for different channels are split clearly at all the en-
ergies we analyzed, i.e., the R values strongly depend
on the charge state of NN → N�. The order of R for
different channels is R(pp → n�++) > R(Np → N�+) >
R(Nn → N�0) > R(nn → p�−) which is the same as the
order of the � effective mass and is consistent with the result
in Ref. [26].

In the case of the EC-C, the R ratios for all chan-
nels decrease as a function of density. Near the thresh-
old energy, the R values clearly depend on the channels
of NN → N� and R(pp → n�++) > R(Np → N�+) >
R(Nn → N�0) > R(nn → p�−), but the magnitude of the
R splitting between different channels becomes weaker than
that for the EC-K because ��0 can wash out the isospin
effects from ��S . With the beam energy increasing up to
0.8 GeV, the splitting of R between the different channels
of NN → N� becomes smaller. Especially, the difference in
R between different channels tends to vanish above 1.2 GeV.
This conclusion is different from the prediction in Ref. [26]
where they still found the obvious difference in R on different
channels around 1 GeV. The reason is that the isospin splitting
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effects on R mainly come from the isospin splitting of the
� effective masses in the case of the EC-K, which has been
verified in the left panels of Fig. 5 and Ref. [26]. However,
��0 can give the opposite contributions to Q through the
vector self-energy when one properly considers the energy
conservation for incoming and outgoing particles. It leads to
the reduction of isospin effects caused by the isospin splitting
of the effective mass. When the beam energy is high enough,
the contributions from the potential energy become smaller
relative to the kinetic-energy part, and the isospin splitting
of R tends to vanish. It implies that adopting the isospin
channel-independent R in the transport models is reasonable
at the energy above 1 GeV, but our results further confirm that
the channel dependence of R should be taken into account
near the threshold energy.

V. SUMMARY

To summarize, we have studied the isospin-dependent in-
medium NN → N� cross section in isospin asymmetric
nuclear matter within the one-boson exchange model by in-
cluding the δ and ρ mesons. As a short-living resonance, a
parametrization formula of � mass distribution is involved in
the calculation of σ ∗

NN→N�. With the proper energy conser-
vation in asymmetric nuclear matter, our results confirm that

σ ∗
NN→N� are suppressed relative to the cross section in free

space, and the medium correction factor R also depends on
the channels of the NN → N� process near the threshold
energy. However, the isospin splitting of R becomes weaker
at the beam energy above 0.8 GeV because the changes in
scalar and vector self-energies become smaller relative to the
kinetic-energy part. Our paper provides a theoretical infor-
mation of the isospin-dependent medium correction factor R,
which will be very useful for the further developing isospin-
dependent transport models.

Furthermore, the medium effect on the pion could modify
the � width and its mass distribution near the threshold
[39], and thus the theoretical work in this aspect on the in-
medium NN → N� cross section should also be investigated
in the future. It will extend our understanding of the isospin
dynamics in heavy-ion collisions.
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