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Quantum and Coulomb repulsion effects on the bubble structures in 204,206Hg
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The decreasing proton and charge densities from around 5.0 fm towards the center of 204,206Hg are investigated
by a covariant density functional theory at the beyond mean-field level. The charge-density difference between
208Pb and 204Hg is improved significantly and a central depression is still visible in the ground-state density of
204,206Hg when the dynamic correlations associated with symmetry restoration and shape mixing are taken into
account. For the 0+

2 and 2+
1 excited states of 204,206Hg, their densities remain decreasing from 5.0 fm to around

2.0 fm, but become flat in the interior region. The results show that the bubble structure in 204,206Hg within 2.0 fm
is mainly attributed to the quantum effect, while that beyond 2.0 fm is formed by the Coulomb repulsion.
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I. INTRODUCTION

Because of the saturation properties of nuclear matter, nu-
clear density generally takes the form of a Fermi distribution.
However, in some light or medium-heavy nuclear systems,
the density deviates from this simple behavior because of
quantum effects related to the filling of single-particle states
with wave functions that have a specific spatial behavior. In
this context, s1/2 orbits in spherical nuclei have a very peculiar
signature, as they are the only ones that contribute to the
density at the nuclear center. Depending on whether they are
filled or empty, s1/2 orbits can generate a central bump in
the density as it has been observed for 36S [1], 40Ca [2], and
208Pb [3,4], or a central depression in the proton density of
34Si [5] and 204Hg [6]. In heavy or superheavy nuclei with
a large charge number, the density is prone to take the form
of “wine-bottle” shape as it lowers the Coulomb repulsion.
Therefore, the depletion of proton and charge densities in
the center, referred as “bubble”, is generally governed by
both the quantum effect and the compromise between the
large repulsive Coulomb interaction and the attractive nucleon
nucleon strong force.

Since the pioneering work of Wilson [7], the bubble struc-
ture in atomic nuclei has attracted much attention [8–20].
Mean-field methods are the tools of choice for modeling the
nuclear density distribution and thus most of the theoreti-
cal studies on bubble structure were carried out within this
framework. In recent years, the multireference energy density
functional (MR-EDF) calculations [21,22] along with ab initio
calculations [23] have been carried out for 34Si and 46Ar [24].
It has been found that the beyond mean-field dynamic correla-
tion effects quench or even wash out the depletion at the center
of the bubble candidate nucleus. It can be understood that the
deformation and shape fluctuation distort the spherical shell
structure and bring the s1/2 orbits partially filled. Nevertheless,
the bubble structure in the ground state of 34Si is rather robust
in both the MR-EDF and ab initio calculations and it has

been indirectly confirmed from the measured small proton
occupancy 0.17(3) of the 2s1/2 orbit [5].

The mercury isotopes around neutron number N = 126
are good candidates with a bubble structure in medium-mass
region based on the following two considerations. On one
hand, the proton 3s1/2 orbit is expected to be filled completely
in 208Pb, and it is expected to be depopulated entirely in 206Hg.
On the other hand, the N = 126 shell gap is robust to hinder
the coupling of ground state to large amplitude collective
excitations. Besides, the mechanisms of both quantum effects
and Coulomb repulsion are expected to play roles in the
formation of bubble structure in the nuclei of this mass region.
Therefore, several efforts have been devoted to the research on
the density distribution of 206Hg. The relativistic mean-field
(RMF) approach predicted a visible proton hollow in 206Hg
[25], which is, however, not supported by the recent stud-
ies with spherical Hartree-Fock-Bogoliubov models [13,14].
It has been pointed out that the small shell gap between
2d3/2-3s1/2 and the strong pairing correlation annihilates the
bubble structure in 206Hg. In this paper, we are going to revisit
this topic with the MR-EDF approach based on a relativistic
point-coupling energy functional. A special emphasis will be
placed on the changes in the density distribution for the low-
lying states of 204,206Hg under the perturbation of the dynamic
correlations.

The paper is organized as follows. In Sec. II, we present
a brief introduction of the method. The results on the density
distribution in 204,206Hg and the discussion on the dynamic
correlation effects are given in Sec. III. The conclusions are
drawn in Sec. IV.

II. METHOD

The MR-EDF approach that we are using in this work has
been introduced in Refs. [22,26,27]. Here, we just give an
outline of it. In this approach, the wave functions of nuclear
low-lying states are constructed as a superposition of a set of
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quantum-number projected mean-field states

|�JNZ
α 〉 =

∑
β

f J
α (β )P̂ J

M0P̂
N P̂ Z|�(β )〉, (1)

where P̂ J
M0, P̂ N , and P̂ Z are the projection operators onto an-

gular momentum, neutron, and proton numbers, respectively.
|�(β )〉s are axially deformed states from the RMF+BCS
calculations with a constraint on the mass quadrupole mo-

ment 〈Q20〉 =
√

5

16π
〈�(β )|2z2 − x2 − y2|�(β )〉, where the

deformation parameter β is related to the quadrupole moment

by β = 4π

3AR2
〈Q20〉, R = 1.2A1/3 with mass number A.

The weight function f J
α (β ) of the states in Eq. (1) is

determined by the variational principle which leads to the
Hill-Wheeler-Griffin equation∑

β ′

[HJ (β, β ′) − EJ
αN J (β, β ′)

]
f J

α (β ′) = 0 , (2)

where the norm kernel N J (β, β ′) and the Hamiltonian kernel
HJ (β, β ′) are defined as

N J (β, β ′) = 〈�(β )|P̂ J
00P̂

N P̂ Z|�(β ′)〉 , (3a)

HJ (β, β ′) = 〈�(β )|Ĥ P̂ J
00P̂

N P̂ Z|�(β ′)〉 . (3b)

With the wave functions of nuclear low-lying states, one
can derive the corresponding density distribution in coordi-
nate space [27],

ρJα (r) ≡ 〈
�JNZ

α

∣∣ρ̂∣∣�JNZ
α

〉
=

∑
ββ ′

f J
α (β ′)f J

α (β )
∑

λ

(−1)2λYλ0(r̂)

×〈J0, λ0|J0〉
∑
K

(−1)K〈JK, λ − K|J0〉

×
∫

d r̂′ρJK0
β ′β (r′)Y ∗

λK (r̂′) , (4)

where the ρJK0
β ′β (r) is defined as

ρJK0
β ′β (r) = 2J + 1

2

∫ π

0
dθ sin(θ )dJ∗

K0(θ )〈�(β ′)|

×
∑

i

δ(r − ri )e
iθĴy P̂ N P̂ Z|�(β )〉 . (5)

The index i in the summation runs over all the occupied
single-particle states for neutrons or protons. r ≡ (r, r̂) is the
position at which the density is to be calculated and ri is the
position of the ith nucleon.

The density in Eq. (4) contains the information of many
deformed mean-field states generated by the collective coor-
dinate β and it corresponds to the density in the laboratory
frame. The density for the 0+

1 ground state can be simplified
as

ρg.s.(r) =
∑
β ′β

f 0
1 (β ′)f 0

1 (β )
∫

d r̂ρ000
β ′β (r, r̂) , (6)

where r̂ denotes the angular part of coordinate r.

FIG. 1. Comparison between the radial distribution of proton
densities (a) without (w/o) and (b) with (w/) Coulomb potential,
calculated from the RMF calculations for the spherical states of
208Pb, 206Hg, and 204Hg using the PC-PK1 force. The results without
(w/o) pairing are also given for 206Hg and 204Hg. Pairing collapse
takes place in the spherical state of 208Pb labeled by “w/o pairing”.

The charge density is calculated by a convolution of the
corresponding proton density with a Gaussian form factor,

ρch(r ) = 1

a
√

π

∫
dr ′r ′ρp(r ′)

[
e−(r−r ′ )2/a2

r
− e−(r+r ′ )2/a2

r

]
,

(7)

where the parameter with a proton size a = √
2/3〈r2

p〉1/2 =
0.65 fm is adopted in calculations [28].

III. RESULTS AND DISCUSSION

In the mean-field calculations, the symmetries of parity, x-
simplex, and time-reversal invariance are assumed. The Dirac
equation for single-particle wave functions in each reference
state |�(β )〉 is solved in a set of three-dimensional harmonic
oscillator basis within 14 major shells. Pairing correlations
between nucleons are treated with the BCS approximation
using a density-independent δ force implemented with a
smooth cutoff factor [29]. More details on the techniques
adopted to solve the RMF equations have been introduced,
for instance, in Ref. [30] and review papers [31–33]. In
the calculations of kernels, the number of mesh points in the
interval [0, π ] for the Euler angle θ and gauge angle ϕτ are
chosen as 14 and 9 in the angular-momentum and particle-
number projections, respectively. The Pfaffian method [34] is
carried out to evaluate the phase of the norm overlap in the
kernels.

A. Bubble structure in ground states

Figure 1 displays the density distributions of protons for
the mean-field spherical states of 208Pb, 206Hg, and 204Hg with
the PC-PK1 force [35]. To examine the effect of Coulomb
repulsion on the proton densities, the results from the calcu-
lations with or without the Coulomb potential are shown for
a comparison. In the realistic calculations with the Coulomb
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FIG. 2. The proton density distributions (in units of fm−3) of the
mean-field spherical state in y-z plane at x = 0 fm by the PC-PK1
force for 208Pb (a), 206Hg (b), and 204Hg (c), respectively.

potential, the proton densities are obviously depressed in the
interior region of 204,206Hg. The pairing correlations quench
the bubble structure significantly by scattering protons onto
3s1/2 orbit. The occupation probability of the proton 3s1/2

orbit in 204Hg and 206Hg is ∼48% and ∼52% of that in 208Pb,
respectively. Nevertheless, the central densities are still much
depressed. It is shown in Fig. 1(a) that the central depression
disappears in the densities from the calculations without the
Coulomb potential. It indicates that the central depression
shown in Fig. 1(b) is largely attributed to the Coulomb repul-
sion. The central bump (and central depression) in the proton
densities of 208Pb (and 204,206Hg) can be seen more clearly in
Fig. 2. We also carried out a relativistic Hartree-Bogoliubov
calculation with the PC-PK1 force plus a separable pairing
interaction for 206Hg. A central hollow is shown as well, even
though the central proton value is larger than the value of the
RMF+BCS calculations by about 0.01 fm−3.

Figure 3 shows the proton and charge densities from the
calculations based on four different configurations, including
the spherical state with or without pairing correlations, the
state of the energy minimum on the angular momentum pro-
jected energy surface with J = 0, and the GCM ground state
with Jπ = 0+. The radial distribution of the charge density for
208Pb beyond 2.0 fm is reproduced with the particle-number
conserved spherical state. As the proton 3s1/2 orbit becomes

FIG. 3. The (a) proton and (b) charge density distributions by
the PC-PK1 force for 208Pb and 204Hg, as well as the comparison
between (c) proton and (d) charge densities for 206Hg by both the
PC-F1 and PC-PK1. The labels “N&Z(Sph. w/o)”, “N&Z(Sph.
w/)”, “N&Z, J = 0(Min.)”, and “N&Z, J = 0(GCM)” represent
the results based on four different configurations. The densities for
208Pb in (a) and (b), and the density by the PC-F1 for 206Hg in
(c) and (d) have been shifted up by 0.015 fm−3. The shadow area
in (b) denotes the experimental uncertainty. The experimental data
are taken from Refs. [4,6]. See text for more details.

FIG. 4. The radial distribution of the difference �ρ(r ) in the
densities between 208Pb and 204Hg. The experimental data are taken
from Refs. [4,6,37]. The shadow area denotes the experimental
uncertainty.
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FIG. 5. Longitudinal form factor |F0(q )|2 as a function of the
momentum transfer q (fm−1) for the electron elastic scattering of
the ground state for (a) 208Pb, (b) 206Hg, and (c) 204Hg, respectively.
The experimental data are taken from Ref. [37].

fully occupied, the central bump is overestimated compared
to the data, which is similar to the results from the Skyrme
Hartree-Fock calculations [36]. The interior charge distribu-
tion of 208Pb is not evidently changed by the effects of static
and dynamic quadrupole deformations. For 204Hg, one can
see that the charge density of the particle-number conserved
spherical state is much lower than the data [6], similar to the
result from the relativistic Hartree-Bogoliubov calculations
using DD-ME2 force [14]. After taking into account the
dynamic correlations in this calculations, the charge density
of 204Hg is reproduced. For 206Hg, both forces predict almost

TABLE I. The central and maximal densities (fm−3) and the
corresponding depletion factors F τ

max and F τ
sat [cf. Eq. (10)] for the

proton density in 206Hg from the calculations using the PC-PK1
force. See text for more details.

States ρ
p
cent ρp

max F p
max F

p
sat

N&Z (Sph. w/o) 0.037 0.063 0.42 0.41
N&Z (Sph. w/) 0.050 0.063 0.21 0.20
N&Z, J = 0 (Min.) 0.054 0.062 0.14 0.14
N&Z, J = 0 (GCM) 0.051 0.063 0.18 0.17

the same density profiles and the results are similar to that of
204Hg. It is remarkable that the proton and charge densities
gradually decrease from around 5.0 fm towards the center
of 204,206Hg for the ground states. We note that the wave
function of GCM ground state is spread over the range of
deformation −0.3 ≤ β ≤ 0.3 with the mean quadrupole de-
formation parameter β̄01 = ∑

β |gJ=0
α=1 (β )|2β 
 0.02 for 208Pb

and 204,206Hg.
Figure 4 displays the difference �ρ(r ) in the proton and

charge densities between 208Pb and 204Hg, which reflects
mainly the radial distribution of the two protons in 3s1/2 orbit
and has been determined from the measurement on the cross
sections [3]. The main feature of �ρ(r ) is reproduced in both
mean-field and beyond mean-field calculations. However, the
mean-field calculation overestimates significantly the peak
value at the center, which is consistent with the results ob-
tained from the Hartree-Fock calculations using finite range
effective nucleon-nucleon interactions [2,3,38]. After taking
into account the effect of dynamic correlations, the central
bump is decreased evidently, but not sufficient to reproduce
the data.

Figure 5 displays the longitudinal Coulomb form factor
|F0(q )|2 corresponding to the electron elastic scattering from
the GCM ground state for 208Pb, 206Hg, and 204Hg as a func-
tion of momentum transfer q, respectively. The form factor
FJ (q ) is defined as

FJ (q ) =
√

4π

Z

∫ ∞

0
dr r2 ρJα

01,J (r )jJ (qr ) , (8)

where jJ (qr ) is the spherical Bessel function. ρJα
01,J (r ) is the

reduced transition density [27]

ρJα
01,J (r )=

√
(2J+1)

∑
β ′β

f J∗
α (β ′)f 0

1 (β )
∫

d r̂ρJ00
β ′β (r)YJ0(r̂).

(9)

TABLE II. Same as Table I, but for the charge density in 206Hg.

States ρch
cent ρch

max F ch
max F ch

sat

N&Z (Sph. w/o) 0.041 0.064 0.36 0.34
N&Z (Sph. w/) 0.052 0.064 0.18 0.16
N&Z, J = 0 (Min.) 0.055 0.063 0.13 0.11
N&Z, J = 0 (GCM) 0.053 0.063 0.16 0.14
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FIG. 6. (a) Proton and (b) neutron single-particle energies cor-
responding to the spherical configuration of 208Pb, 206Hg, and 204Hg
from the mean-field calculations with the PC-PK1 force. The results
without (w/o) pairing correlations, denoted with 206Hg∗ and 204Hg∗,
are also given for comparison. The size of spin-orbit splitting is
indicated with the value in units of MeV.

It is shown in Fig. 5 that the form factors for 208Pb and
204Hg are reproduced rather well when the finite-size effect of
protons is taken into account.

The depletion factors Fτ
max and F τ

sat are often introduced to
quantify the bubble structure in the proton and charge density
distributions [11,21]

F τ
max ≡ ρτ

max − ρτ
cent

ρτ
max

, F τ
sat ≡ ρτ

sat − ρτ
cent

ρτ
sat

, (10)

where τ ≡ p and ch correspond to the proton and charge,
respectively. The values of the central and maximal densities
and the corresponding depletion factors for proton and charge
are summarized in Tables I and II. The saturation density ρτ

sat
is calculated as ρτ

sat = (80/206) × 0.16 fm−3 = 0.062 fm−3

for 206Hg. This value is very close to the maximal density.
As a result, the alternative depletion factors Fτ

sat are approx-
imately equal to the values of Fτ

max. This result is different
from 34Si in which the values of Fsat are much smaller than
those of Fmax [21]. Moreover, we note that the correlations
quench the central depression, but do not change the maximal
densities. In short, the results show that the bubble structure
is still survival with the presence of both static and dynamic
deformation effects.

FIG. 7. Splitting of proton spin-orbit doublets with different
principle quantum number as a function of orbital angular momen-
tum. The results corresponding to the spherical configuration of
208Pb, 206Hg, and 204Hg are from the RMF calculations using the
PC-PK1 force.

Figure 6 displays the proton and neutron single-particle
energies corresponding to the spherical states of 208Pb, 206Hg,
and 204Hg by the PC-PK1 force. It is shown that the spin-orbit
splitting is significantly quenched in the 3p partner states of
204,206Hg, compared with those of 208Pb. When the pairing
correlations are not taken into account in 204,206Hg, it can
be seen that the discrete partners present almost two-fold
degenerate not only in neutron but also in proton and even
inversion of π3p3/2 and π3p1/2 orbitals.

Figure 7 shows the splitting of proton spin-orbit doublets as
a function of orbital angular momentum. It is seen clearly that
the splitting of spin-orbit doublets in l = 1 is reduced more
significantly than that in larger orbital angular momentum.
This is because the spin-orbit potential has a second peak
of opposite sign in the nuclear interior and it reduces the
spin-orbit splitting of orbits located mainly at the nuclear

FIG. 8. Comparison between (a) proton and (b) charge density
distributions for the 0+

1 , 0+
2 , and 2+

1 states in 204,206Hg. For 204Hg, the
density distributions have been shifted up by 0.015 fm−3.
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TABLE III. The central and maximal values of proton and charge densities (fm−3), as well as the depletion factors F τ
max and F τ

sat

[cf. Eq. (10)] of the 0+
2 and 2+

1 states in 204,206Hg.

Nucleus State ρ
p
cent ρch

cent ρp
max ρch

max F p
max F ch

max F
p
sat F ch

sat

204Hg GCM (0+
2 ) 0.057 0.058 0.063 0.064 0.10 0.09 0.09 0.08

GCM (2+
1 ) 0.056 0.057 0.063 0.064 0.12 0.11 0.11 0.10

206Hg GCM (0+
2 ) 0.056 0.057 0.063 0.063 0.10 0.10 0.09 0.08

GCM (2+
1 ) 0.054 0.055 0.063 0.063 0.14 0.13 0.13 0.11

center. Those of orbits located around surface are not much
affected.

B. Bubble structure in low-lying excited states

The previous studies [22,39] demonstrate that the existence
of bubble structure is unlikely in the low-lying excited states
of 34Si. It is interesting to discuss this noteworthy issue for
204,206Hg. Figure 8 displays the proton and charge density
distributions of the 0+

2 and 2+
1 states in 204,206Hg, in com-

parison with that of the ground state. One can see that the
central depression in the excited states is less evident than that
in the ground state. Even though the density around the center
in the excited states becomes flat, it is still much lower than
the maximal density around 5.0 fm. Therefore, one still has a
sizable value (around 0.1) for the depletion factors Fτ

max and
F τ

sat, cf. Table III. The decrease of the density from 5.0 fm
towards 2.0 fm remains among the 0+

1 , 0+
2 , and 2+

1 states after
taking into account the dynamic correlations, which is also
exhibited in the ground state of 204,206Hg. It means that this
structure is formed mainly by the Coulomb repulsion, instead
of the vacancy of the proton 3s1/2 orbit.

IV. SUMMARY

We have reported a beyond mean-field calculations of the
proton and charge distributions in the low-lying states of
204,206Hg based on a relativistic point-coupling energy density
functional. The dynamic correlations associated with symme-

try restoration and shape mixing have been taken into account
in the framework of particle-number and angular-momentum
projected generator coordinate method. We have found that
the dynamic correlations improve significantly the description
of the charge-density difference between 208Pb and 204Hg. In
contrast to the light nuclear systems, a semibubble structure
is visible not only in the ground state of 204,206Hg, but also in
their 0+

2 and 2+
1 excited states. The bubble structure is rather

robust under the perturbation of dynamic correlations. The
results show that both the quantum shell effect and repulsive
Coulomb interaction are responsible for the formation of the
bubble structures in the nuclei of this mass region. In addition,
it is worth mentioning that the dynamic correlations, tensor
force or pairing correlations can modify the occupancy of the
s orbit around the Fermi surface and thus change the central
bubble structure that is formed by the vacancy of the s orbit.
However, the bubble structure in heavy nuclei formed by the
Coulomb repulsion effect can still survive with these effects.
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