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Cluster Thomas-Ehrman effect in mirror nuclei
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The Coulomb shift is analyzed for the mirror cluster systems of 18O = α + 14C and 18Ne = α + 14O by
applying the orthogonality condition model (OCM). The OCM calculation clearly predicts the suppressed
excitation energy of the higher 0+ states in the proton-rich system of 18Ne. This results can be interpreted in terms
of the extension of the Thomas-Ehrman shift (TES), which is discussed in 17O = 16O + N and 17F = 16O + P ,
to the cluster degrees of freedom. A combination of the cluster TES and the monopole transition is proposed as
an experimental probe to identify the cluster structure in mirror systems.
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I. INTRODUCTION

In a ground state of nuclei, a mean-field picture is realized
in which nucleons, such as neutrons (N ) and protons (P ), per-
form independent particle motions in a self-consistent mean
field. In the mean-field picture, neutrons in S-wave orbit often
induce anomalous phenomena. A typical example of S-wave
anomaly is the halo or skin phenomenon, which is generated
by the spatially extended wave function in the S orbit [1]. An
interesting phenomenon, which arises from the extended S
orbit, can also be seen in the Coulomb shift for the mirror sys-
tems. The famous example is “Thomas-Ehrman shift (TES),”
which was discussed in the mirror pair of 17O = 16O + N and
17F = 16O + P [2]. Since the wave function in the S orbit
is spatially extended, the effect of the Coulomb interaction
is suppressed in a proton-rich system. As a result of this
suppression, the excitation energy of the 1/2+ (1s1/2) state in
the proton-rich 17F seems to be compressed in comparison to
the neutron-rich 17O [2].

On the contrary, the α-cluster structures are well known
to appear in the excited states of light-mass systems. The α
particle is a building block in constructing the intrinsic struc-
tures of nuclei because of its stable and inert property. The
α-cluster structures have been extensively discussed in the 4N
systems, which have the multiple mass number of the α parti-
cle [3–5], such as 8Be = 2α, 12C = 3α, 16O = α + 12C, and
20Ne = α + 16O. These α-cluster structures mainly appear in
the excited 0+ states below 15 MeV in the excitation energy.

α-cluster structures appear according to Ikeda’s threshold
rule [6]; specifically, a possible cluster configuration emerges
at the excitation energy near the corresponding threshold for
cluster decay. In the α-cluster structure, the α particle and
the residual nuclei are weakly coupled. This weak-coupling
feature leads to a large extension of the wave function of the
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cluster relative motion with a large mixture of the S-wave
component. In this situation, the Coulomb interaction is not so
effective, and the suppressed Coulomb shift, which is similar
to the phenomenon discussed in 17O-17F, is expected to be
observed. Therefore, it is interesting to extend the viewpoint
of the TES, which is discussed in the single-particle picture, to
the α-clustering phenomena. If the TES occurs in the α-cluster
states, we will observe the compressed excitation energy of
the excited 0+ states in the proton-rich system. In fact, such a
compression of the excitation energy for the excited 0+ states
has been briefly discussed in 10Be-10C from the viewpoint of
the covalent molecular picture [7].

In the present paper, we extend the analysis of the Coulomb
shift studied in 10Be-10C to the heavier systems, such as
18O-18Ne, which are handled by the cluster models of α + 14C
and α + 14O, respectively. In 18O, the α + 14C structure has
already been discussed by the full microscopic model in which
the antisymmetrization among all the nucleons is completely
taken into account [8–10]. However, the energy levels of the
excited 0+ states, which have the well-developed α + 14C
structure, are much higher than the observed 0+ levels, and
hence, the direct comparison of the theory with the experi-
ment is still difficult. In addition, the recent shell model [11]
or three-body model [12] for 18O = 16O + N + N also had
difficulty reproducing three bound 0+ levels.

In view of the previous results of the full microscopic
calculations, we consider that it is important to introduce the
semimicroscopic model. The orthogonality condition model
(OCM), which is a kind of semimicroscopic models, is a very
useful and powerful model [13]. The OCM application to 18O
was performed by Furutani et al., but the scattering boundary
condition for the unbound continuum was not considered [14].
Here we employ the OCM plus absorbing boundary condition
(ABC), which is a powerful tool to handle the unbound
continuum, and apply the OCM + ABC to the analysis of
the mirror cluster systems of 18O-18Ne. Preliminarily, the
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OCM + ABC analysis of 18O-18Ne has been performed [15],
and we formulate the OCM calculation in the more complete
form. In this article, we mainly analyze the 0+ energy levels,
although there are many finite spin-parity states, which are
considered to have the α + 14C cluster structure. The analysis
focusing on the 0+ states is because the most prominent
mixture of the S-wave component arises in the α + 14Cg.s.

relative motion with the spin parity of 0+ and hence we can
expect the maximal effect of the suppressed Coulomb shift
due to the dilute α-cluster formation.

II. THEORETICAL FRAMEWORK

A. OCM formulation

We apply the OCM to the α + 14C and α + 14O systems. In
the strict treatment of the OCM, the so-called Pauli-allowed
states are constructed by solving the eigenvalue problem of
the norm kernels [13]. In the present analysis, we construct
the Pauli-allowed states in a simple manner based on Elliott’s
SU(3) algebra [16]. As for the internal configurations of the
binary clusters, we assume the lowest shell-model configu-
rations, such as (0s)4π (0p)4ν(0p)6 [(0s)4π (0p)6ν(0p)4] and
(0s)4 for the 14C (14O) nucleus and the α particle, respectively.
The internal configuration of 14C (14O) is set to (λ,μ) =
(0, 2) in the SU(3) irreducible representation of the harmonic-
oscillator (HO) wave function [16]. In this representation,
14C (14O) is possible to take the intrinsic angular momenta
of Iπ = 0+ and 2+, which correspond to the ground and first
excited states, respectively.

In the following, we explain the OCM formulation for
the α + 14C system because the extension to the α + 14O
system can be achieved in a straightforward manner. The
Pauli-allowed states of the total system, which are composed
of α and 14C, must have the total HO quanta of N � 6 in the
α − 14C relative motion. The N = 6 state corresponds to the
partially allowed state, whereas the quantum states with N �
8 are the completely allowed states for the positive parity. The
SU(3) representation for the partially allowed states can be
generated according to the following coupling scheme of the
SU(3) irreducible representation:

(0, 2) ⊗ (6, 0) = (4, 0), (1)

where (0,2) corresponds to the irreducible representation for
the internal state whereas (6,0) denotes the representation for
the relative motion of the oscillator quanta N = 6. The totally
coupled state of (4,0) corresponds to the lowest shell-model
state of 18O = 16O ⊗ ν(1s0d )2.

By combining Eq. (1) and the angular momentum coupling
of I and L, which represent the internal spin of 14C and
the orbital spin of α − 14C, respectively, we can expand the
N = 6 partially allowed state [�PA(N = 6)] in terms of the
channel wave function. In the case of zero total spin (I + L =
J = 0), which is the main subject in the present analysis, the
expansion becomes

�J=0
PA (N = 6) = 1

2
φ0,0R0(N = 6) +

√
3

2
φ2,2R2(N = 6).

(2)

Here φI,L denotes the channel wave function with the internal
spin (I ) and the relative spin (L) for α + 14C, whereas RL

means the radial HO wave function with N = 6. Thus, the
partially allowed state contains the dominant component of
the 14C(Iπ = 2+) channel (∼75%). Equation (2) represents
an example of the duality of the compact shell-model config-
uration (left-hand side) and the cluster configurations (right-
hand side) in which two structures coexist in the ground state
of nuclear systems. In a naive mean-field picture, the 18O
nucleus is a system of an 16O core plus valence-two nucleons,
but this nucleus potentially contains the cluster excitation
degrees of freedom.

B. Nuclear interaction

After constructing the partially allowed state, the total
wave function is expanded by the completely allowed states
and the partially allowed state, and the coupled-channel (CC)
equations are solved. In the CC calculations, the nuclear
potential of α and 14C is calculated from the double-folding
(DF) model [17], which is symbolically written as a function
of the α − 14C relative coordinate R,

UDF(R) =
∫∫

ρα (rα )ρ14(r14) · vDDM3Y
NN (s, ρ)drαdr14, (3)

with the relative coordinate of interacting pair nucleons (s),
which is defined by s = |r14 − rα − R|. Here rα (r14) denotes
a coordinate measured from the center of mass in α (14C).
ρα (rα ) is the density of the α particle, which reproduces
the charge form factor of the electron scattering, whereas
ρ14(r14) represents the density of 14C calculated from the
HO-type distribution. The HO density of 14C is designed to
reproduce the observed matter radius rrms = 2.30 fm, which
is obtained from the analysis of the interaction cross section
[18]. In Eq. (3), vDDM3Y

NN represents the effective nucleon-
nucleon (NN) interaction of the DDM3Y (density-dependent
Michigan three-range Yukawa) interaction [19–21]. Here we
employ the target density approximation in which the α-
particle density is neglected [22]. The DF potential with
a normalization factor of NR ∼ 0.8 nicely reproduces the
angular distribution of the elastic scattering [15].

The DF potential in Eq. (3) with the normalization factor of
NR ∼ 0.8 is used for the ground channel of α + 14C(0+), but
we assume the same density distribution (and DF potential) in
the excited channel of α + 14C(2+) for simplicity. The cou-
pling potential of 14C(0+) → 14C(2+) is constructed by the
differential function of Eq. (3) with the strength of −0.2 fm.
Above the α-decay threshold, the ABC [23–25] is applied
to identify the resonance parameters, such as the resonance
energy ER and the decay width �R.

III. RESULTS

The calculated energy spectra for the Jπ = 0+ state is
shown in Fig. 1. The OCM calculation reproduces the binding
energy of the ground 0+

1 state (−6.2 MeV) with respect to
the α-decay threshold (dashed line). The root-mean-squared
radius of the theoretical 0+

1 state is rrms = 2.56 fm, which is
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FIG. 1. Energy spectra in 18O = α + 14C. The left and right lev-
els are the results of the theoretical calculation and the experimental
observations, respectively. The dashed line shows the α threshold,
whereas the shades attached to the resonant levels represent the decay
width.

obtained from the empirical value of rrms = 1.36 fm for the
α particle and the radius of the employed 14C density rrms =
2.30 fm. The calculated radius nicely reproduces the observed
radius, such as rrms = 2.59 fm [26]. The first excited 0+

2 state
appears at the binding energy of E = −1.95 MeV, which cor-
responds to the observed 0+

2 level (−2.60 MeV). The 0+
2 state

is difficult to reproduce in the previous shell-model calcula-
tion [11] and the extended three-body calculation [12], which
employ the 16O core plus two neutrons. The bound 0+

1 and 0+
2

states are reproduced, but the 0+
3 state is missing in the present

calculation. The reason why 0+
3 is missing is discussed later.

On the contrary, in the unbound region, two resonant 0+
states are obtained in the present calculation: the resonances
at ER ∼ 2.5 MeV and at ER = 9.3 MeV. We label the former
and latter resonances the 0+

4 and 0+
5 states, respectively,

because of missing 0+
3 in our calculation. The 0+

4 level,
which was not obtained in the previous calculation [14],
exists around the Coulomb barrier of the α + 14Cg.s. (L = 0)
channel with a broad decay width of �R ∼ 2.5 MeV. Since
the width of the 0+

4 state is broad, the precise evaluation
of the resonance parameters is a little difficult in the ABC
method. Although the values of ER and �R calculated for
0+

4 are rough estimates, a broad 0+ resonance is observed
in the same energy region of the α + 14C elastic scattering,
which is plotted by 0+ with a shade above the α threshold
(Experiment) [27]; the observed energy and width are ER =
3.7 MeV (Eex = 9.9 MeV) and �R = 3.2 MeV, respectively.
The energy and the width in theory seem to be consistent with
those in the experimental observation, although the energies
in theory are little underestimated in comparison to the exper-
imental energy.

Concerning the 0+ resonance, there is another observa-
tion of the 0+ state around the same energy region (ER =
1.57 MeV) in the multinucleon transfer reaction [28], but its
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FIG. 2. Excitation scheme of 0+ levels in α + 14C. The hori-
zontal dashed line shows the α threshold. The number attached to
the individual levels means the population of the dominant channel
component. The dotted arrows with the boxes represent the excitation
schemes, such as the cluster relative excitation (Cl. Ex.) and the
rearrangement (Rearrange.). See the text for details.

decay width is about 10 keV, which is much sharper than
the calculated width. We have artificially varied the computa-
tional parameters, but it is difficult to reproduce the resonance
with a width of 10 keV. Thus, we consider that the sharp 0+
resonance in the multinucleon transfer does not correspond
to the calculated 0+

4 state, which is obtained by the present
α + 14C model.

The picture of the excitation scheme is summarized in
Fig. 2. Basically, the ground 0+

1 state has a compact struc-
ture of the shell-model state with 16O ⊗ ν(1s0d )2, but it is
equivalent to the partially allowed state of N = 6 in the cluster
basis according to Eq. (2). The main component of the ground
0+

1 state is not the α + 14Cg.s. channel but the α + 14C(2+)
channel (65%) because of Pauli’s exclusion principle.

The rearrangement of the mixing components occurs in
the 0+

2 state; specifically, the main component changes from
the α + 14C(2+) channel to the α + 14Cg.s. channel (76%),
and these channels have one higher nodal structure in their
relative wave function (N = 8). Since the 0+

2 state is not such
a weakly bound state (binding energy of ∼ − 2 MeV), the tail
of the α − 14C relative wave function is not so extended in
comparison to the usual cluster states, which appear at the
energy close to the α-decay threshold [6]. According to the
previous analysis in Ref. [29], the 0+

2 state is identified as a
four-particle–two-hole state, and this identification seems to
be consistent with the cluster wave function with one higher
nodal and shrunken tail structure.

Although the energy levels in the theory seem to agree with
those in the experiments, the correspondence of the theory
and the experiment is not perfect. This incompleteness is due

054318-3



M. NAKAO, H. UMEHARA, S. EBATA, AND M. ITO PHYSICAL REVIEW C 98, 054318 (2018)

to the lack of the ν(1s0d )2 configuration in 18O = 16O +
N + N . For example, the 0+

3 state is missing in the present
α + 14C OCM calculation because the 0+

3 state is considered
to have the pure 16O ⊗ ν(1s1/2)2 configuration [12,29], which
is completely out of the model space in the α + 14C cluster
configuration. In fact, the intrinsic configuration of 0+

3 is
identified as (1s1/2)2 in Ref. [29], and it can be described by
the 16O + N + N model [11,12]. These results mean that the
energy positions of 0+

2 and 0+
4 are affected by the coupling

with the ν(1s0d )2 configurations. Thus, the level assignment
discussed in Fig. 1 may not be unique. Furthermore, the
ν(1s0d )2 configuration generates the higher 0+ resonance
with ν(0d3/2)2, which will appear around the energy position
of 0+

5 as shown in the previous OCM calculation [14]. Thus,
the inclusion of ν(1s0d )2 is significant in the complete level
assignment of the theoretical calculation and the experimental
observation.

Above the α threshold, two resonant states are realized as a
result of the relative excitations from the bound two 0+ states.
The lower resonance 0+

4 is generated by the relative excitation
of α − 14Cg.s. from the 0+

2 state, which keeps the dominance
of the α + 14Cg.s. channel (94%), whereas the higher reso-
nance 0+

5 , which has the dominance of α + 14C(2+) (57%),
corresponds to the direct excitation from the ground 0+

1 state.
The relative wave functions of these resonant states have the
one higher node in comparison to the respective bound states,
and their tails are extended to the outer region because of
the resonant feature embedded in the unbound continua. In
other words, the resonant states have the dilute and extended
α-cluster structures in comparison to the bound states. In
this situation, the effect of the Coulomb interaction for the
resonant states (0+

4 and 0+
5 ) is expected to be weaker than the

effect for the bound states (0+
1 and 0+

2 ) in which the relative
wave functions are confined in the region of the nuclear
interaction.

Therefore, it is interesting to analyze the Coulomb shift
in connection to the development of the α-cluster degrees
of freedom. To investigate the Coulomb effect more clearly,
we have extended the OCM calculation to the mirror system
18Ne = α + 14O. In the calculation of 18Ne, we have just
replaced the charge in the Coulomb interaction, which is
assumed to be the uniform sphere and slightly modified the
nuclear interaction so as to reproduce the total binding energy
with respect to the α threshold. The excitation energies and
the decay widths in 18O and 18Ne are listed in Table I. On

TABLE I. Excitation energy (Eex) and decay width (�R) in
18O and 18Ne systems. The rightmost and middle columns show
the results of 18Ne and 18O, respectively. B.S. and Res. are the
abbreviations of bound state and resonant state, respectively.

18O 18Ne

Eex �R Eex �R

0+
2 (B.S.) 4.3 4.3

0+
4 (Res.) ∼8.7 ∼2.5 ∼8.2 ∼3.2

0+
5 (Res.) 15.6 1.1 15.1 1.3

TABLE II. Energy shifts in the 18O-18Ne systems. The left-
most column shows the energy levels. In the middle and rightmost
columns, the energy shift of �ECoul with respect to the α threshold
and the shift of excitation energy �Eex, respectively, are shown. See
the text for details.

�ECoul �Eex

Expt. Th. Expt. Th.

0+
1 (B.S.) 1.12 1.12 0 0

0+
2 (B.S.) 1.06 1.14 0.06 0.03

0+
4 (Res.) 0.53 0.58

0+
5 (Res.) 0.65 0.46

the proton-rich side (18Ne), the decay width for the 0+
4 and

0+
5 states becomes broader due to the increase in the Coulomb

repulsion. In addition, the excitation energy of the resonances
in the proton-rich 18Ne is more reduced than that in the
neutron-rich 18O.

The energy shifts of 18O-18Ne are summarized in Table II.
In this table, �ECoul represents the magnitude of the energy
difference �ECoul = |ER(18O) − ER(18Ne)| with respect to
the α-decay threshold. As for the two bound states 0+

1 and
0+

2 , the experimental (Expt.) energy shifts are reproduced
by the theoretical (Th.) calculation, which amounts to about
1.1 MeV. The �ECoul for the unbound resonances 0+

4 and
0+

5 are reduced to about half of the bound state, just about
0.6 MeV. This reduction is originated from the extended and
dilute structure of the α − 14C relative wave function. In the
resonant states with the developed α-cluster structure, the
relative wave functions have the main amplitude outside of
the nuclear interaction region and can escape from the central
part of the Coulomb interaction, whereas, in the bound state,
the relative wave functions are confined inside of the nuclear
interaction region and strongly feel the Coulomb interaction.
Thus, the development of the α-cluster structures directly
leads to the reduced Coulomb interaction.

This reduced energy shift with respect to the α threshold
just corresponds to the reduction of the excitation energy,
which is measured from the ground 0+

1 state. In Table II, the
shift of the excitation energies is shown by �Eex, which is de-
fined by �Eex = |Eex(18O) − Eex(18Ne)| with the excitation
energy of Eex = E(0+

ex) − E(0+
1 ). �Eex is almost negligible

for the bound 0+
2 state, but it is enhanced to be about 0.5 MeV

for the unbound resonant 0+
4 and 0+

5 states. The shift of the
excitation energy corresponds to the so-called TES, which
is originally discussed in the single-particle picture of 17O =
16O + N and 17F = 16O + P [2]. In the case of 17O-17F, the
nucleon 1s1/2 state, existing just below the nucleon threshold,
reveals the lower shift in the excitation energy because the
extended 1s1/2 orbital state can avoid the Coulomb repulsion.

In the previous studies, the electric and isoscalar monopole
transitions are discussed as the useful probes to identify the
α-cluster formation [30]. In a naive mean-field picture, the
monopole transition, such as 0+

1 → 0ex, requires the 2h̄ω
jump in the single-particle orbit. Since the 2h̄ω excitation is
about 30–40 MeV in normal light nuclei, the single-particle
strength must appear above the 30 MeV excitation energy.
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TABLE III. Strength of electric monopole transitions in 18O =
α + 14C. All the strengths are shown in units of fm2.

Theory Expt. [33]

0+
2 (B.S.) 4.4 6.0

0+
4 (Res.) 2.0

0+
5 (Res.) 6.3

However, the strong monopole transition, which is compa-
rable to the single-particle strength, appears below about
15 MeV, and this low-lying monopole strength can be natu-
rally explained by the formation of the cluster structure [31].
In particular, the monopole transition is the most enhanced of
all the excited states if the final state corresponds to the direct
cluster excitation from the ground 0+

1 state [32].
We check the strength of the electric monopole (E0)

transition of 0+
1 → 0+

f and compare the existing experimental
data [33]. Here we calculate the contribution from the α − 14C
relative part to the E0 transition (without an elementary
charge),

M̂rel(E0) = 42 × 6 + 142 × 2

182
R2, (4)

where R denotes the α − 14C radial coordinate [34]. Equation
(4) is valid in the assumption of the common distribution
of the proton and neutron densities. In Table III, the matrix
elements of M̂rel(E0) are summarized.

The calculated E0 strength for 0+
1 → 0+

2 is 4.4 fm2, and
this value is almost the same as the experimental strength,
such as 6.0 fm2 measured from π decay [33]. The single-
particle strength [ms.p.(E0)] for the transition of 0p →
1p is about 4.2 fm2, which is evaluated by ms.p.(E0) =√

5/8ν2 with ν = 0.187 fm−2 [30]. Therefore, all the excited
states have the strength comparable to the single-particle
strength. This is consistent with the previous studies about
the monopole transition [30,31]. In particular, the E0 strength
for 0+

1 → 0+
5 is the most enhanced, which reaches 1.5 times

larger than the single-particle strength. This is because the
0+

5 state corresponds to the direct cluster excitation from the
ground 0+

1 state as shown in Fig. 2, and the relative wave
functions in the 0+

1 state multiplied by R2 have a good overlap
with the wave function of the final 0+

5 state.

IV. SUMMARY

To summarize, we have investigated the Jπ = 0+ energy
spectra in 18O = α + 14C by applying the OCM under the
ABC. The OCM + ABC calculation for 18O nicely reproduces
the observed Jπ = 0+ levels from the bound to the unbound
region except for the 0+

3 state, which is considered to be
out of the α-cluster model space. The present result means
that a large part of the Jπ = 0+ levels below Eex = 15 MeV
can be described by the excitation of the α-cluster degrees
of freedom; specifically, the 0+

2 state is generated by the
rearrangement of the cluster mixture from the ground 0+

1
state, whereas two resonances are realized as the excitation of
the cluster relative motion from the bound 0+

1 and 0+
2 states.

Although the α-cluster degree of freedom plays an important
role for the 0+ level formation, it is still significant to include
the two-neutron ν(1s0d )2 configuration around the 16O core
in the complete analysis of the 0+ level scheme. The inclusion
of the two-neutron configuration is now under progress.

The OCM + ABC calculation is also extended to 18Ne =
α + 14O, and the Coulomb shift for the mirror systems of
18O-18Ne is investigated. The Coulomb shift, which is mea-
sured from the α-decay threshold, is large for the bound 0+

1
and 0+

2 states, but it is reduced to be half for the 0+
4 and 0+

5
states. This reduction of the Coulomb shift is originated from
the extended and dilute structure in the α − 14C (14O) relative
wave function, which involves a large mixture of S-wave
components. The reduced Coulomb shift in the cluster states
corresponds to the compression of the excitation energy in the
proton-rich 18Ne. The origin of this compressed energy is just
similar to the TES, which is discussed in 17O = 16O + N and
17F = 16O + P [2]. Thus, the energy compression predicted
in the cluster system should be called the “cluster TES.” We
propose that the cluster TES is a new probe to identify the
extended and dilute structure of the cluster configuration.

Furthermore, the strength of the electric monopole (E0)
transition, which is another probe to identify the cluster
excitation, is calculated. In accordance with the previous
studies [30,31], all the energy levels have the E0 strength
comparable to the single-particle excitation, which requires
much higher excitation energy than the energy of the cluster
excitation. In particular, the strength going to the 0+

5 state is
the most enhanced of all the excited states because this state
corresponds to the direct cluster excitation from the ground
state [32]. Therefore, we can clearly identify evidence of the
cluster excitation from the ground state by combining the
cluster TES and the monopole strength: the lower shift of the
excitation energy and the enhanced monopole strength.

We have focused on the 0+ states to pin down the sup-
pressed Coulomb shift induced by the α clustering. However,
there are other states with finite spins in 18O, which are
considered to have the α-cluster structure. The Coulomb shift
should be analyzed in such a finite spin state. In particular,
the analysis of the 1− states is interesting because the recent
works have predicted that the isoscalar dipole (IS1) transition
of 0+

1 → 1− is enhanced by the development of the α-cluster
structure [35,36]. The combined analysis of the Coulomb shift
and the IS1 transition is an interesting subject.

The present calculation strongly suggests that not only the
analysis of the neutron-rich systems, but also the analysis
of the proton-rich ones is quite useful in the experimental
probe for the cluster degrees of freedom. Unfortunately, the
experimental information relevant to the unbound region is
insufficient in the proton-rich system of 18Ne, although the
candidates of 0+ resonances are suggested around Eex ∼
8 MeV in 14O(α, p) 17F [37], which seems to be consistent
with the present calculation. Thus, the experimental investiga-
tion of the unbound resonance in 18Ne is an important subject
in future experiments.

Furthermore, the present result about the cluster TES
is also possible to occur in more general N �= Z systems.
For example, it is interesting to consider the 4N nuclear
system with two extra nucleons, such as 10Be-10C, 14C-14O,
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and 22Ne-22Mg. In particular, the reduction of the Coulomb
shift will be prominent in the exotic cluster states, which
have dilute gaslike structures [38] or linear chain structures
[39] because these exotic structures involve the large spatial
extension. In advancing the study of the cluster TES, it is
essential to investigate the level structure, especially the un-
bound resonances, experimentally. The experimental analysis
of the resonant structures on the proton-rich side is strongly
desired.
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