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Chaos and regularity in the spectra of the low-lying dipole excitations of **3>34Cr
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Recent high-resolution nuclear resonance fluorescence experiments performed on the even-even Chromium
isotopes *2%*Cr have lead to the identification (energy, spin, parity, and transition strength) of altogether 108
nuclear levels of spin J = 1 (70 levels with J™ = 1~ and 38 with J™ = 17) at excitation energies E, ranging
roughly from 4.5 to 9.7 MeV. In this region just above the orbital magnetic-dipole scissors mode, sizable spin-flip
magnetic-dipole strength as well as electric-dipole strength belonging to the pygmy dipole resonance (PDR)
is expected. Using statistical measures for short- and long-range correlations, we perform an analysis of the
fluctuation properties in the subspectra of the energy levels and also of the distributions of their respective
dipole transition strengths. We compare the results with those of a random matrix ensemble interpolating
between Poisson statistics generally describing the fluctuation properties in the energy spectra of many-body
systems with collective, i.e., regular motion of the particles and the Gaussian orthogonal ensemble (GOE) for
complex (i.e., chaotic) behavior. This comparison reveals that the spectral properties of the 17 states are close
to the GOE results while those of the 1~ states are closer to Poisson. This is confirmed by an analysis of the
spectral fluctuations based on the method of Bayesian inference and corroborated by large-scale shell-model and
quasiparticle-phonon model calculations, respectively. The nearly Poissonian behavior of the 1~ levels suggests

a sizable collectivity of the PDR indeed.
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I. INTRODUCTION

Rich information on nuclear structure from recent high-
resolution nuclear resonance fluorescence experiments [1-3]
on the three stable isotopes **>*3*Cr with proton number Z =
24 and neutron numbers N = 26, 28, and 30, respectively,
affords an excellent opportunity to investigate spectral fluctu-
ation properties of complex many-body systems in the realm
of quantum chaos. The data consist of excitation energies of
J™ =17 and 17 states and of the respective electric B(E1)
and magnetic B(M1) dipole transition strengths. For 32Cr
the data were obtained at the Superconducting Darmstadt
Electron Linear Accelerator (S-DALINAC) and have already
been published in Ref. [1] while those for 3*3*Cr stem from
recent measurements [2,3] at the S-DALINAC and the high-
intensity y-ray source (HIyS) of the Triangle Universities
Nuclear Laboratory (TUNL). Some experimental details rele-
vant for the particular analysis discussed in the present article
are given in Table 1. As listed there, dipole excitations were
observed at excitation energies from as low as 4.5 MeV up

“Dietz@lzu.edu.cn

"brown@nscl.msu.edu
!Pietralla@ikp.tu-darmstadt.de

$ponomare @theorie.ikp.physik.tu-darmstadt.de
IRichter@ikp.tu-darmstadt.de

2469-9985/2018/98(5)/054314(8)

054314-1

to 9.7 MeV. In this region, just above the scissors mode,
which consists of orbital M1 strength, sizable spin-flip M1
strength from 1 f7,, — 1f5,, and 2p3,» — 2p; > shell-model
excitations is expected [4]. This is, however, also the region of
low-energy E1 strength commonly termed the pygmy dipole
resonance (PDR) [5].

Figures 1 and 2 present the experimental B(E1) and
B(M1) transition strengths for °%3%34Cr together with
quasiparticle-phonon and shell-model calculations to be dis-
cussed below. It is not the aim to enter into a thorough
discussions of the underlying nuclear structure of the partic-
ular M1 and E1 excitations observed, for which predictions
from a whole variety of nuclear models exist—often with
conflicting conclusions, in particular for the interpretation of
the PDR. We rather suggest following an alternative approach
based on random matrix theory (RMT) which allows us to
analyze the spectral properties of the excited J* = 1~ and
1" states within the same region of excitation energy to draw
conclusions about their single-particle or collective character.
Furthermore, this approach renders possible the comparison
of the experimental data with those obtained from large-scale
shell-model and quasiparticle-phonon model calculations. To
our knowledge, this particular RMT analysis has not been
done before and reveals interesting results with respect to the
nature of the PDR. Briefly, the fluctuation properties in the
spectra of generic quantum systems with classically integrable
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TABLE I. The number of energy levels N with spin J = 1 and
positive (wr = +), respectively, negative (7 = —) parity, measured
in %Cr, 32Cr, and **Cr, the corresponding energy ranges and the
smallest experimentally observed transition strength Biy.

Nucleus Parity N Energy range Biin

¢y - 17 6.3-9.4 MeV 0.00046 ¢ fm?
Ocr + 12 7.6-9.7 MeV 0.04500 12
S2Cr - 16 6.4-9.2 MeV 0.00050 ¢? fm?
S2Cr + 9 6.8-9.4 MeV 0.03800 w2
SCr - 37 6.6-9.7 MeV 0.00076 ¢2 fm?
*Cr + 17 4.5-9.6 MeV 0.00059 12

dynamics are predicted to coincide with those of Poissonian
random numbers [6]. In contrast, those of time-reversal in-
variant chaotic systems generally coincide with the spectral
properties of the eigenvalues of real-symmetric matrices with
Gaussian distributed random entries from the Gaussian or-
thogonal ensemble (GOE) [7-12], in accordance with the
Bohigas—Giannoni—Schmit conjecture [13]. Similar features
are observed in the energy spectra of nuclear many-particle
systems even though there is no obvious classical analog
[14—16]. If the motion of the nucleons is collective, their
spectral properties coincide with those of random Poissonian
numbers, whereas they are well described by the GOE if
it is sufficiently complex [16—19]. There are various semi-
classical [20-23] and RMT approaches [16,24-26] to ob-
tain information on the chaoticity vs regularity in a nu-
clear many-body system. We analyzed spectral fluctuation
properties of **3234Cr by proceeding similarly to Ref. [27],
and the distributions of the transition strengths by following
Ref. [28].

II. ANALYSIS OF THE EXPERIMENTAL DATA

First, we present results on the fluctuation properties
in the energy spectra of the low-lying electric (E'1) and
magnetic (M1) dipole excitations in the nuclei °Cr, 3Cr,
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FIG. 1. Transition strength B(E1) for the 1~ states. (a)—(c) Ex-
perimentally determined strengths [1-3]. (d)—(f) Calculated strengths
as described in the main text. The black dashed lines indicate the
experimental threshold for detectability.
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FIG. 2. Transition strength B(M1) for the 17 states. (a)—(c) Ex-
perimentally determined strengths [1-3]. (d)—(f) Calculated strengths
as described in the main text. The black dashed lines indicate the
experimental threshold for detectability.

and >*Cr corresponding to angular momentum J = 1 with
negative (m = —) and positive (r = +) parity, respectively.
The numbers of observed excitations and the energy ranges
are listed in Table I. To obtain information on the chaotic-
ity of these nuclear many-body systems we evaluated for
each sequence separately [29] the nearest-neighbor spacing
distribution (NNSD) P(s), the number variance X2, the
Dyson—-Mehta Aj statistics [10—12] which provides the least-
square deviation of the integrated spectral density from the
best-fit straight line, the distribution P(r) of the ratios of
consecutive level spacings [26,30,31], and the distributions
of the transition strengths B(E1) and B(M 1) [28]. Since the
spacing ratios are dimensionless, no unfolding of the energy
levels is needed for the determination of P(r). This can be of
great advantage, especially when no analytical expression for
the smooth part of the integrated spectral density is available.

The energy levels E; in each sequence were unfolded
by replacing them by the smooth part ¢; = N(E;) of the
integrated spectral density, yielding a mean spacing of unity,
(s) = 1. For this we fit an empirical formula [32,33], N(E) =
exp[(E — Ey)/T]+ Ny with T, Ey, and Ny being the fit
parameters to N(E;). It was applied hitherto to low-lying
nuclear levels in Ref. [34].

In Figs. 3(a) and 3(b) we show the resulting NNSD
(histograms) for the negative and positive parity states, re-
spectively, in >*Cr. Both are compared with the NNSD of
Poissonian random numbers (dashed lines) and of eigenvalues
drawn from the GOE (full lines). While the 17 states exhibit
a behavior which is close to GOE, the NNSD of the 1~
states is closer to Poisson. To scrutinize these results, we also
computed the statistical measures for the other two nuclei
(see Figs. 4 and 5) and then performed ensemble averages,
separately, for the positive- and negative-parity states. The re-
sults are summarized in Figs. 6 and 7, respectively. Although
we are dealing with three nuclei of different structure—°Cr
has two holes in the N = 28 shell, >>Cr is semimagic, and
34Cr has two neutrons above the closed shell—their statistical
properties are similar.
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FIG. 3. Nearest-neighbor spacing distributions of the experimen-
tal (a) J™ =1~ and (b) J™ = 17 energy levels of *Cr (histograms)
in comparison with the Poisson (dashed lines) and the GOE (full line)
results.

Deviations of %2 from GOE for L > 1 in Fig. 6 and from
Poisson in Fig. 7 may be attributed to the short lengths of the
level sequences (see Table I). Another possible explanation
might be the incompleteness of the spectra. Analytical expres-
sions were derived for such spectra on the basis of the results
for the Gaussian ensembles of random matrices in Ref. [35].
The NNSD of a system exhibiting GOE behavior in the
complete spectrum is expressed in terms of a sum over the
(n + 1)st nearest-neighbor spacing distributions of the GOE
with n =1,2,..., which depend on s/¢ instead of the
spacing s, with ¢ denoting the fraction of detected levels.
Similarly, the %2 and Aj statistics are given in terms of the
corresponding GOE results with the argument depending
on ¢. This missing level statistics describes well the
statistical measures obtained for the 11 states for values
of ¢ corresponding to 30% of missing levels for *°Cr and
32Cr and 16% for >*Cr (see Fig. 8). Such a good agreement
was not found for the spectral properties of the 17 states.
Their comparison with missing level statistics yielded
¢ = 0.4 (see Fig. 8), which would imply 60% of missing
levels. We, furthermore, compared the spectral properties of
the 17 and 1~ states to those of a random matrix ensemble
interpolating between Poisson for A = 0 and GOE for A = 1
(see Refs. [25,27,36,37]) yielding A =0.8 and A = 0.3,
respectively (see Fig. 9), thus indicating that the behavior of
the 1~ states indeed is close to Poisson, whereas it is close
to GOE for the 17 states. At this point we would like to
emphasize that the Poissonian statistics does not originate
from weakly interacting 1 p—1h and 3p—3h states. Actually,
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FIG. 4. Spectral statistics of the experimental 1~ energy levels of
Cr, *2Cr, and >*C (up-triangles and histograms) as indicated in the
insets in comparison to the Poissonian (dashed lines) and the GOE
(full lines) results. Shown are the nearest-neighbor spacing distribu-
tion P(s), the integrated nearest-neighbor spacing distribution /(s),
the number variance X%(L), and the ratio distribution P(r).
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FIG. 5. Same as Fig. 4 for the experimental 17 energy levels of
0Cr, 32Cr, and **C as indicated in the insets.

the excitation of 3p—3h states from the nuclear ground state
through photon scattering is of higher order and therefore not
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FIG. 6. Comparison of the averaged spectral fluctuation proper-
ties of the experimental J* = 1~ energy levels of *°Cr, **Cr, and
34Cr with the Poisson (dashed lines) and the GOE (full lines) results
and those obtained from QPM calculations (red down-triangles and
dash-dotted lines).

observed in our experimental spectra. Accordingly, 3p—3h
states are not included in the theoretical analysis.

To further validate this assumption, we followed an idea
of Rosenzweig and Porter [38], and considered superimposed
spectra of positive and negative parity, respectively, composed
of those of °Cr, 3*Cr, and >*Cr. We analyzed their fluctu-
ation properties in terms of the NNSD using the method of
Bayesian inference [39] which involves a chaoticity parameter
f interpolating between Poisson (f = 0) and GOE statistics
(f = 1). For this, we first computed the spacings between
adjacent unfolded energy levels for each nucleus separately,
and then merged them according to the associated parity into

(L)

FIG. 7. Same as Fig. 6. Comparison of the results for the experi-
mental J™ = 17 energy levels with those obtained from shell-model
calculations (red down-triangles and dash-dotted lines).
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FIG. 8. Comparison of the averaged spectral fluctuation proper-
ties of the experimental 1* and 1~ energy levels of *°Cr, >2Cr, and
3Cr with the Poisson (dashed lines) and the GOE (full lines) results
and with those obtained from missing-level statistics [35] (red circles
and dash-dotted lines). Best agreement was found for a fraction of
@ = 0.75 detected ones, corresponding to 25% for the 17 states and
¢ = 0.4 corresponding to 60% missing levels for the 1~ states.

two sequences of spacings [40—42]. For the determination of
the parameter f we proceeded as described in Ref. [27]. The
resulting NNSDs for negative and positive parity are shown in
Figs. 10(a) and 10(b), respectively.

Besides the spectral fluctuation properties we also analyzed
the distributions of the transition strengths B(E1) and B(M1).
For this we proceeded as described in Ref. [28]. Accord-
ingly, we first unfolded the measured transition strengths
B; for each nucleus and parity, i.e., for B; = B(E1) and
B; = B(M1), individually by dividing them by an aver-
age value, y; = B;/Bgy,i, with By, ; = Zj B; exp[—(e; —
ej )2/81/ Zj exp[—(e; —e; )2 /8] denoting the average around
the transition strength B;. The ensemble-averaged distribu-
tions of y; are shown in Figs. 11(a) and 11(b) (full-line
histograms) for negative and positive parities, respectively.
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FIG. 9. Same as Fig. 8. Comparison with the spectral statistics
of a random matrix ensemble interpolating between Poisson (A = 0)
and GOE [25,27,36,37] (A = 1) (red down triangles and dash-dotted
lines). Best agreement was found for A = 0.8 for the 17 states and
A = 0.3 for the 1~ states.

Figures 11(c) and 11(d) show the distributions of z; =
log,o(yi). The results are compared with a truncated
Porter—Thomas distribution, which is obtained by considering
only values of y > yg, where yy denotes the minimal ob-
served transition strength. The agreement is good for the 1
states whereas the deviations from Porter—Thomas behavior
observed for the 1~ states may be attributed to a nearly Poisso-
nian behavior [28] in accordance with the spectral fluctuation
properties exhibited by the corresponding energy levels.

III. ANALYSIS OF SPECTRA FROM NUCLEAR
MODEL CALCULATIONS

The results for the fluctuation properties of the energy
levels and transition strengths were also compared with model
calculations. We performed shell-model calculations by em-
ploying effective KB3G and GPFXIA interactions for the
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FIG. 10. Nearest-neighbor spacing distribution of the experi-
mental energy levels with (a) J” =1~ and (b) J* = 1" in compar-
ison with the NNSDs of the calculated ones for (¢c) J* = 1~ and
(d) J™ = 17 obtained by taking into account only those levels with
transition strengths above the experimental minimum value. They
are compared with the Poisson (dashed line) and the GOE (full line)
distributions. The dash-dotted curves in red were determined with the
method of Bayesian inference. The resulting values for the chaoticity
parameter f are given in the insets.

description of the spectral properties of the J™ = 1% states
and quasiparticle-phonon model (QPM) calculations for the
J7 = 17 states. The calculated individual transition strengths
are shown in Figs. 1 and 2 and are compared there to the
respective experimental ones. The center of gravity is about
1 MeV lower than the experimental one for the 17 states while
it is roughly 2 MeV higher for the 1~ states.

Excitation energies and B(M1) values for the 17 states
were obtained from configuration-interaction calculations in
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FIG. 11. (a), (b) Averaged distribution of the unfolded transition
strengths y; = B;/B,,,; and of (c), (d) z; = log,,(y;) of the exper-
imental results (histograms) for the (a), (¢) J* =1~ and (b), (d)
J™ = 17 states in comparison with a truncated Porter—Thomas distri-

bution P(y) with y > y, and y, denoting the smallest experimentally
observed transition strength (dashed and dash-dotted lines).
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FIG. 12. Averaged spectral statistics of the 1* and 1~ energy
levels obtained from shell-model calculations using the effective
KB3G interaction and from QPM calculations (red dash-dotted lines
and histograms), respectively. Here, the number of energy levels
taken into account for each nucleus was chosen to be similar to those
of the corresponding experimental energy levels.

the pf model space with the shell-model code NUSHELLX [43]
employing the effective Hamiltonians KB3G [44] and
GPFX1A [45]. The B(M1) values were reduced by a fac-
tor of 0.5 to take into account the quenching of observed
M1 strength in *Ca compared with these types of calcu-
lation [46]. Excitation energies and B(E1) values for the
1~ states were calculated based on the QPM [47] employ-
ing the Woods—Saxon potential with parameters from global
parametrization as a mean field. All single-particle levels from
the bottom up to narrow quasibound levels in the continuum
are accounted for. To describe excited states of nuclei, the
model Hamiltonian is diagonalized in two steps. First, the
1p—1h excitations are projected on quasibosonic 1-phonon
configurations of different multipolarity by solving equations
of the quasiparticle random-phase approximation with the
residual interaction in separable form. Then, excited states
are described by wave functions made up of interacting
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FIG. 13. (a), (b) Averaged distribution of the unfolded transition
strengths y; = B;/B,,,; and (c), (d) z; = log,,(y;) obtained from
QPM and shell-model calculations including the KB3G interaction
(histograms) for the (a), (¢c) J* = 17 and (b), (d) J™ = 1T states,
respectively, in comparison with the Porter—Thomas distribution
(dashed lines).

one- and multiphonon configurations. Their energies and in-
ternal fermion structure are obtained by the second diagonal-
ization of the model Hamiltonian on the set of these states.
For details, see Refs. [48,49]. In the calculations presented
below, the basis contains phonons of multipolarities from
1* to 7*. Only two-phonon configurations with excitation
energies below 20 MeV have been taken into account.

The results for the spectral fluctuation properties and the
distributions of the transition strengths are shown in Figs. 12
and 13. Here, the numbers of levels taken into account were
chosen similar to those of the experimental levels. For the
1t case the agreement with GOE is very good, while for the
1~ states small deviations towards Poisson are observed. For
the description of the experimental data in each sequence of
calculated levels only those were taken into account for which
the transition strength was larger or equal to the smallest
experimentally observed ones. For the 17 states the number

of the thus removed energy levels was similar to that of the
missing levels estimated based on the missing-level statistics
for the experimental ones. In the case of the 1~ states, smaller
fractions of energy levels needed to be removed [50]. This
corroborates our assumption that the deviations of the spectral
properties of the corresponding experimental data may not
be attributed to a large number of missing levels, but are
indeed Poissonian like. The results deduced from the model
calculations are shown in Figs. 6-10.

IV. CONCLUSION

We have investigated the fluctuation properties in the
energy spectra of J”™ =17 and J™ = 1% states in the
three medium-heavy nuclei >*°*>*Cr between about 4.5 and
9.7 MeV within the RMT approach. The results for the 17
states show evidence for correlations between the unfolded
levels which are similar to GOE behavior. The situation is
different for the 1~ states which lack level correlations and,
thus, behave like Poissonian random numbers. These findings
are corroborated by large-scale shell-model and quasiparticle-
phonon model calculations, respectively. The dominantly reg-
ular behavior of the 1~ states is consistent with an interpre-
tation of the PDR within an extreme semiclassical picture in
which the excess neutrons forming a skin around a core os-
cillate collectively in dipole-like motion against the latter [5].
In passing we note further that the method of using RMT to
draw this conclusion has also been successfully applied before
to the fine structure of orbital magnetic-dipole excitations
belonging to the scissors mode [51]. The corresponding semi-
classical picture is the rotational motion of two ellipsoids of
all neutrons and protons, respectively, performing small-angle
oscillations against each other [4].
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