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Generator-coordinate reference states for spectra and 0νββ decay
in the in-medium similarity renormalization group
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We use a reference state based on symmetry-restored states from deformed mean-field or generator-
coordinate-method (GCM) calculations in conjunction with the in-medium similarity-renormalization group
(IMSRG) to compute spectra and matrix elements for neutrinoless double-beta (0νββ) decay. Because the decay
involves ground states from two nuclei, we use evolved operators from the IMSRG in one nucleus in a subsequent
GCM calculation in the other. We benchmark the resulting IMSRG+GCM method against complete shell-model
diagonalization for both the energies of low-lying states in 48Ca and 48Ti and the 0νββ matrix element for the
decay of 48Ca, all in a single valence shell. Our approach produces better spectra than either the IMSRG with a
spherical-mean-field reference or GCM calculations with unevolved operators. For the 0νββ matrix element the
improvement is slight.
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I. INTRODUCTION

The search for neutrinoless double-beta (0νββ) decay is
an important effort in modern nuclear and particle physics,
in part because it offers the only real hope of determining
whether neutrinos are Majorana particles [1,2]. The rate of
decay, however, depends on nuclear matrix elements that
must be accurately calculated to allow experimentalists to
plan efficiently and interpret results. At present, the matrix
elements predicted by various nuclear models [3–15] differ
by factors of up to 3 [16]. Theorists have worked hard to
identify the shortcomings of the models and improve them
accordingly. Ultimately, however, we will need fully ab initio
calculations with controlled uncertainty.

Ab initio methods have improved rapidly in recent years
[17–24]. Most applications, however, are still in relatively
light nuclei near closed shells. The nuclei used in ββ ex-
periments, among them 76Ge, 82Se, 130Te, 100Mo, 136Xe,
and 150Nd, are typically heavier and often far from closed
shells in protons, neutrons, or both. Among the existing
ab initio methods, the in-medium similarity renormalization
group (IMSRG) method [24–26] is particularly suited to an
extension to such mid-shell nuclei. One scheme for making
the extension involves choosing the generators of the RG
flow to decouple a shell-model space from the rest of the full

many-body Hilbert space [27–30]. Although the framework,
called the valence-space IMSRG, has been used to describe
nuclei as heavy as tin [31], it suffers from the use of a closed-
shell reference state or a spherical reference ensemble, both of
which omit collective correlations [32]. Such correlations are
difficult to capture in an approximate SRG flow that simplifies
induced many-body operators.

In the IMSRG as currently practiced, induced A-body
operators with A > 2 are included only approximately by
retaining just their normal-ordered one- and two-body pieces.
Collective effects will be better represented if they are ex-
plicitly built into the reference state. To use a more general
reference state, one must extend the procedure of normal
ordering. References [33–35] show how to define a normal
ordering that applies to any reference state; the work of
Refs. [36,37] made use of the scheme with a number-projected
spherical Hatree-Fock-Bogoliubov reference state (which ex-
plicitly includes pairing correlations) to apply the IMSRG to
spherical open-shell isotopes. More recently, the authors of
Ref. [38] used a no-core shell-model reference state in just a
few shells (for lighter nuclei). They showed that the IMSRG
flow with respect to that reference generates a Hamiltonian for
subsequent calculations in the same few shells that effectively
incorporates the physics from many higher shells.
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In this paper, we generalize the reference state even further,
not only by including angular-momentum-projected Hartree-
Fock-Bogoliubov (HFB) states with deformation, but also by
using the generator-coordinate method (GCM) to mix many
such states, so that the IMSRG can be applied to essentially
any nucleus. The GCM is flexible enough to include in
the reference both the “static” correlations associated with
collectivity—superfluidity and deformation—and “dynamic”
correlations associated with shape fluctuations. The IMSRG
flow then incorporates noncollective correlations, generating
an improved Hamiltonian that we use in a second GCM cal-
culation and evolved transition operators with which to obtain
other nuclear properties. Here we focus not only on energy
spectra, but also on the 0νββ transition matrix elements,
and show how to include the effects of complicated noncol-
lective correlations in that process. We then benchmark the
method against the conventional shell model for the spectra
of 48Ca and 48Ti and the transition matrix element between
the two.

The paper is organized as follows. In Sec. II we present
the IMSRG+GCM method for computing both the energies
of low-lying states and the matrix elements for 0νββ decay,
and use 48Ca and 48Ti within a valence shell to illustrate
the method. Section III presents and discusses the results.
Section IV offers a summary and some perspective.

II. FORMALISM

In this section we present a general framework for the
IMSRG+GCM. Although we restrict our calculations to a sin-
gle shell with a phenomenological Hamiltonian here, all the
expressions we develop are more general. We will report their
application within an ab initio calculation, with interactions
from chiral effective field theory, in a separate paper.

A. The IMSRG

The basic idea of the IMSRG is to use a flow equation
to gradually decouple a chosen reference state |�〉 (or more
generally a space or ensemble) from all other states. One
defines a Hamiltonian H (s) that depends on a flow parameter
s as

Ĥ (s) = Û (s)Ĥ0Û
†(s), (1)

with Û (0) = 1, where Ĥ0 is the initial Hamiltonian and
Û (s) represents a set of continuous unitary transformations
that drive Ĥ0 to a specific form, e.g., by eliminating certain
matrix elements or minimizing its expectation value. Taking
the derivative d/ds of both sides of Eq. (1) yields the flow
equation

dĤ (s)

ds
= [η̂(s), Ĥ (s)], (2)

where we have introduced the anti-Hermitian generator of the
transformation,

η̂(s) ≡ dÛ (s)

ds
Û †(s). (3)

Supposing the Hamiltonian Ĥ—either Ĥ0 or an approximate
Ĥ (s)—is composed of one-body, two-body and three-body
terms, and writing strings of creation and annihilation opera-
tors as

A
pqr...
stu... = a†

pa†
qa

†
r . . . auatas, (4)

we have

Ĥ =
∑
pq

tpq Ap
q + 1

4

∑
pqrs

V pq
rs Apq

rs + 1

36

∑
pqrstu

W
pqr
stu A

pqr
stu . (5)

Using the generalized normal ordering of Kutzelnigg and
Mukherjee [33–35], we can normal-order Ĥ with respect to
our arbitrarily chosen reference state |�〉:

Ĥ = E +
∑
pq

f p
q

{
Ap

q

} + 1

4

∑
pqrs

�pq
rs

{
Apq

rs

}

+ 1

36

∑
pqrstu

W
pqr
stu

{
A

pqr
stu

}
. (6)

By definition, the expectation values of normal-ordered opera-
tors, indicated by {Ap...

q...}, with respect to the reference state are
zero. Thus, the normal-ordered zero-body term corresponds to
the reference-state energy E, which is given by

E = 〈�|Ĥ |�〉 =
∑
pq

tpq ρp
q + 1

4

∑
pqrs

V pq
rs ρpq

rs

+ 1

36

∑
pqrstu

W
pqr
stu ρ

pqr
stu . (7)

The normal-ordered one-body and two-body terms are

f p
q = tpq +

∑
rs

V pr
qs ρr

s + 1

4

∑
rstu

W
prs
qtu ρrs

tu , (8)

�pq
rs = V pq

rs +
∑
tu

W
pqt
rstuρ

t
u. (9)

In Eqs. (7)–(9), we have introduced the usual density matrices

ρp
q = 〈�|Ap

q |�〉, (10a)

ρpq
rs = 〈�|Apq

rs |�〉, (10b)

ρ
pqr
stu = 〈�|Apqr

stu |�〉. (10c)

Correlations within the reference state are encoded in the
corresponding irreducible density matrices (also referred to
as cumulants):

λp
q = ρp

q , (11a)

λpq
rs = ρpq

rs − A(
λp

r λq
s

) = ρpq
rs − λp

r λq
s + λp

s λq
r , (11b)

λ
pqr
stu = ρ

pqr
stu − A(

λp
s λ

qr
tu + λp

s λ
q
t λ

r
u

)
, (11c)

where the antisymmetrization operator A generates all pos-
sible permutations (each only once) of upper indices and
lower indices. For independent particle states, the two-body
irreducible density vanishes and we recover the usual factor-
ization of many-body density matrices into antisymmetrized
products of the one-body density matrix.
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To decouple |�〉, one usually chooses an appropriate gen-
erator η̂ and then solves a set of coupled ordinary differential
equations (ODEs), derived from Eq. (2), for f̂ , �̂, . . . [26,36].
Instead, however, one can solve a similar flow equation for the
unitary transformation operator Û (s),

dÛ (s)

ds
= η̂(s)Û (s), (12)

whose solution can formally be written in terms of the S-
ordered exponential

Û (s) = S exp
∫ s

0
ds ′η̂(s ′), (13)

which is shorthand for the Dyson series expansion of Û (s).
As shown first by Magnus [39,40], if certain convergence
conditions are satisfied it is possible to write Û (s) as a proper
exponential of an anti-Hermitian operator �̂(s):

Û (s) ≡ e�̂(s). (14)

Equation (12) can then be reexpressed as a flow equation
for �̂:

d�̂(s)

ds
=

∞∑
n=0

Bn

n!
[�̂(s), η̂(s)](n), (15)

where we define nested commutators as

[�̂(s), η̂(s)](0) = η̂(s), (16a)

[�̂(s), η̂(s)](n) = [�̂(s), [�̂(s), η̂(s)](n−1)], (16b)

and Bn=0,1,2,3,... are the Bernoulli numbers
{1,−1/2, 1/6, 0, . . . }. As discussed in Ref. [41], the
reformulation of the IMSRG via the Magnus expansion
has two major advantages. First, the anti-Hermiticity of
�̂ guarantees that Û (s) is unitary throughout the flow,
even when low-order numerical ODE solvers are used to
integrate Eq. (15). Second, it greatly facilitates the evaluation
of observables. In the traditional approach, we would
need to solve flow equations for each additional operator
simultaneously with Eq. (2) because of the dynamical nature
of the generator, while �̂(s) allows us to construct arbitrary
evolved operators by using the Baker-Campbell-Hausdorff
(BCH) formula:

Ô(s) = e�̂(s)Ô(0)e−�̂(s) =
∞∑

n=0

1

n!
[�̂(s), Ô(0)](n). (17)

As mentioned earlier, the IMSRG generator η̂(s) is chosen
to implement a specific decoupling. For closed-shell nuclei,
the ability to use an uncorrelated reference allows us to dis-
tinguish particle and hole states, which simplifies the formu-
lation of decoupling conditions [24,25], and the subsequent
construction of η̂(s). For correlated reference states like those
we aim to use here, this distinction is lost, and one needs to
carefully consider the proper generalization of the generator.
Here, we use the Brillouin generator, which is essentially the
gradient of the energy under a general unitary transformation

(see Appendix B and Ref. [25]):

ηp
q ≡ 〈�|[Ĥ ,

{
Ap

q

}]|�〉, (18a)

ηpq
rs ≡ 〈�|[Ĥ ,

{
Apq

rs

}]|�〉. (18b)

To implement the IMSRG flow either in the traditional
[Eq. (2)] or Magnus formulations [Eq. (15)], we need to close
the system of flow equations by truncating the operators at
a given particle rank. We adopt the IMSRG(2) approximation
and truncate Ĥ (s), η̂(s), and �̂(s), as well as all commutators,
at the normal-ordered two-body level. This is consistent with
the so-called NO2B approximation that is applied to the input
Hamiltonian in a variety of many-body approaches (see, e.g.,
[42–45]). With this choice of operator truncation, up to three-
body irreducible density matrices of the reference states ap-
pear in the Brillouin generator and the flow equations. We will
show that the irreducible three-body density in the Brillouin
generator is vital to the convergence of the IMSRG(2) flow
equations.

B. Choice of reference state

We would like to explore reference states |�〉 that incorpo-
rate collective (or “static”) correlations, such as those associ-
ated with pairing and deformation, plus fluctuations in some
of these collective quantities. To include such correlations,
we use the GCM to find an optimal linear combination of
deformed HFB states (distinguished from one another by a set
of coordinates q), projected onto states with both well-defined
neutron (N ) and proton (Z) number and angular momentum
J = 0: ∣∣�J=0

α

〉 =
∑

q

f J=0
α (q)|NZJ = 0, q〉, (19)

where α denotes a particular linear combination, and the
nonorthogonal basis states in which the GCM states are
expanded are given by

|NZJ = 0(q)〉 = P̂ N P̂ ZP̂ J=0
00 |q〉. (20)

Here, the particle-number projection operator is

P̂ τ = 1

2π

∫ 2π

0
dϕτ e

i(N̂τ −Nτ )ϕτ , (21)

with N̂τ the particle-number operator for either neutrons
(τ = n) or protons (τ = p), and the angular-momentum pro-
jection operator is

P̂ J
MK = 2J + 1

8π2

∫
d�DJ∗

MK (�)R̂(�), (22)

with DJ
MK (�) a Wigner D function. The projector P̂ J

MK

extracts from the intrinsic state |q〉 the component whose
angular momentum along the intrinsic z axis is given by K .
In the following, we restrict ourselves to axially symmetric
deformation, and thus K = 0.

We obtain the weight function f J
α (q) from the varia-

tional principle, which leads to the Hill-Wheeler-Griffin equa-
tion [46]: ∑

qb

[
H J

qa ,qb
− EJ

α N J
qa ,qb

]
f J

α (qb ) = 0. (23)
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The Hamiltonian kernel H J
q,qb

and norm kernel N J
qa ,qb

are
given by

OJ
qa,qb

= 〈NZJ (qa )|Ô|NZJ (qb )〉, (24)

with the operator Ô representing either Ĥ or 1.

C. Matrix elements for the 0νββ decay

Let us now consider the evaluation of the matrix element
for the 0νββ decay of an initial nuclear state |�I (0+

1 )〉 to a
final state |�F (0+

1 )〉,
M0ν = 〈�F (0+

1 )|Ô0ν (0)|�I (0+
1 )〉. (25)

Here, Ô0ν (0) is the bare, unevolved two-body transition oper-
ator [10,12–14] whose form is given by

Ô0ν (0) = 1

4

∑
pp′nn′

O
pp′
nn′

{
A

pp′
nn′

}
, (26)

where p, p′ and n, n′ are indices for proton and neutron states,
respectively.

In the IMSRG+GCM approach, we represent the initial
and final states as |�I/F 〉 = e−�̂I/F (s)|�I/F 〉, where the unitary
transformations capture correlations that are missing from
the GCM wave functions |�I/F 〉. One can readily show that
the GCM wave functions are solutions to the Schrödinger
equations for the evolved Hamiltonian operators,

ĤI/F (s)|�I/F 〉 = E|�I/F 〉, (27)

up to IMSRG truncation errors (cf. Refs. [24,25]).
The transition matrix element now reads

M0ν (s) = 〈�F |e�̂F (s)Ô0ν (0)e−�̂I (s)|�I 〉, (28)

and we encounter two complications. The first is that �̂F (s)
and �̂I (s) are normal-ordered with respect to different ref-
erence states; this difficulty can be overcome by re-normal-
ordering all operators with respect to a common reference.
The second, more challenging complication is that the dif-
ference between �̂I (s) and �̂F (s) prevents us from using a
straightforward BCH expansion to evaluate the matrix ele-
ment. To proceed, we note that we can rewrite Eq. (28) either
as

M0ν (s) = 〈�F |e�̂F (s)e−�̂I (s)e�̂I (s)Ô0ν (0)e−�̂I (s)|�I 〉
= 〈�F |e�̂F (s)e−�̂I (s)Ô0ν

I (s)|�I 〉 (29)

or

M0ν (s) = 〈�F |Ô0ν
F (s)e�̂F (s)e−�̂I (s)|�I 〉 (30)

with Ô0ν
I/F (s) = e�̂I/F Ô0νe−�̂I/F . Inspecting the unitary trans-

formations acting on the initial GCM wave function in the
previous equation, we define

|�I 〉 ≡ e�̂F (s)e−�̂I (s)|�I 〉 = e�̂F (s)|�I 〉, (31)

so that we have the unitary transformation for the final nucleus
acting on an eigenstate of the initial nucleus. An analogous
definition for the final nucleus results from Eq. (29):

|�F 〉 ≡ e�̂I (s)e−�̂F (s)|�F 〉 = e�̂I (s)|�F 〉. (32)

Using these newly defined states, we set up two schemes
for evaluating the transition matrix element:

PI: M0ν = 〈�F |e�̂I Ô0νe−�̂I |�I 〉, (33)

PF: M0ν = 〈�F |e�̂F Ô0νe−�̂F |�I 〉. (34)

More explicitly, the procedures are as follows. We begin with
a GCM calculation for the ground state of either the initial
nucleus (in procedure PI) or the final nucleus (in procedure
PF) to obtain a reference state, and solve the flow equation to
obtain the corresponding unitary transformation operator e�̂I

or e�̂F . We then use the unitary transformation to generate
the evolved Hamiltonian ĤI/F (s) and decay operator Ô0ν

I/F (s).
Finally, we diagonalize the evolved Hamiltonian, approxi-
mately, in the other nucleus—the final nucleus in PI and
the initial nucleus in PF—to obtain the barred state |�F 〉 or
|�I 〉. This second diagonalization—another GCM calculation
in our case—would provide an exact result if it and the flow
were carried out without approximation. Since the initial and
final states are (approximate) eigenvectors of the same Hamil-
tonian, we can simply sandwich the corresponding evolved
0νββ operator between those states, as in Eqs. (33) or (34),
to compute M0ν . If we want, we can also use the evolved
Hamiltonian to recompute the ground state of the first nucleus,
the one for which we solved the flow equations. We will
show shortly that both the energies of low-lying states and
the matrix elements M0ν can be improved in this way.

In either of the procedures above, one must use the BCH
expansion (17) to transform the charge-changing operator
(26). In the present work, we apply the NO2B approximation
to each operator appearing in the BCH series, including gen-
eral nested commutators [�̂, Ô0ν](n), in the spirit of Ref. [41].
Dropping the flow-parameter dependence for brevity, we see
that the first commutator in the series reads

[�̂, Ô] = [�̂(1), Ô] + [�̂(2), Ô] (35)

≡ 1

4

∑
pp′nn′

(
O

pp′
nn′ (1B) + O

pp′
nn′ (2B)

){
A

pp′
nn′

}
, (36)

where the contributions involving the one-body and two-body
parts of � are given by

O
pp′
nn′ (1B) =

∑
p1

[
�p

p1
O

p1p
′

nn′ + �p′
p1

O
pp1
nn′

]

−
∑
n1

[
�n1

n O
pp′
n1n′ + �

n1
n′ O

pp′
nn1

]
(37)

and

O
pp′
nn′ (2B) = 1

2

∑
p1p2

�pp′
p1p2

O
p1p2
nn′

(
1 − np1 − np2

)

− 1

2

∑
n1n2

Opp′
n1n2

�
n1n2
nn′

(
1 − nn1 − nn2

)
,

+
∑
p1n1

(
np1 − nn1

)[
�

n1p
′

n′p1
Op1p

n1n
− �

n1p
n′p1

Op1p
′

n1n

+�n1p
np1

O
p1p

′
n1n′ − �n1p

′
np1

O
p1p
n1n′

]
, (38)
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(cf. Refs. [24,25]). Since �̂(s) conserves charge, no zero- or
one-body terms are generated when we evaluate the commu-
tator (35) (induced higher-body operators are truncated), and
the resulting operator has the same isospin structure as the
initial transition operator itself. This means that we can use
Eqs. (35)–(38) to recursively evaluate the BCH series by re-
placing Ô with the appropriate nested commutator [�̂, Ô](n).
Correlations in the reference state only enter through frac-
tional values of the occupation numbers, 0 � n � 1. At the
currently employed NO2B truncation level, irreducible two-
and higher-body density matrices do not appear.

As discussed in Sec. II B, our GCM reference states are
projected onto states with good angular momentum, allowing
us to efficiently solve our equations by working in a J -coupled
scheme. Detailed expressions can be found in Appendix A.

III. RESULTS AND DISCUSSION

A. Energies of low-lying states

Let us now apply the formalism described above to
48Ca and 48Ti, within just the fp shell (comprising the
0f7/2, 0f5/2, 1p3/2, and 1p1/2 orbits) and with the inter-
action KB3G [47]. We aim to make our GCM reference
states as simple as possible while at the same time includ-
ing the most important collective correlations. We therefore
construct them from a set of axially deformed, angular-
momentum- and particle-number-projected HFB states with
different values for the quadrupole deformation parameter
β2 ≡ χ〈q|(r/b)2Y20|q〉/(h̄ω0), with h̄ω0 = 41.2A−1/3 MeV,
and χ = 0.6. We let β2 ∈ {−0.3,−0.2, . . . , 0.2, 0.3} in 48Ca,
and β2 ∈ {−0.3,−0.2, . . . , 0.4, 0.5} in 48Ti. For these axially
deformed HFB states, one-dimensional angular-momentum
projection, together with particle-number projection, is suf-
ficient to restore all the broken symmetries.

Figure 1 presents curves of HFB energy vs deformation
(often referred to as “energy surfaces” even in one dimension)
for 48Ca and 48Ti, both before and after projection onto states
with J = 0 and well-defined particle number. The global
energy minimum is at a spherical shape in 48Ca and a prolate
shape in 48Ti. The figure also shows the energies of the lowest
lying states after the full calculations, which mix the shapes
indicated by the dots. The ground states have GCM energies
of −7.12 MeV in 48Ca and −22.18 MeV in 48Ti. The results
of exact diagonalization are −7.57 and −23.81 MeV, both
significantly smaller than the corresponding GCM results.
Figure 2 shows that the energies of the low-lying states are
fairly stable against different choice of the number of natural
states (NOS) in the GCM calculations. In other words, there
are good “plateaus” for the energies of both nuclei. The
collective wave function for the ground state is, however,
somewhat sensitive to the NOS.

Next we solve the IMSRG flow equations, starting both
from these GCM states and several simpler states, so that
we can check the dependence of the results on the reference.
Figure 3 shows the ground-state energy of 48Ca and 48Ti,
as a function of the flow parameter, starting from either
the spherical projected-HFB state, deformed projected-HFB
states with β2 = 0.1, 0.2, (0.3), or the full GCM ground state

FIG. 1. The energy surface from the projected HFB calculation
and the energies of low-lying states in 48Ca (a) and 48Ti (b). The x

axis is the quadrupole deformation β2. Each low-lying state from the
GCM calculation is placed at the average β2 value for that state.

0+
1 . In 48Ca, except when the reference state has β2 = 0.2,

the energy converges to almost the same value, quite close
to the result of exact diagonalization. We note in passing
that, as discussed in Refs. [24,25,48] the IMSRG flow may
lead to an excited 0+ state that has a larger overlap with the
reference state than the ground state. Because the energy of
the reference state with β = 0.2 is lower than that of the 0+

2
state, the IMSRG, which cannot raise the energy, does not
converge to any sate at all. But we have checked that when
we start from a reference state with β2 = 0.3, the flow indeed
causes the energy to converge to that of the 0+

2 state.
In 48Ti, only projected-HFB reference states with β � 0.2

(and the GCM state) lead to a final energy that is very close
to the exact ground-state value. Starting from smaller values
of β, we fall short of the correct binding energy. Clearly
it is important that the reference state be deformed in the
right way; the IMSRG(2) flow by itself is not able to capture
collective correlations. The bottom panel also shows that it
is important to include three-body irreducible densities in the
flow equations. If these are omitted, as the pathological blue
open symbols indicate, the energy fails to converge to any
value.

The final step in computing low-lying spectra, as we noted
earlier, is to use the evolved Hamiltonian from the IMSRG to
carry out a second GCM calculation. Figure 4 compares the

054311-5



YAO, ENGEL, WANG, JIAO, AND HERGERT PHYSICAL REVIEW C 98, 054311 (2018)

FIG. 2. The energies of low-lying states in 48Ca (a) and 48Ti (c) as a function of the number of natural states (NOS) adopted in the GCM
calculations. The collective wave functions, defined as gJ

α (β2) = ∑
β ′

2
[N J ]1/2

β2,β ′
2
f J

α (β ′
2), are shown for different choices of the NOS for the

ground state of 48Ca (b) and 48Ti (d), as a function of the quadrupole deformation β2.

low-lying spectra from an initial GCM calculation, from the
second one (labeled IMSRG+GCM), and from exact diag-
onalization. The IMSRG+GCM energies are systematically
lower than those produced by the GCM alone, and are closer
to the shell-model results (mostly due to an overall shift).
The GCM is capable in principle of reproducing the exact
results with a sufficiently high number of coordinates or basis
states, but computation time scales badly with the number of
coordinates. A more limited GCM calculation, followed by
IMSRG evolution and a second limited GCM calculation is
much more efficient.

Table I, finally, contains the ground-state energies for
48Ca and 48Ti in several approximation schemes. The
IMSRG+GCM overestimates the energy of 48Ti by about 1%.
This discrepancy is consistent with other applications of the
IMSRG in the NO2B approximation [25], and preliminary
results suggest that it can be reduced significantly by using
an improved truncation scheme that accounts for induced
three-body terms [48].

B. Matrix elements for neutrinoless double beta decay

Figure 5 compares the exact shell model result for the
Gamow Teller (GT) part of M0ν to GCM and IMSRG+GCM

results. The blue boxes represent the results of the PI and
PF procedures described above; the vertical extent of the
boxes represents the uncertainty in the optimal NOS, i.e., the
point at which to truncate the GCM basis before the energy
becomes numerically unstable. In the previous GCM studies
this uncertainty must also have existed, but was not explicitly
investigated. We show here that the matrix elements depend
more on the NOS than does the energy. The dependence re-
flects the similar dependence of the collective wave functions
shown in Fig. 2.

The matrix elements produced by the two IMSRG+GCM
procedures are in reasonable agreement with one another,
and both are slightly closer to the exact result than the value
produced by the GCM. The inability of the IMSRG evolution
to reduce the matrix element more significantly suggests that
it is unable to fully capture isoscalar pairing correlations,
which shrink the matrix element noticeably [13,14,50]. The
red boxes show the result of including an isoscalar pairing
amplitude as a GCM coordinate, in the manner suggested by
Refs. [13,14]. Now the agreement with the exact result is good
even before the IMSRG evolution, which does not spoil it
either. We note that including the isoscalar pairing amplitude
as a generator coordinate introduces more redundancy in the
basis. By choosing the number of natural states properly, the
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FIG. 3. The ground-state energy E a function of flow parameter
s for 48Ca (a) and 48Ti (b), starting from either the spherical reference
state, a symmetry-projected HFB state, or a GCM state. The horizon-
tal line represents the energy from exact shell-model diagonalization.

low-lying eigenstates are at energies that are systematically
somewhat smaller than without the isoscalar pairing coordi-
nate. Here we have run into the limits of what we can test
in a shell-model space. Within the fp shell, collective cor-
relations, which include isoscalar pairing, almost completely
determine the 0νββ matrix element [50]. Because the IMSRG
does not easily capture these correlations, it has little effect
on the matrix element; the collective physics must thus all
be built into the GCM state, an unsurprising situation. In an
ab initio calculation in many shells, however, the situation is
different. Noncollective correlations from higher energy, in-
cluding the short-range correlations usually inserted by hand
in shell-model calculations, will affect the IMSRG operator
evolution. We expect our procedure(s) for computing 0νββ

FIG. 4. The low-lying states from the IMSRG+GCM and GCM
alone, with the KB3G interaction, in 48Ca (a) and 48Ti (b). The exact
shell-model results [49] are on the left in both panels.

TABLE I. Ground-state energies (in MeV) for 48Ca and 48Ti,
from several calculations.

SM IMSRG+GCM GCM HFB(Sph.)

48Ca −7.57 −7.56 −7.12 −6.45
48Ti −23.66 −23.81 −22.18 −18.76

matrix elements to work well in these kinds of calculations,
even if we are not able to prove it in a single shell.

Although neither IMSRG prescription affects the matrix
element very much, PF works slightly less well than PI, a
result that is consistent with the IMSRG ground-state energies
in the two nuclei. The discrepancy with the exact calculation
is larger in 48Ti than in 48Ca, suggesting that the approximate
evolution with respect to a complicated GCM state containing
both valence neutrons and protons omits some important
three-body contributions to the like-particle interaction, which
determines the 48Ca energy and wave function.

IV. CONCLUSION

We have presented a very general framework for applying
the IMSRG in conjunction with GCM reference states to com-
pute energies of low-lying states and 0νββ matrix elements in
nuclei with strong collective correlations, including deforma-
tion. Our method involves first a GCM calculation to generate
a correlated reference state, then an IMSRG calculation, based
on that state, to transform all operators, and finally a second
GCM calculation that employs those operators. This approach
allows us to use a single transformation to treat the transitions
between two potentially quite different nuclei.

We have benchmarked our method against the results of
exact shell-model diagonalization for 48Ca and 48Ti. The
IMSRG improves the GCM-alone energies significantly, and

FIG. 5. The Gamow-Teller part of M0ν from several calcula-
tions. The blue boxes (without IS) are results of the GCM and
IMSRG+GCM calculations without an explicit isoscalar pairing
coordinate, and the red boxes (with IS) are results with that explicit
coordinate. The uncertainty comes from the different choice of
natural states in the GCM calculation.
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the 0νββ matrix element slightly, though in the one-shell cal-
culations performed here the GCM correlations by themselves
are sufficient (and necessary) to nearly reproduce the exact
shell-model matrix element when the coordinates include the
isoscalar pairing amplitude. We are in the process of applying
the IMSRG+GCM in ab initio calculations of this and other
decays.
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APPENDIX A: J-COUPLED OPERATOR EVOLUTION

It is convenient to rewrite the two-body matrix elements in
the J scheme with the relation [51]

|kl〉 =
∑
JM

〈jkmkjlml|JM〉[NKL(J )]−1|(KL)JM〉, (A1)

where the normalized J -coupled two-body wave function is
defined as

|(KL)JM〉 = NKL(J )[a†
Ka

†
L]JM |0〉, (A2)

and the normalization factor is give by NKL(J ) =√
1 + δKL(−1)J /(1 + δKL). Here the capital letter K stands

for the quantum numbers {τk, nk, lk, jk}. With the above
definition, normalized J -coupled nonzero two-body matrix
elements are related to those in M scheme as follows:

OJ
(KL)(34) =

∑
mkmlm3m4

〈jkmkjlml|JM〉〈j3m3j4m4|JM〉 1√
(1 + δKL)(1 + δ34)

Okl
34. (A3)

The unnormalized versions of the same matrix elements are given by

ŌJ
(KL)(34) =

√
(1 + δKL)(1 + δ34)OJ

KL34 =
∑

mkmlm3m4

〈jkmkjlml|JM〉〈j3m3j4m4|JM〉Okl
34. (A4)

One can show that the unnormalized J -coupled two-body matrix elements corresponding to the first two terms in Eq. (38) (pp
parts) are given by

ŌJ
(KL)(34)(pp) = 1

2

∑
CD

�̄J
(KL)(CD)Ō

J
(CD)(34)(1 − nc − nd ) − 1

2

∑
12

ŌJ
(KL)(12)�̄

J
(12)(34)(1 − n1 − n2), (A5)

and those corresponding to the last two terms in Eq. (38) (ph parts) are

ŌJ
(KL)(34)(ph) = −

∑
J ′

Ĵ ′2
{
jk jl J
j3 j4 J ′

}∑
A6

(n6 − na )ŌJ ′
(K 4̄)(6Ā)�̄

J ′
(6Ā)(3L̄)

− (−1)jk+jl+J+1
∑
J ′

Ĵ ′2
{

jl jk J
j3 j4 J ′

} ∑
A6

(n6 − na )ŌJ ′
(L4̄)(6Ā)�̄

J ′
(6Ā)(3K̄ )

+
∑
J ′

Ĵ ′2
{
jk jl J
j3 j4 J ′

} ∑
A6

(na − n6)�̄J ′
(K 4̄)(A6̄)Ō

J ′
(A6̄)(3L̄)

+ (−1)jk+jl+J+1
∑
J ′

Ĵ ′2
{

jl jk J
j3 j4 J ′

} ∑
A6

(na − n6)�̄J ′
(L4̄)(A6̄)Ō

J ′
(A6̄)(3K̄ ), (A6)

where the Latin indices k, l stand for proton states and the numerals 3,4 stand for neutron states. Only the �-matrix elements of
the form �

np
n′p′ contribute to the ph parts of O. The unnormalized ph matrix element ŌJ is related to that of pp matrix element

ŌJ by the Pandya transformation [51]

ŌJ
(αβ̄ )(γ δ̄) = −

∑
J

′
Ĵ

′2
{
jα jβ J

jγ jδ J
′

}
ŌJ ′

(αδ)(γβ ). (A7)
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APPENDIX B: THE BRILLOUIN GENERATOR

In the IMSRG(2) calculation, we truncate the matrix elements of η(s) at the NO2B level,

η̂(s) =
∑
ij

ηk
l (s)

{
Ak

l

} + 1

4

∑
klmn

ηkl
mn(s)

{
Akl

mn

}
, (B1)

and use the Brillouin generator [25]. The matrix elements of the one- and two-body parts are (n̄i = 1 − ni)

ηk
l = f l

k (nl − nk ) − 1

2

∑
abc

(
�la

bcλ
ka
bc − �ab

kc λab
lc

)
, (B2)

ηkl
mn = �mn

kl (n̄kn̄lnmnn − nknln̄mn̄n) +
∑

a

(
f a

k λal
mn + f a

l λka
mn − f m

a λkl
an − f n

a λkl
ma

) + 1

2

[
(λ�)mn

kl (1 − nk − nl )

− (�λ)mn
kl (1 − nm − nn)

]+ (1 − P̂mn)(1 − P̂kl )
∑
ac

�am
cl λak

cn (nl − nm) + 1

2

∑
abc

[
(1 − P̂mn)�ma

bc λakl
bcn + (1 − P̂kl )�

ab
lc λabk

cmn

]
.

(B3)

We use the J -coupled scheme above to save memory. Since the terms involving the three-body irreducible density are more
complicated than the others, we write them explicitly:

η̄J
(KL)(MN )(λ

3B, 1) = 1

2

∑
ABC

∑
J2JakJbc

(−1)Jak+ja−jk ĴakĴbcĴ
2
2 (−1)Jak+Jbc+jl+jn

×
{
ja Jak jk

jl J J2

}{
ja Jbc jm

jn J J2

}
�̄

Jbc

(MA)(BC)〈(jajk )Jakjl ; J2|λ|(jbjc )Jbcjn; J2〉, (B4a)

η̄J
KL)(MN )(λ

3B, 2) = (−1)jm+jn−J+1 1

2

∑
ABC

∑
JakJbc

∑
J2

(−1)ja+Jak−jk (−1)4ja+Jbc+Jak+2J+jm+jl Ĵ 2
2 ĴbcĴak

×
{
ja Jak jk

jl J J2

}{
ja Jbc jn

jm J J2

}
�̄

Jbc

(NA)(BC)〈(jajk )Jakjl ; J2|λ|(jbjc )Jbcjm; J2〉, (B4b)

η̄J
(KL)(MN )(λ

3B, 3) = 1

2

∑
ABC

∑
J2JabJcm

(−1)jc+Jcm−jm ĴabĴcmĴ 2
2 (−1)Jab+Jcm+J+jl+jn+2jk

×
{
jc Jcm jm

jn J J2

}{
jc Jab jl

jk J J2

}
�̄

Jab

(AB )(LC)〈(jajb )Jabjk; J2|λ|(jcjm)Jcmjn; J2〉, (B4c)

η̄J
(KL)(MN )(λ

3B, 4) = (−1)jk+jl−J+1 1

2

∑
ABC

∑
JabJcmJ2

(−1)jc+Jcm−jm (−1)2jl+4jc+jk+jn+Jab+Jcm+J ĴcmĴabĴ
2
2

×
{
jc Jab jk

jl J J2

}{
jc Jcm jm

jn J J2

}
�̄

Jab

(AB )(KC)〈(jajb )Jabjl ; J2|λ|(jcjm)Jcmjn; J2〉. (B4d)

Here, λ3B in parentheses indicates a dependence on the irreducible three-body density 〈(j1j2)J12j3; J |λ|(j4j5)J45j6; J 〉, the
calculation of which is given in Appendix C.

APPENDIX C: DENSITY MATRICES OF MULTIREFERENCE STATES

We present here the most important expressions needed to compute the density matrices associated with a general
multireference state, taken here to have spin and parity 0+. The irreducible (or residual) one-, two-, and three-body parts
of density matrix elements follow from a cumulant expansion (11). In the coupled scheme, the expressions for the one- and
two-body densities take the form (with κ = {n, α})

λJ=0
κ1κ2

= ρJ=0
κ1κ2

≡
[
a†

κ1
ãκ2

]0
0√

2j1 + 1
δα1α2 . (C1)

λJ
(12)(34) = ρJ

(12)(34) − λJ=0
κ1,κ3

λJ=0
κ2,κ4

δα1,α3δα2,α4 + (−1)J−(j1+j2 )λJ=0
κ1,κ4

λJ=0
κ2,κ3

δα1,α4δα2,α3 , (C2)
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where α = {τ lj}, and the expression for the irreducible three-body density takes the form

〈(j1j2)J12j3; J123|λ|(j4j5)J45j6; J123〉
=

∑
m1,m2,...,m6

〈j1m1j2m2|J12M12〉〈J12M12|j3m3JM〉〈j4m4j5m5|J45M45〉〈J45M45j6m6|JM〉λ123
456

= 〈(j1j2)J12j3; J123|ρ|(j4j5)J45j6; J123〉 −
15∑
i=1

Ti, (C3)

where

T1 = (−1)J45+j2+j3+1Ĵ12Ĵ45

{
j1 j2 J12

j3 J J45

}
ρJ=0

κ1κ6
ρ

J45
(23)(45), (C4a)

T2 =
∑
J23

(−1)J45+J23+j1+j2+j3+j4 Ĵ12Ĵ45Ĵ
2
23

{
j4 j1 J45

J j6 J23

}{
j2 j3 J23

J j1 J12

}
ρJ=0

κ1κ5
ρ

J23
(23)(64), (C4b)

T3 =
∑
J23

(−1)j2+j3+j5+j6 Ĵ12Ĵ45Ĵ
2
23

{
j5 j1 J45

J j6 J23

}{
j2 j3 J23

J j1 J12

}
ρJ=0

κ1κ4
ρ

J23
(23)(56), (C4c)

T4 = (−1)j1+j2−J12+1Ĵ12Ĵ45

{
j2 j1 J12

j3 J J45

}
ρJ=0

κ2κ6
ρ

J45
(31)(45), (C4d)

T5 =
∑
J31

(−1)j4+j1+J12+J45+1Ĵ12Ĵ45Ĵ
2
31

{
j4 j2 J45

J j6 J31

}{
j1 j3 J31

J j2 J12

}
ρJ=0

κ1κ4
ρ

J31
(31)(64), (C4e)

T6 =
∑
J31

(−1)j1+j2+J12+j5+j6+J31 Ĵ12Ĵ45Ĵ
2
31

{
j5 j2 J45

J j6 J31

}{
j1 j3 J31

J j2 J12

}
ρJ=0

κ2κ4
ρ

J31
(31)(56), (C4f)

T7 = δJ12J45ρ
J=0
κ3κ6

ρ
J12
(12)(45), (C4g)

T8 = (−1)j3+j4+J45+1Ĵ12Ĵ45

{
j4 j3 J45

J j6 J12

}
ρJ=0

κ3κ5
ρ

J12
(12)(64), (C4h)

T9 = (−1)J12+j5+j6+1Ĵ12Ĵ45

{
j5 j3 J45

J j6 J12

}
ρJ=0

κ3κ4
ρ

J12
(12)(56), (C4i)

T10 = −2Ĵ12Ĵ45

{
j1 j2 J12

j3 J J45

}
ρJ=0

κ1κ6
ρJ=0

κ2κ5
ρJ=0

κ3κ4
, (C4j)

T11 = −2(−1)J45+j2+j3+1Ĵ12Ĵ45

{
j1 j2 J12

j3 J J45

}
ρJ=0

κ1κ6
ρJ=0

κ2κ4
ρJ=0

κ3κ5
, (C4k)

T12 = −2(−1)j1+j2−J12+1Ĵ12Ĵ45

{
j2 j1 J12

j3 J J45

}
ρJ=0

κ1κ5
ρJ=0

κ2κ6
ρJ=0

κ3κ4
, (C4l)

T13 = 2(−1)j1+j2−J12δJ12J45ρ
J=0
κ1κ5

ρJ=0
κ2κ4

ρJ=0
κ3κ6

, (C4m)

T14 = 2(−1)j2+j3−J12+J45 Ĵ12Ĵ45

{
j2 j1 J12

j3 J J45

}
ρJ=0

κ1κ4
ρJ=0

κ2κ6
ρJ=0

κ3κ5
, (C4n)

T15 = −2δJ12J45ρ
J=0
κ1κ4

ρJ=0
κ2κ5

ρJ=0
κ3κ6

. (C4o)
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