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Verification of detailed balance for γ absorption and emission in Dy isotopes
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The photoneutron cross sections of 162,163Dy have been measured for the first time in an energy region
from the neutron threshold (Sn) up to ≈13 MeV. The (γ, n) reaction was induced with quasimonochromatic
laser Compton-scattered γ rays, produced at the NewSUBARU laboratory. The corresponding γ -ray strength
functions (γ SF) have been calculated from the photoneutron cross sections. The data are compared to reanalyzed
γ SFs of 160–164Dy, which are measured below Sn. The excellent agreement with the photoneutron data at Sn

confirms the principle of detailed balance. Thus, a complete γ SF is established covering in total the energy
region of 1 � Eγ � 13 MeV. These mid-shell well-deformed dysprosium isotopes all show scissors resonances
with very similar structures. We find that our data predict the same integrated scissors strength as (γ, γ ′) data
when integrated over the same energy range, which shows that the scissors mode very likely is consistent
with the generalized Brink hypothesis. Finally, using the γ SFs as input in the reaction code TALYS, we have
deduced radiative neutron-capture cross sections and compared them to direct measurements. We find a very
good agreement within the uncertainties, which gives further support to the experimentally determined γ SFs.

DOI: 10.1103/PhysRevC.98.054310

I. INTRODUCTION

The principle of detailed balance is one of the most funda-
mental assumptions commonly used in quantum mechanics.
The background for this principle is the fact that inverse
processes are strongly linked [1]. As stated by Blatt and
Weisskopf, this principle “can be applied... to the emission and
absorption of γ radiation in nuclei.” In nuclear physics, de-
tailed balance is often used in the description of electric dipole
(E1) absorption and emission. For example, state-of-the-art
microscopic calculations of ground-state E1 excitations [2],
probing the giant electric dipole resonance (GEDR), assume
detailed balance to estimate radiative neutron-capture cross
sections for nuclear-astrophysics applications.

Moreover, the Brink hypothesis [3] states that “... if it were
possible to perform the photoeffect on an excited state, the cross
section for absorption would have the same energy dependence
as for the ground state.” This hypothesis is used together with
the principle of detailed balance to calculate average, total
radiative widths and radiative neutron-capture cross sections.

However, to verify the application of detailed balance and
the Brink hypothesis to obtain a complete description of γ
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absorption and decay, one needs to measure both photoneu-
tron data above the neutron threshold Sn ≈ 6–8.5 MeV, and
γ -decay data below Sn. If these data sets agree with each
other, it is a strong indication that detailed balance and the
Brink hypothesis are indeed fulfilled.

For the GEDR, the Brink hypothesis seems to be valid ex-
cept for nuclear reactions involving high temperatures and/or
spins [4]. However, this is not necessarily true for other
types of γ resonances. At the low-energy tail of the GEDR,
other resonance structures appear as well, such as the pygmy
dipole resonance (PDR) [5], the magnetic-dipole (M1) spin-
flip resonance [6], and the M1 scissors resonance (SR) built
on the ground state [6] and on excited states [7,8].

The first experimental indication of the SR on excited states
(quasicontinuum region), was the observation of a strong
enhancement in the γ spectrum of excited 161Dy at around 3
MeV in 1984 [9]. This structure was interpreted as an implica-
tion of the SR predicted to occur in deformed nuclei [10,11].
Later in the same year, the (e, e′) reaction was used to reveal
M1 type resonant states in Gd [12] built on the ground state.

For rare-earth Dy isotopes, the integrated SR strength as
reported from nuclear resonance fluorescence (NRF) mea-
surements [13] is about half the summed strength found
in Oslo-type experiments [14,15] and by two-step cascade
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(TSC) measurements following thermal neutron capture [8].
It has been suggested [16] that the discrepancy could be
due to differences in the nuclear moment of inertia, as the
summed BSR strength is predicted to be proportional with the
SR moment of inertia [17]. As the ground-state moment of
inertia is smaller than the moment of inertia for excited states
[16], this could possibly explain the observed discrepancy.
On the other hand, this explanation would be in conflict with
the generalized Brink hypothesis, which is understood in the
following way: any collective mode has the same properties
regardless of whether it is built on the ground state or excited
states. This is, however, still an open question, because results
from Ref. [18] provide evidence for the generalized Brink
hypothesis also for transitions to the ground band in 238Np.

Another explanation for the observed deviations could be
the fact that disentangling the SR strength from different
types of backgrounds is a challenge in all the aforementioned
experimental methods. For example, in the Oslo-type and
TSC experiments, it is necessary to assume an underlying E1
“tail” of the GEDR resonance, which must be subtracted to
estimate the SR strength, because the M1 and E1 components
cannot be distinguished from the data. For NRF experiments,
weaker transitions might be hidden in the atomic background,
while the low intensity of the endpoint-bremsstrahlung spec-
trum could make it difficult to measure transitions near the
endpoint energy. Further, NRF data on the SR strength have
typically been evaluated at a narrow excitation-energy region
(≈2.7–3.7 MeV), while Oslo-type and TSC experiments give
a summed strength for a large energy interval.

As photoneutron data provide a measure on the GEDR and
hence the dominant E1 strength, a good determination of this
component is crucial for extracting the summed SR strength
in Oslo-type experiments, which cannot separate E1 and M1
radiation directly. Surprisingly, the otherwise well-studied
rare-earth nuclei are relatively unexplored in the energy region
above Sn. Of the 32 stable well-deformed (β2 > 0.3 [19]) rare-
earth nuclei from 154Sm to 176Lu, there exists photoneutron
data on only six nuclei [20].

In this work, we report for the first time on photoneutron
measurements of 162,163Dy, ranging from excitation energies
of Sn and up to ≈13 MeV. With these new measurements, we
address two main questions: (i) Is the principle of detailed
balance fulfilled? (ii) Is the generalized Brink hypothesis
valid for the SR? In an attempt to answer these questions,
the photoneutron data will be combined with the reanalyzed
γ -ray strength functions (γ SFs) below Sn of the 160–164Dy
isotopes using the Oslo method. Furthermore, we reevaluate
the summed strengths and uncertainties of the SRs and com-
pare with TSC and NRF data, in addition to new results from
multistep-cascade (MSC) measurements of γ decay following
neutron capture from a white neutron source [21]. Finally, on
the basis of the reanalyzed nuclear level densities (NLDs) and
γ SFs, we calculate radiative neutron-capture cross sections
within the Hauser-Feshbach formalism and compare with
experimental (n, γ ) data. This is the final test of the two
questions raised above: if the principle of detailed balance and
the generalized Brink hypothesis are applicable, one would
expect a good reproduction of direct (n, γ ) cross-section
measurements.

FIG. 1. A schematic illustration of the experimental setup at
NewSUBARU used in the (γ, n) cross-section measurements.

II. EXPERIMENTAL PROCEDURE

The photoneutron measurements on 162,163Dy took place at
the NewSUBARU synchrotronic radiation facility [22]. Here,
quasimonochromatic γ -ray beams were produced through
laser Compton scattering (LCS) of 1064 nm photons in
head-on collisions with relativistic electrons. Throughout the
experiment, the laser was periodically on for 80 ms and off
for 20 ms, in order to measure background neutrons and γ
rays. The electrons were injected from a linear accelerator
into the NewSUBARU storage ring [23] with an initial energy
of ≈1 GeV, then subsequently deaccelerated to energies in
the region from ≈600 to ≈900 MeV, providing LCS γ -ray
beams from Sn up to Eγ ≈ 13 MeV. In total, 12 individual
γ beams were produced for 162Dy and 15 for 163Dy. The
energy profiles of the produced γ -ray beams were measured
with a 3.5′′ × 4.0′′ LaBr3:Ce (LaBr3) detector. The measured
LaBr3 spectra were reproduced by the GEANT4 code [24],
which takes into account the kinematics of the LCS process,
including the beam emittance and the interactions between the
LCS beam and the LaBr3 detector. In this way we were able
to simulate the incoming energy profile of the γ beams.

The 162,163Dy targets were in oxide form with areal densi-
ties of 2.21 and 1.94 g/cm2, respectively. The corresponding
enrichments of the two isotopes were 99.28% and 96.85%.
The target material was placed inside aluminum containers.
For neutron detection, a high-efficiency 4π detector was
used, consisting of 20 3He proportional counters, arranged in
three concentric rings and embedded in a 36 × 36 × 50 cm3

polyethylene neutron moderator. The average energy of the
neutrons from the (γ, n) reactions was estimated using the
ring ratio technique, originally developed by Berman [25].
The efficiency of the neutron detector depends on the neutron
energy, and was found by Monte Carlo simulations. For
the energy range reached in this experiment, emission of
s-wave neutrons is dominant. As for the possible p-wave
contribution, it has been shown in previous simulations [26]
that its anisotropy is smeared out due to thermalization of the
neutrons in the moderator material. Therefore, the efficiency
of the neutron detector was simulated assuming isotropically
distributed neutrons. The neutrons were also assumed to be
monoenergetic in the simulations. The LCS γ -ray flux was
monitored by a 5′′ × 6′′ NaI:Tl (NaI) detector during neutron
measurement runs. The number of incoming γ rays per mea-
surement was estimated using the pileup technique described
in Ref. [27]. Figure 1 shows a schematic illustration of the
experimental setup.
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FIG. 2. The simulated energy profiles for the γ beams used in
the 163Dy measurements.

The measured photoneutron cross section for an incoming
beam with maximum γ -energy Emax is given by the convo-
luted cross section,

σEmax
exp =

∫ Emax

Sn

DEmax (Eγ )σ (Eγ )dEγ = Nn

NtNγ ξεng
. (1)

Here, DEmax is the normalized,
∫ Emax

Sn
DEmaxdEγ = 1, energy

distribution of the γ -ray beam obtained from GEANT4 simu-
lations. The simulated profiles of the γ beams, DEmax , used to
investigate 163Dy are shown in Fig. 2. Furthermore, σ (Eγ ) is
the true photoneutron cross section as a function of energy.
The quantity Nn represents the number of neutrons detected,
Nt gives the number of target nuclei per unit area, Nγ is the
number of γ rays incident on target, εn represents the neutron
detection efficiency, and finally ξ = (1 − eμt )/(μt ) gives a
correction factor for self-attenuation in the target. The factor
g represents the fraction of the γ flux above Sn.

We have determined the convoluted cross sections σEmax
exp

given by Eq. (1) for γ beams with maximum energies in the
range Sn � Emax � 13 MeV. The convoluted cross sections
σEmax

exp are not connected to a specific Eγ , and we choose
to plot them as a function of Eγ max. The convoluted cross
sections of the two Dy isotopes, which are often referred to as
monochromatic cross sections, are shown in Fig. 3. The error
bars in Fig. 3 represent the total uncertainty in the quantities
comprising Eq. (1), which consists of ≈3.2% from the effi-
ciency of the neutron detector, ≈3% from the pileup method
that gives the number of γ -rays, and the statistical uncertainty
in the number of detected neutrons. The statistical uncertainty
in the number of detected γ ’s is negligible. The statistical
uncertainty in the number of detected neutrons ranges, in the
current datasets, between ≈5% close to neutron threshold and
≈0.5% for higher γ energies. This corresponds to a statistical

FIG. 3. Monochromatic cross sections of 162Dy (green open cir-
cles) and 163Dy (blue filled squares). The error bars contain statistical
uncertainties from the number of detected neutrons, the uncertainty
in the efficiency of the neutron detector, and the uncertainly in the
pileup method used to determine the number of incoming γ ’s on
target.

uncertainty relative to the total uncertainty ranging between
≈75% and ≈11%. In the energy region approaching the
neutron separation energy from above, the photoneutron cross
section decreases rapidly, and despite long measuring times
the number of detected neutrons remains small and hence the
statistical error is inevitably quite large. Above this energy
region, the total uncertainty is dominated by systematic errors
from the pileup method and from the simulated efficiency
of the neutron detector. For the total uncertainty, we have
assumed that the errors are independent and thus we have
added them quadratically.

III. DATA ANALYSIS

The challenge now is to extract the deconvoluted, Eγ

dependent, photo-neutron cross section, σ (Eγ ), from the inte-
gral of Eq. (1). Each of the measurements characterized by the
beam energy, Emax, corresponds to folding of σ (Eγ ) with the
measured beam profile, DEmax .By approximating the integral
in Eq. (1) with a sum for each γ -beam profile, we are able to
express the problem as a set of linear equations

σf = Dσ, (2)

where σf is the cross section folded with the beam profile D.
The indexes i and j of the matrix element Di,j correspond to
Emax and Eγ , respectively. The set of equations is given by

⎛
⎜⎜⎝

σ1

σ2
...

σN

⎞
⎟⎟⎠

f

=

⎛
⎜⎜⎝

D11 D12 · · · · · · D1M

D21 D22 · · · · · · D2M

...
...

...
...

...
DN1 DN2 · · · · · · DNM

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

σ1

σ2
...
...

σM

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3)
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FIG. 4. Cross sections of 162Dy. The green open circles are the
monochromatic cross sections from Fig. 3. The green, shaded area
displays the unfolded cross section.

Each row of D corresponds to a GEANT4 simulated γ beam
profile belonging to a specific measurement characterized by
Emax. See Fig. 2 for a visual representation of the response
matrix D for the case of 163Dy. It is clear that D is highly
asymmetrical. As mentioned, we have used N = 15 beam
energies when investigating 163Dy, but the beam profiles
above Sn is simulated for M = 250 γ energies. As the system
of linear equations in Eq. (3) is underdetermined, the true σ
vector cannot be extracted by matrix inversion. In order to find
σ , we utilize a folding iteration method. The main features of
this method are as follows:

(1) As a starting point, we choose for the zeroth iteration,
a constant trial function σ 0. This initial vector is
multiplied with D, and we get the zeroth folded vector
σ 0

f = Dσ 0.
(2) The next trial input function, σ 1, can be established by

adding the difference of the experimentally measured
spectrum, σexp, and the folded spectrum, σ 0

f , to σ 0. In
order to be able to add the folded and the input vector
together, we first perform a spline interpolation on the
folded vector, then interpolate so that the two vectors
have equal dimensions. Our new input vector is

σ 1 = σ 0 + (
σexp − σ 0

f

)
. (4)

(3) Steps 1 and 2 are iterated i times giving

σ i
f = Dσ i, (5)

σ i+1 = σ i + (
σexp − σ i

f

)
(6)

until convergence is achieved. This means that σ i+1
f ≈

σexp within the statistical errors. In order to quanti-
tatively check convergence, we calculate the reduced
χ2 of σ i+1

f and σexp after each iteration. Approxi-
mately four iterations are usually enough for conver-
gence, which is defined when the reduced χ2 value
approaches ≈1.
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FIG. 5. Cross sections of 163Dy. The blue filled squares are the
monochromatic cross sections from Fig. 3. The blue, shaded area
displays the unfolded cross section.

It is important to stop the iteration when the reduced χ2

starts to be lower than unity. In principle, the iteration could
continue until the reduced χ2 approaches zero, but then large
unrealistic fluctuations in σ i arises in order to reproduce the
experimental data points of σexp exactly, independently of the
individual error bars connected to each of these points. To
prevent the unfolding from introducing spurious fluctuations,
we apply a smoothing factor of 200 keV, which corresponds to
the average of the full-width half maximum (FWHM) of the
γ beams. In this way, we prevent the random fluctuations in
the measured data from being amplified when using a spline
in step 2 of the unfolding routine.

In order to give an estimate of the uncertainly in
the unfolded cross sections, we have defined an upper
limit of the monochromatic cross sections from Fig. 3 by
adding/subtracting the errors to the measured cross section
values. This upper and lower limit is unfolded separately.

Figures 4 and 5 show the resulting unfolded photo-neutron
cross sections σ (Eγ ) of 162,163Dy.

In Fig. 6 the two unfolded cross sections are evaluated at
the maximum energies of the incoming γ beams. The error
bars represent the difference between the upper and lower
limit of the unfolded cross sections.

IV. 160–164Dy REVISITED

In the following, we reexamine previous data on 160–164Dy
within the framework of the Oslo method. The method is
based on the analysis of particle-γ coincidences obtained
from transfer or inelastic reactions, where the energy
of the ejectile (and the reaction Q value) uniquely determines
the nuclear excitation energy, E. These coincidence γ spectra
are organized as rows in a matrix of raw data, R(Eγ ,E). The
individual γ spectra at each E is then unfolded with the
γ -detector response function [28] giving the matrix
U (Eγ ,E). An iterative subtraction technique [29] is
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FIG. 6. The recommended unfolded cross sections of 162,163Dy.
Here, the error bars represent the difference between the upper and
lower limits shown in Figs. 4 and 5.

performed on the U matrix in order to obtain the
first-generation (or primary) P (Eγ ,E) matrix, containing
the distribution of the first-emitted γ rays for a given initial
E. The next step is to extract simultaneously the NLD,
ρ(E − Eγ ), and the γ SF, f (Eγ ), by a least-χ2 fit to the P
matrix using the relation [30]

P (Eγ ,E) ∝ ρ(E − Eγ )E3
γ f (Eγ ). (7)

This χ2 minimization provides a unique solution, determining
the functional form of ρ(E − Eγ ) and f (Eγ ). The last step
is to normalize the ρ and f functions to known external
data. Further details of the Oslo method and tests of various
assumptions are given in Refs. [30,31].

The present reanalysis is based on the raw NaI matrices
obtained for 160–162Dy in 2001 and 2003 [14,32] and for
163–164Dy in 2010 [15,33] using the reactions (3He, 3He′γ )
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FIG. 7. Normalization of the 164Dy NLD to the discrete levels
and the HFB calculation from Ref. [46], which is adjusted to repro-
duce D0 = 6.8 eV [47].

and (3He, αγ ). Since these data were first presented, new
γ -ray response functions, improved data software, and nor-
malization procedures have been implemented. In the present
work, with the raw matrices (R) as basis, we aim to perform
a consistent treatment of the steps needed to obtain the final
NLDs and γ SFs for all 160–164Dy isotopes.

A. Renormalization of NLDs

The nuclear spin distribution [34], which is usually ex-
pressed as

g(E, J ) � 2J + 1

2σ 2
J (E)

exp
[ − (J + 1/2)2/2σ 2

J (E)
]
, (8)

where σJ is the spin-cutoff parameter, plays an important role
in obtaining ρ(Sn) from known neutron-capture spacings, D0.
The distribution also enters in the normalization of the γ SF
to reproduce the total average γ width 〈�γ (Sn)〉. This will be
discussed briefly in the next section.

The Oslo group has used various empirical formulas for the
estimation of the σJ [35–37]. As was shown in, e.g., Ref. [38],
the various models may give large deviations. The case is the
same for the dysprosium isotopes; e.g., at E = Sn we find σJ

values of 4.6–6.6, and at E = 0.5 MeV the values are 3.0–4.5.
Therefore, we adopt a more reliable approach as described in
the following.

There is increasing evidence that the level density follows
the constant-temperature formula more closely than the Fermi
gas formula for excitations above the pairing gap 2� [39,40].
Assuming a constant temperature, T , the energy dependence
in the expression σ 2

J = �T is given by the moment of inertia,
�, which goes from ≈50% of the rigid body moment of
inertia (�rigid) at the ground state and approaches �rigid at
Sn. The moment of inertia is proportional to the number
of quasiparticles excited, which again is proportional to the
excitation energy. Thus, we assume σ 2

J to be a linear function
in E by

σ 2
J (E) = σ 2

d + E − Ed

Sn − Ed

[
σ 2

J (Sn) − σ 2
d

]
. (9)

The quantity σ 2
d is determined from known discrete levels [41]

at excitation energy, Ed , where the level scheme is considered
complete.

We observe that the level schemes of 160–164Dy are close to
complete in the excitation regions of 0.5 and 1.5 MeV for the
odd-mass and even-even dysprosium isotopes, respectively.
Thus, the σ 2

d values can be reliably estimated. The second data
point at Sn should approach a rigid moment of inertia, which
is assumed in Ref. [36]:

σ 2
J (Sn)=�rigid × T = 0.0146A5/3× 1 + √

1 + 4aUn

2a
, (10)

where A is the mass number, a is the level density parameter,
Un = Sn − E1 is the intrinsic excitation energy, and E1 is the
energy shift parameter. To obtain an error band for σ (Sn),
we introduce a reduction factor, η, in Eq. (10) for �rigid

with η = 0.8 and 0.9 for the low (L) and recommended (R)
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TABLE I. Parameters used to extract level density and γ SF. Systematic uncertainties are included in the errors for the recommended (R)
normalization (see text).

Nucleus Sn a E1 Ed σd σL(Sn) σR(Sn) σH(Sn) δ α D0 ρR(Sn) 〈�γ (Sn)〉
(MeV) (MeV−1) (MeV) (MeV) (MeV) (eV) (106 MeV−1) (meV)

160Dy 8.576 18.78 0.47 1.5 3.4(2) 6.14 6.51 7.04 − 0.56 0.167 1.84(41)a 12.3(28) 112(20)a

161Dy 6.454 18.68 − 0.55 0.5 3.4(2) 5.97 6.33 6.82 − 0.71 − 0.059 27(5) 3.00(158) 108(10)
162Dy 8.197 18.50 0.39 1.5 3.7(2) 6.17 6.55 6.99 − 0.54 0.153 2.4(2) 6.67(110) 112(10)
163Dy 6.271 18.27 − 0.53 0.5 3.3(2) 6.02 6.39 6.46 0.15 − 0.016 62(5) 1.33(29) 112(20)
164Dy 7.658 18.12 0.31 1.5 3.6(2) 6.18 6.55 6.84 − 0.59 0.196 6.8(6) 2.36(26) 113(13)

aTaken from systematics.

estimate, respectively. The recommended value is consistent
with theoretical estimates of σJ (Sn) in the region [42–45,47].

Further, for the upper limit (H), we apply the Hartree-
Fock-Bogoliubov-plus-combinatorial (HFB) calculations of
Ref. [46], adjusted to match the discrete levels and to repro-
duce the experimental D0 values:

ρrenorm
HFB (E) = exp [α

√
(E − δ)]ρHFB(E − δ), (11)

where α is the slope correction and δ is an energy shift. These
calculations reproduce the overall shape of the experimental
data very well for the even-even isotopes; the case of 164Dy
is shown in Fig. 7. For the odd isotopes, the shape of the
NLD is less compatible with the data; we have chosen to still
apply the spin distribution of Ref. [46] to provide an anchor
point at Sn for the normalization of the NLD, but use the
constant-temperature model for the interpolation as described
in the following paragraph. The spin cutoff parameter σH(E)
is extracted from the HFB calculations by a fit of Eq. (8) for
each excitation-energy bin. Table I lists the D0 and σJ values
at Sn used to determine the level density ρ(Sn) with a and
E1 parameters taken from Ref. [36]. The additional Ed and
σd values are used to get the energy dependence according
to Eq. (9). Also, the parameters α and δ are given. The D0

and 〈�γ (Sn)〉 values are taken from s-wave neutron capture
reactions reported in the RIPL-3 compilation [47]. As 159Dy
is unstable, no neutron capture data is available for 160Dy
and we therefore use arguments from systematics. Figure 8
demonstrates how ρ(Sn) is estimated for 160Dy.

The level densities obtained from the fit to the primary γ -
ray matrix, P , must be normalized to external data. For this
purpose we use known discrete levels, the total level density at
Sn based on the D0 values, and the spin distribution g(Sn, J )
with spin cutoff parameters from Table I. The interpolation of
our data points to the anchor point, ρ(Sn), is obtained by the
constant-temperature (CT) NLD formula [34]

ρCT(E) = 1

TCT
exp

(
E − E0

TCT

)
. (12)

Note that we choose to apply symmetric errors of ρ(Sn),
although the difference between the lower limit and the rec-
ommended normalization is typically smaller than for the
upper limit. Hence, we use a conservative estimate for the
error in ρ(Sn), motivated by the rather large uncertainty in
the spin-cutoff parameter.

The final level densities are shown in Fig. 9. We note that
there are no significant deviations between the level densities
obtained with the (3He, α) and (3He, 3He′) reactions. The re-
markable similarities between all seven nuclear level densities
in panel (f) reveal the same gross properties, which confirm
that these mid-shell dysprosium isotopes (N = 94–98) have
their Fermi surfaces embedded between single-particle orbits
with similar density and nuclear deformation. We also observe
that the nuclear level densities are close to a straight line
in the logarithmic plot, in accordance with previous findings
using the Oslo method [39,40]. The parallel level densities
are also evident in Fig. 9(f). Here, we find that the odd-mass
isotopes have ≈5 times more levels compared to the even-
even isotopes. This clear difference in level density can be
interpreted as the odd valence neutron bringing an additional
entropy of ≈1.7kB into the system, rather independently of the
number of paired nucleons [48].

The nuclear temperature can be determined with the con-
straints that ρCT(Sn) = ρR(Sn). We use a least-χ2 fit of
Eq. (12) to the nuclear level density data points for E > 2�,
where � ≈ 12A−1/2 is the pairing gap. The fitted parameter
values TCT and E0 with statistical uncertainties are listed in
Table II. All isotopes reveal the same nuclear temperature
within the statistical uncertainties.
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FIG. 8. Level densities at the neutron separation energy extracted
from known D0 values (filled symbols) [47]. The systematics (solid
lines) are taken from Ref. [36] with all values scaled by a factor of
0.618. The estimate for 160Dy (open circle) is taken from the scaled
curve.
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FIG. 9. Level densities for 160–164Dy based on previous data [14,15,32,33]. The pink (filled) and blue (open) experimental data points are
from the (3He, α) and (3He, 3He′) reactions, respectively. The data are normalized to the level density of known discrete levels [41] at low
excitation energy E (gray histogram) and the level density ρ(Sn) (black square) extracted from neutron resonance spacings D0. The dashed
line shows the CT interpolation using Eq. (12) for the recommended normalization. Error bars include statistical and systematic errors (one
standard deviation).

We would like to stress that it makes no sense to fit either
the CT model or the Fermi-gas model to data below ≈2�,
where collective nuclear structure effects are predominant
(rotation and vibration). Therefore, when discussing whether
the level density behaves like a CT model or a Fermi gas, one
must keep this in mind. When using data above ≈2�, the χ2

TABLE II. Constant level density parameters extracted from fit
to the experimental data of the recommended normalization.

Nucleus TCT E0

(MeV) (MeV)

160Dy 0.61(2) −1.01(21)
161Dy 0.59(2) −1.97(31)
162Dy 0.61(1) −1.02(16)
163Dy 0.59(4) −1.67(58)
164Dy 0.60(1) −0.78(15)

result of a fit to the Fermi gas model is significantly worse
than a fit to the CT model; see Fig. 9 in Ref. [40]. The CT
parameters given in Table II are extracted from a fit to our
experimental data above ≈2� for all the studied isotopes.

B. Renormalization of γ SFs

The γ SFs are normalized in such a way that the 〈�γ 〉 values
of Table I are reproduced by

〈�γ (Sn)〉 = D0

2π

∫ Sn

0
dEγ 2πE3

γ f (Eγ )

× ρ(Sn − Eγ )
∑
Jf

g(Sn − Eγ , Jf ), (13)

where the summation and integration run over all final levels
with spin Jf that are accessible by E1 or M1 transitions with
energy Eγ . The normalization procedures for the Oslo method
are further described in Refs. [30,32].
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FIG. 10. Comparison of Oslo γ SF data for 160–164Dy with the present photoneutron data for 162,163Dy (blue, open and filled crosses,
respectively) and the 165Ho(γ, n) data (blue diamonds) from Berman et al. [49]. The pink (filled) and blue (open) squares represent the
reanalyzed Oslo data from Refs. [14,15,32,33]. The solid, blue line is the total fit to the data as described in the text, with contributions from
the GEDRs and PDRs (purple line) and the SR (dashed line). Calculations within the deformed-basis QRPA framework [2,50] for ground-state
excitations are shown and compared to data (solid, black line and dotted line for the E1 and M1 component, respectively). Reevaluated E1
and M1 strengths obtained from average-resonance capture data [51] are included in panels (c), (d), and (e); in panel (e) we also show M1
and E1 strength data from thermal (n, γ ) reactions [47]. Error bars include statistical and systematic errors (one standard deviation). Panel
(f) shows all photoneutron data and Oslo data plotted together.

We would like to point out that an error in the normaliza-
tion code was discovered in 2014. The spin weighting func-
tion, g(Sn − Eγ , Jf ), was applied with a wrong argument:
instead of Sn − Eγ , only the γ -ray energy Eγ was used.
This resulted in an error in the absolute value of the γ SF
of typically ≈30%. In addition, the spin cutoff parameters
used previously and their dependence on excitation energy
are different from the ones considered in the present analysis.
Also, the back-shifted Fermi gas was applied for interpolating
between ρ(Sn) and our data points. All these factors lead to
some differences between the previous normalizations and
the present ones. The present normalizations are done in a
consistent way with the same type of analysis for all isotopes,
and we find that they are all very similar within the error bars
[(see Fig. 10(f)].

V. RESULTS

A. Comparison of available strength-function data

According to the principle of detailed balance [1], the
upward and downward γ SF will correspond to each other. The
(upward) photoneutron cross section σγn is connected to the
(downward) γ SF by [47]

f (Eγ ) = 1

3π2h̄2c2

σγn(Eγ )

Eγ

, (14)

where the constant 1/3π2h̄2c2 = 8.674 × 10−8 mb−1 MeV−2.
Using this relation, one can compare the γ SFs from the
newly measured (γ, n) data with the reanalyzed Oslo data.
Note that Eq. (14) holds only when the neutron channel in
the photoneutron data dominates. In the vicinity of Sn, the
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TABLE III. Resonance parameters used for the E1 γ SF.

Nucleus ωE1,1 σE1,1 �E1,1 ωE1,2 σE1,2 �E1,2 Tf ωPDR1 σPDR1 �PDR1 ωPDR2 σPDR2 �PDR2

(MeV) (mb) (MeV) (MeV) (mb) (MeV) (MeV) (MeV) (mb) (MeV) (MeV) (mb) (MeV)

160Dy 12.67(5) 264(16) 3.0(2) 15.20(3) 176(8) 2.2(2) 0.61 6.9(1) 3.2(2) 1.9a 10.6(8) 30(12) 4.9(10)
161Dy 12.68(5) 262(17) 3.0(2) 15.20(3) 175(8) 2.2(2) 0.59 6.08(9) 5.3(10) 1.9(3) 10.6(8) 30(12) 5.0(10)
162Dy 12.67(5) 264(16) 3.0(2) 15.20(3) 176(8) 2.2(2) 0.61 6.42(9) 4.2(5) 1.9(2) 10.6(8) 30(12) 4.9(10)
163Dy 12.68(5) 262(18) 3.0(2) 15.20(3) 175(8) 2.2(2) 0.59 6.19(19) 4.5(9) 2.1(3) 10.6(8) 30(12) 5.0(10)
164Dy 12.68(5) 263(16) 3.0(2) 15.20(3) 175(8) 2.2(2) 0.60 6.33(14) 4.3(7) 1.9(3) 10.6(8) 30(11) 5.0(10)

aTaken from 161Dy.

competing γ emission needs to be taken into account through
the Hauser-Feshbach formalism.

Figure 10 shows the 162,163Dy(γ, n) data for energies above
Sn, while the reanalyzed Oslo data cover energy regions
below Sn. Previous measurements on the 165Ho(γ, n) cross
section [49] are also shown. In the cases of 162,163Dy, the two
distinct types of data and normalization procedures match re-
markably well. Moreover, re-evaluated E1 and M1 strengths
obtained from average-resonance capture data [51] are plot-
ted in Figs. 10(c)–10(e). In Fig. 10(f), all the experimental
photoneutron and Oslo data are plotted together, showing a
consistent behavior.

B. Comparison with models

The solid blue curve of Fig. 10 shows a fit to the γ SF
data by the sum of five functions: the double-humped GEDR,
a pygmy dipole resonance (PDR1) at a lower centroid of
≈6–7 MeV, a second PDR (PDR2) at a rather high energy

centroid of ≈11 MeV, and the scissors resonance (SR):

f = fE1,1 + fE1,2 + fPDR1 + fPDR2 + fSR. (15)

The PDRs were included to get a good reproduction of the
photoneutron data in the Eγ = 8–11 MeV region, and also
to describe the Oslo data reasonably well in the Eγ ≈ 6–7
MeV region. Although the Oslo γ SFs have rather large error
bars for high Eγ , the overall trend indicates the presence of
a PDR centered between Eγ ≈ 6–7 MeV. The electromag-
netic character is likely electric, considering the data from
Ref. [51]. Also, NRF data from Volz et al. [52] on N = 82
isotones, amongst them 144Sm, show a concentration of E1
strength between Ex ≈ 5.5–6.5 MeV attributed to a PDR.
Based on the weak M1 strengths found in Ref. [51] between
Eγ ≈ 5–7 MeV, which are about a factor of ≈6–8 lower than
the E1 strength, we did not add an M1 spin-flip resonance to
the fit.

For the GEDR we have used the generalized Lorentzian
(GLO) model [47,53] with two components:

fE1,i (Eγ ) = 1

3π2h̄2c2
σE1,i�E1,i

[
Eγ �(Eγ , Tf )(

E2
γ − ω2

E1,i

)2 + E2
γ �2(Eγ , Tf )

+ 0.7
�(Eγ = 0, Tf )

ω3
E1,i

]
(16)

with a γ width of

�(Eγ , Tf ) = �E1,i

E2
E1,i

(
E2

γ + 4π2T 2
f

)
. (17)

The index i gives the first and second parts of the resonance.
The PDR and SR structures have been described by the SLO
model [47]:

fSLO(Eγ ) = 1

3π2h̄2c2

σSLOEγ �2
SLO(

E2
γ − ω2

SLO

)2 + E2
γ �2

SLO

, (18)

with resonance parameters (ωSLO, σSLO,�SLO) given by the
individual PDR and SR structures.

The present 162,163Dy(γ, n) data provide information on
the resonance parameters up to ≈13.5 MeV, including the
first peak of the double-humped GEDR. For the second
peak around 15.2 MeV, we make use of the 165Ho(γ, n)
data by Berman et al. [49]. Thus, for the upper E1
part, fE1 = fE1,1 + fE1,2 + fPDR2, we have fitted simultane-
ously the 162,163Dy(γ, n) and 165Ho(γ, n) data (from Eγ ≈
13–16.5 MeV) in the region Eγ = 8.0–16.5 MeV. Further,
we make use of the constant temperature determined by the

fit of the level densities, so that Tf = TCT from Table II.
With this strategy we estimate the E1 component of the γ SF
for the Oslo data. The resonance parameters for the GEDR1,
GEDR2, and PDR2 resonances are listed in Table III. With
the temperature parameter determined from the level density,
nine free parameters are included in the fit. Note that we have
also tested the case where Tf is a free (but constant-value)
parameter as well; this gives slightly lower temperatures of
Tf ≈ 0.5 MeV.

Keeping the E1 parameters fixed except for PDR1, we
fit the Oslo γ SF data in the range Eγ ≈ 1.5–8.9 MeV to
the function in Eq. (15) to determine the PDR1 and SR
parameters (six free parameters). In the cases where there are
data from two different reactions, both data sets are included
simultaneously in the fit. We have not applied any constraints
on the fit parameters, except for 160Dy where we have used
a fixed width of the PDR1 resonance of �PDR1 = 1.9 MeV
[taken from the fit of the (3He, α)161Dy and (3He, 3He′)161Dy
data]. The reason for locking this parameter is the large
fluctuations in the data for Eγ > 5 MeV for this nucleus. The
resulting PDR1 parameters are given together with the other
E1 contributions in Table III.
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TABLE IV. Scissors resonance fit parameters and BSR strengths.

Nucleus Deformation Experiment

δ ωSR σSR �SR BSR
a BSR

b

(MeV) (mb) (MeV) (μ2
N ) (μ2

N )

160Dy 0.320 2.66(12) 0.50(17) 0.79(33) 4.8(26) 1.7(10)
161Dy 0.323 2.78(7) 0.50(7) 0.79(18) 4.6(12) 2.1(6)
162Dy 0.325 2.81(8) 0.54(12) 0.76(21) 4.8(17) 2.3(8)
163Dy 0.327 2.84(15) 0.73(19) 0.69(25) 5.8(26) 3.1(14)
164Dy 0.329 2.83(8) 0.69(14) 0.69(18) 5.5(18) 2.8(9)

aLimits of integration 0–10 MeV.
bLimits of integration 2.7–3.7 MeV.

The SR parameters are given in Table IV. We find that the
centroids, ωSR, are very well determined in all cases. Also the
width, �SR, and peak cross section, σSR, are reliably estimated,
although with larger error bars.

In Fig. 10, we compare the data with recent calculations
within the quasiparticle random-phase approximation (QRPA)
using an axially symmetric deformed basis [2,50]. The QRPA
calculations probe the E1 and M1 strength built on the ground
state. It is very interesting to see that the E1 QRPA calcula-
tions are in excellent agreement with the fitted E1 component
down to Eγ ≈ 4.5 MeV, indicating that the E1 strength built
on the ground state is a good proxy for the E1 strength in the
quasicontinuum as well. Recent shell-model calculations by
Sieja [54] demonstrate that the low-energy E1 part probably
attains a flat, constant strength towards Eγ → 0 MeV. This
brings further support to the E1 component extracted from
the fit to the (γ, n) data.

The deformed-basis M1 QRPA calculations clearly display
significant structures. A splitting of the SR-like strength be-
tween Eγ = 1.5 and 3.5 MeV is particularly intriguing. Such
a splitting has previously been experimentally observed in the
actinide region [16]; however, it is not clear from the present
Dy data whether this is also the case here.

C. The M1 scissors resonance

We now turn to the SR and would like to compare our
present results with other experimental findings and the QRPA
calculations. The systematics of the SR parameters are shown
in Fig. 11, where the Oslo parameters are taken from Table IV.
The present results are very similar within the uncertainties,
which is expected because the deformation of these isotopes
is about the same. However, there is a tendency towards higher
ωSR for the heavier isotopes. As the centroid is directly pro-
portional to the deformation parameter δ, this might indicate
a slightly larger deformation for 163,164Dy. Also, our results
for the SR parameters of 163Dy compare well with parameters
published in Ref. [8], although it is difficult to assess the
degree of agreement, because the authors of Ref. [8] did not
report any errors.

We also compare with parameters deduced from the MSC
analysis in Ref. [21]. The recommended peak cross section
[55] of 162Dy reported in [21] is considerably smaller than
the peak cross extracted from the Oslo type experiment,
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FIG. 11. Comparison of the SR resonance parameters: (a) peak
cross sections, (b) centroids, and (c) widths from this work (blue
diamonds) with reported parameters from Ref. [8] (red open squares)
and Ref. [21] (red filled squares).

but for 164Dy the results agree within the error bars. The
recommended resonance widths reported in [21] are almost
a factor 2 larger than our reported widths. Still, when taking
the error bars into consideration, the ratio of the widths is
consistent within about one standard deviation. It is interesting
to note the difference in SR widths deduced from the recent
MSC data on 162,164Dy and the TSC data on 163Dy.

To determine the experimental summed SR strength from
our data, we numerically integrate Eq. (18) by1

BSR =
∫

dBSR

dEγ

dEγ = 27(h̄c)3

16π

∫
fSR(Eγ )dEγ , (19)

1Note that in previous works, the expression BSR = 9h̄c

32π2 ( σSR�SR
ωSR

)
has been used to estimate the integrated SR strength. This formula
gives ≈10% higher strength than integrating the SR function as given
in Eq. (19).
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FIG. 12. Comparison of the integrated SR strength from the
present data sets (blue diamonds), the TSC measurement [8] (green
filled circles), and the MSC results (green filled squares). The error
bars of the MSC data are taken from Ref. [21] and the recommended
values (represented by green filled circles) are from [55]. The NRF
measurements for 160Dy are from Ref. [59], for 162,164Dy from [60]
and for 163Dy from [61]. All NRF measurements are represented
by red stars. The QRPA calculations (black diamonds) are from
Ref. [50]. In (a) we show the total integrated/summed SR strength for
all energies in the relevant SR energy range and in (b) we show the
integrated/summed SR strength for the energy interval 2.7–3.7 MeV.
The SR strengths for 160,162,164Dy are the evaluated values of the NRF
measurements from Ref. [56]. Note the different scales on the axes.

where 27(h̄c)3/16π = 2.5980 × 108 μ2
NMeV2.When com-

paring to existing NRF data, we observe varying summing
conventions. In Ref. [56], the excitation energy summing in-
terval for Z < 68 nuclei is set to 2.7–3.7 MeV and for higher
Z, the range is typically 2.4–3.7 MeV. In addition, transitions
that are identified as M1 spin-flip type from inelastic proton
scattering [57] are omitted from the sum.

If we integrate Eq. (19) over all transition energies, we
find a total, summed SR strength of 4.6(12)–5.8(26) μ2

N . We
observe that treating Tf as a free parameter in the fit will lead
to larger summed SR strengths. The present fit strategy gives
about 40% higher summed SR strengths than the reported
NRF results. However, if we apply the NFR energy limits
to Eq. (19), we obtain excellent agreement with the NRF
results as shown in Fig. 12(b). It is interesting to note that

≈40–60% of our measured SR strength lies in the energy
region below 2.7 MeV. In traditional NRF experiments using
bremsstrahlung, the transitions in this energy range are quite
difficult to separate from the sizable atomic background. It is
highly desirable to remeasure the Dy isotopes by performing
NRF experiments using quasimonochromatic beams in the
interesting energy region between 2 and 4 MeV as done for
232Th (see Ref. [58]).

The integration limits for the SR function are given in the
footnotes of Table IV. The table also includes the nuclear
deformation δ ≈ β2

√
45/16π , where β2 is taken from Raman

et al. [62] as compiled in Ref. [63].
The observation that the BSR strength in the Oslo-type

of experiments using NRF integration limits compares well
with the NRF results is very interesting. It indicates that an
eventual different effective moment of inertia for the SR built
on the ground state compared to the SR embedded in the
quasicontinuum has minor influence on the strength. These
findings are therefore fully consistent with the generalized
Brink hypothesis.

D. Radiative neutron capture cross sections

Using our data as input, we have performed calculations
of the radiative neutron capture (n, γ ) cross sections for
the 159–163Dy target nuclei with the reaction code TALYS-1.8
[64,65]. The radiative neutron capture rates depend strongly
on the γ SF, which we now provide based on the new exper-
imental data. It is a great advantage that we have data also
below the neutron separation threshold; if not, the shape and
absolute strength of the modeled γ SF below the threshold
would be much more uncertain.

We use the GLO modeled strength functions with the
experimental parameter values found in Tables III and IV
for the GEDR, PDR, and SR structures. The radiative
neutron capture cross sections also rely on the level densities,
which we describe with the CT model fitted to our data
and normalized to the experimental s-wave spacing D0

values and the HFB calculations as described previously. In
addition, the cross sections depend on the neutron optical
model potential (n-OMP), for which we have applied the
phenomenological approach by Koning and Delaroche
[66]. Also, we have used both the default option for the
width-fluctuation treatment (the Moldauer expression [67,68])
and the Hofmann-Richert-Tepel-Weidenmüller model
[69–71].

The resulting (n, γ ) cross sections are compared to ex-
perimental data from Beer et al. [72], Bokhovko et al. [73],
Kim [74], Kononov et al. [75], Mizuno et al. [76], and
Voss et al. [77] as seen in Fig. 13. To our knowledge, for
the case of 159Dy, this is the first time an experimentally
constrained (n, γ ) cross section has been derived. For the
other cases, where data exists, there is an excellent agreement
with measured (n, γ ) cross sections, within the experimental
uncertainties. This fact gives further support to the applicabil-
ity of detailed balance and the generalized Brink hypothesis
for Dy isotopes.
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FIG. 13. Calculated (n, γ ) cross sections for 160–164Dy compound nuclei with TALYS-1.8 [64,65] compared to data from Beer et al. [72],
Bokhovko et al. [73], Kim [74], Kononov et al. [75], Mizuno et al. [76], and Voss et al. [77]. The purple, shaded areas display the calculated
cross sections using our data as input (included uncertainty of one standard deviation).

VI. SUMMARY AND CONCLUSIONS

Using laser Compton backscattered γ -ray beams, we have
extracted photoneutron cross sections of 162,163Dy above Sn.
γ -ray strength functions above Sn are deduced from the
measured cross sections and are compared to reanalyzed data
of 160–164Dy in the energy range below Sn. We observe that the
γ SFs from the two different experimental approaches match
well in both absolute value and slope at Sn for 162,163Dy. This
verifies the principle of detailed balance for absorption and
emission of γ rays with energies in the region of Eγ ≈ Sn.

By a careful determination of the underlying E1 com-
ponent of the γ SF, we have evaluated the SR parameters
for 160–164Dy. All SR parameters agree well with each other
and average values of ωSR = 2.77(10) MeV and BSR =
5.1(20)μ2

N are found. The inclusion of several improvements
in the analysis gives slightly different results than previously
reported. However, we believe the new values are better
founded.

Based on the new photoneutron data and the 3He induced
reactions we have calculated the inverse neutron capture
cross sections using the reaction code TALYS. The simulated
radiative neutron capture cross sections are compared to ex-
perimentally measured cross sections, and are in excellent
agreement with the measurements.

In this work, the uncertainties quoted are carefully esti-
mated including statistical as well as systematic errors. The
summed strengths are compared to NRF and (n, γ ) mea-
surements on Dy isotopes. Provided that we use integration
limits for the summed SR strength similar to ones used for
NRF experiments, we find the same strength. The present
results, therefore, confirm the validity of the generalized Brink
hypothesis for the SR and the applicability of detailed balance
for γ decay and absorption in the 160–164Dy isotopes.
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