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Background: While a large-scale shell model calculation (LSSM) is a powerful model to describe the nuclear
spectroscopic information, it requires a huge amount of computational resources. As an efficient approximation
framework to the LSSM, we have introduced the variational Monte Carlo (VMC) method [T. Mizusaki et al.,
Phys. Rev. C 85, 021301(R) (2012)]. However, this framework was applicable only to even-mass nuclei.
Purpose: We aim to extend the VMC method for better precision and to make it applicable to odd-mass nuclei.
Methods: We investigate two kinds of extensions for the VMC method with the Pfaffian in the nuclear shell-
model calculations. One is the extension to odd-mass nuclei, for which we find a new Pfaffian expression of the
VMC matrix elements. The other is the extension of the variation after angular-momentum projection.
Results: We successfully implement the full angular-momentum projected trial state into the VMC method,
which can provide us with precise yrast energies. We also find a unique characteristic, namely that this angular-
momentum projection in the VMC can be even “approximately” performed.
Conclusions: A unified VMC framework with the variation after projection is given both for even and odd-mass
nuclei. The approximate angular-momentum projection is useful not only for efficient computation but also for
precise estimation of the yrast energies through the energy-variance extrapolation.
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I. INTRODUCTION

Variational Monte Carlo is one of the quantum Monte
Carlo methods to solve quantum many-body problems numer-
ically. While it is a variational method and the precision of the
approximation depends on the quality of the trial wave func-
tion and the Hamiltonian, it is applicable to any Hamiltonian
without the notorious sign problem. Therefore, it has been
intensively developed in various fields, such as condensed
matter physics [1–4] and nuclear physics [5,6]. Especially,
the advent of the stochastic reconfiguration (SR) method [7]
enables us to use a large number of variational parame-
ters efficiently. Moreover, as a trial state, a particle-number-
projected Hartree-Fock-Bogoliubov (HFB) wave function can
be used owing to the Pfaffian, which is known to provide us
with a compact and computationally effective wave function
[8]. This recent progress broadens the applicability to the
configuration-space methods, such as the Hubbard model.

In nuclear physics, the large-scale shell-model (LSSM)
calculation is one of the configuration-space methods, and
is a powerful model to describe the nuclear spectroscopic
information precisely. However, the number of many-body
configurations which appear in the LSSM tends to be huge,
and the dimension of the Hamiltonian matrix to be diagonal-
ized often surpasses the capability of state-of-the-art super-
computers [9]. In order to avoid this problem and to describe
the shell-model wave function in a sophisticated form, the
pair-correlated wave function, or the HFB-type wave function,

was suggested in the VAMPIR method [10]. However, the
HFB wave function is awkward for treating odd-mass systems
[11]. We have proposed a new formulation of the variational
Monte Carlo (VMC) method for shell-model calculations
for even-mass nuclei [6] and demonstrated its feasibility for
LSSM calculations.

In the present paper, we address two kinds of extensions
of the previously presented VMC method. One extension is to
handle odd-mass nuclei in the framework of VMC with a new
Pfaffian expression. We present a common VMC framework
both for even and odd-mass nuclei. The other extension is
the implementation of the variation after angular-momentum
projection. Since the atomic nucleus is an isolated system, the
restoration of symmetry is crucial for the nuclear structure cal-
culations [12]. We successfully implement the trial state with
full angular-momentum projection into the VMC method.
Unlike other applications of angular-momentum projection,
we find a unique characteristic that full angular-momentum
projection in the VMC can be performed “approximately.”
This characteristic is useful not only for efficient computation
but also for precise estimation of the yrast energies through the
energy-variance extrapolation. In condensed matter physics,
the projection method was introduced in, e.g., Refs. [13–15],
and it was also introduced into the VMC in Ref. [1]. The
projection method is well known, but this implementation of
the VMC is more flexible than the preceding works. It may be
useful to other fields of physics.
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This paper is organized as follows: Section II is devoted
to explaining the theoretical framework of the VMC method
and its extension to odd-mass nuclei. The numerical results
and “approximate” projection are discussed in Sec. III. The
summary is given in Sec. IV.

II. FORMULATION OF THE VMC

In this section, we briefly describe the formulation of the
VMC. We introduce a trial wave function in Sec. II A and
describe how to stochastically evaluate the energy expectation
value of the wave function in the framework of the Monte
Carlo in Sec. II B. The restoration of rotational symmetry by
the projection method in the VMC is summarized in Sec. II C.
The variational parameters are determined so that the energy
is minimized utilizing the SR method, the details of which are
given in Appendix C.

A. Trial wave function

As a trial wave function for nuclei with N valence particles
for the present VMC, we take |ψ〉 as

|ψ〉 = GP |φ〉, (1)

where the |φ〉 is a pair-correlated wave function and P is a
projection operator, both of which are discussed later. The
operator G is the Gutzwiller-like factor,

G = exp

⎛
⎝∑

i�j

αijninj

⎞
⎠, (2)

where ni is the number operator of the single-particle orbit i
and α’s are variational parameters.

For even-mass nuclei, the |φ〉 is defined as

|φ〉 =
(∑

kk′
fkk′c

†
kc

†
k′

)N/2

|−〉, (3)

where f is a skew-symmetric matrix, fkk′ = −fk′k , the matrix
elements of which are variational parameters. The |−〉 is
an inert core and the c

†
k’s are proton or neutron creation

operators of the single-particle state k. It corresponds to the
number projected Hartree-Fock-Bogoliubov wave function
[16], which is advantageous for the description of pairing
correlations. Note that this wave function contains the proton-
neutron pairing correlations in addition to the proton-proton
and neutron-neutron pairing correlations, while the usual HFB
method does not include proton-neutron pairing correlations.
It plays a crucial role in understanding the nuclear structure of
N = Z nuclei [17,18].

For odd-mass nuclei, we extend the trial wave function |φ〉,
which is defined as

|φ〉 =
(∑

l

hlc
†
l

)(∑
kk′

fkk′c
†
kc

†
k′

)(N−1)/2

|−〉, (4)

where the hl are additional variational parameters. This form
is the simplest for odd-mass nuclei. Hereafter we discuss the
VMC formalism for the odd-mass cases. The formulation of
the even-mass case can be seen in Ref. [6] and is also obtained

easily by omitting the terms containing the hl parameters
in the following formulations; that is, we can give a unified
description with this trial wave function for even- and odd-
mass nuclei.

The projection operator P serves to restore the rotational
symmetry, parity symmetry, and z component of isospin, as

P = P TzP πP I
M, (5)

where P Tz , P π , and P I
M are projectors of the z component

of the isospin, the parity π , and the total angular momentum
(I,M ), respectively. The angular-momentum operator is de-
composed into the 〈Jz〉 = M projection and the rest as

P I
M = PMP̃ I

M, (6)

where

P̃ I
M ≡ 2I + 1

4π

I∑
K=−I

gK

∫
dγ dβ sin βdI

MK (β )e−iKγ eiJyβeiJzγ .

(7)

The dI
MK (β ) is Wigner’s d function and gK denotes the 2I + 1

variational parameters.

B. Markov chain Monte Carlo method

We describe how to estimate the energy expectation value
of the trial wave function. First of all, the projection operator
of the z component of isospin, parity, and z component of
angular momentum is expressed as a linear combination of
the complete set in the m-scheme basis states as

P TzP πPM =
∑

m∈{Mπ }
|m〉〈m|, (8)

where the m-scheme basis state |m〉 is defined as

|m〉 = c†m1
c†m2

· · · c†mN
|−〉, (9)

which is parametrized by a set of occupied single-particle
states, m = {m1,m2, . . . , mN }. The

∑
m∈Mπ denotes the sum-

mation of any |m〉 in the subspace with Jz = M and π parity.
It is convenient to take M = I , especially for the yrast states.

The energy expectation value is obtained as

〈H 〉 = 1∑
m∈Mπ |〈m|ψ〉|2

∑
m∈Mπ

|〈m|ψ〉|2 〈m|H |ψ〉
〈m|ψ〉

=
∑

m∈Mπ

p(m)El (m), (10)

where p(m) is defined as p(m) = |〈m|ψ〉|2/∑
m |〈m|ψ〉|2.

El (m) is called the local energy and is defined as

El (m) = 〈m|H |ψ〉
〈m|ψ〉 = 1

〈m|ψ〉
∑

m′∈Mπ

〈m|H |m′〉〈m′|ψ〉, (11)

where the matrix Hmm′ = 〈m|H |m′〉 is sparse and the sum-
mation concerning m′ can be computed efficiently since the
shell-model Hamiltonian H is a two-body interaction and has
good parity and rotational symmetries. The matrix element
〈m|H |m′〉 itself is also computed efficiently: in the practical
code, |m〉 is expressed as the array of (m1,m2, . . . , mN ) and
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we operate each of the two-body terms of the Hamiltonian
operator in a way similar to the conventional Lanczos shell-
model codes [9,19].

The weighted summation
∑

m p(m) in Eq. (10) is esti-
mated stochastically using the Markov chain Monte Carlo
(MCMC) method in which |m〉 walks randomly in the {Mπ }
subspace obeying the probability p(m). Such a random
walker of the m-scheme basis state was adopted also in
Refs. [6,20,21]. The energy gradient and the overlap matrix
are also estimated stochastically by the SR method.

The overlap between the m-scheme basis state and |ψ〉 is
shown by

〈m|ψ〉 = G(m)〈m|P |φ〉 (12)

with G|m〉 = G(m)|m〉. Note that G is a diagonal operator for
the m-scheme basis representation and is commutable with
the projection operator P . This factor usually accelerates the
convergence of the SR iterations. While this operator can
include many-body correlation beyond the mean-field and
pairing correlations, its contribution to the energy gain is
limited in the case of shell-model calculations. The projected
overlap, 〈m|P |φ〉, is discussed in the following subsection.

C. Angular-momentum projection

The projected overlap 〈m|P |φ〉 is evaluated as

〈m|P |φ〉 = 〈m|P̃ I
M |φ〉

= 2I + 1

4π

∫
d(cos β )dγ dI

MK (β )e−iKγ 〈m|R(β, γ )|φ〉

� 2I + 1

4π

∑
K

gK

Nz∑
a

w(z)
a e−iKγa

Ny∑
b

w
(y)
b dI

MK (βb )

×〈m|R(βb, γa )|φ〉, (13)

where the integrals over cos β and γ are numerically
approximated by weighted sums. The points (γb, βa ) and its
weight factors (w(z)

a , w
(y)
b ) for the integrals are determined by

the trapezoidal rule for γ and the Gauss-Legendre quadrature
for cos(β ) [22] for efficient computation. The number of the
points for integrals, Nz and Ny , are usually determined to be
large enough to evaluate the correct expectation value of J 2.
The numbers are taken typically as (Nz,Ny ) = (32, 16). The
rotation of the correlated-pair wave function |φ〉 is evaluated
as

R(β, γ )|φ〉 = eiJyβbeiJzγa |φ〉

=
(∑

l

h′
lc

†
l

)(∑
kk′

f ′
kk′c

†
kc

†
k′

)(N−1)/2

|−〉 (14)

with h′ = Rh, f ′ = Rf RT . The rotation matrix R is defined
as R = eJyβbeJzγa . Thus the rotated wave function is kept
in the same form thanks to the Baker-Campbell-Hausdorff
theorem [23].

In this paper, we find that the overlap between this form
of the wave function |φ〉 and the m-scheme basis state
can be written using the single Pfaffian. This is shown in
Appendix A.

The variational parameters α, h, f , and g are determined so
that the energy is minimized utilizing the SR method. In this
paper, we show that the angular-momentum projected energy
can be minimized in the VAP framework of the VMC, while
the unprojected energy is also minimized to determine the
wave function, and the projected energy can be evaluated in
the variation-before-projection (VBP) framework [6]. In the
VMC approach, “unprojected” means without full-angular-
momentum projector P̃ I

M , but with the Jz, parity, and Tz

projections.

III. NUMERICAL RESULTS

We discuss the VMC results with variation after angular-
momentum projection (J-VAP) in the even-mass case in
Sec. III A and in the odd-mass case in Sec, III B. The J-
VAP calculation can give better yrast energies than those of
our previous paper [6], while it requires a more substantial
computational cost. In Sec. III C, the “approximation” scheme
of angular-momentum projection is introduced to reduce the
computational cost. We show that this approximation scheme
can give a sequence of wave functions, which can be useful
for the extrapolation using the energy variance. With the
energy variance extrapolation, the exact yrast energies can be
estimated beyond the limitation of the trial wave function.

A. Variation after projection for even-mass nuclei

In this subsection, we demonstrate the VAP calculation
with the variation after angular-momentum projection of 48Cr
in the pf shell. The GXPF1A interaction is adopted as an ef-
fective interaction [24]. The m-scheme dimension of the M =
0 subspace is 1 963 461. While it is tractable for the conven-
tional shell-model calculations, the shell-model calculation
of 48Cr has been used for benchmark tests of various shell-
model-based methods [9]. For the test of the VMC calculation,
we use a realistic residual interaction, not a schematic interac-
tion, in order to properly judge the feasibility of the method.

Figure 1 shows the convergence of the VMC energy with
full angular-momentum projection, which is called J-VAP
VMC energy later, as a function of the number of the iterations
of the SR method. The MCMC procedure generates eight
random walkers with 8000 steps with the Gibbs sampler,
the details of which are shown in Ref. [6]. This step needs
twofold integration over Euler’s angle as in Eq. (13), which
needs heavy numerical computation. At the present stage, the
computation time of the VMC is not very competitive with the
exact shell-model calculation using the Lanczos method. For
example, the VMC calculation to obtain the 0+ state of 48Cr
costs 176 seconds on a PC server with 56 CPU cores, while
the Lanczos calculation requires 12 seconds using the shell-
model code KSHELL [25]. However, the Lanczos calculation
has a difficulty due to the explosive increase of the m-scheme
dimension in mid-shell nuclei, while the computation amount
of VMC is expected to be much more modestly increased. In
addition, we will show how to reduce the amount of the VMC
computation in Sec. III C.

The convergence of the J-VAP VMC energies is almost
achieved with up to 50–60 steps. Since the Monte Carlo
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FIG. 1. Convergence of energies of Iπ = 0+ (filled orange cir-
cles), 2+ (open green circles), 4+ (filled blue squares), 6+ (open light-
blue squares), 8+ (filled green triangles), 10+ (open brown triangles),
and 12+ (filled red inverted triangles) states of 48Cr obtained by
J-VAP VMC as functions of the number ofe SR iterations. The right
column shows the VAP results, exact shell-model energies, and the
VBP results of the Iπ = 0+, 2+, 4+, 6+, 8+, 10+, and 12+ states in
order from the bottom.

error of the energy is typically 2 keV and small enough,
the error bars are omitted for simplicity in the figure. The
J-VAP VMC energy converges well and is close enough
to the exact shell-model energies within 160 keV from 0+
to 12+ states. For comparison, we show the VBP energy
as the rightmost levels in the figure. The VMC with VAP
improves the energy over VBP as expected. Especially the
VBP result underestimates the 2+ excitation energy, while the
VAP result sufficiently reproduces the exact values including
the backbending phenomenon [12]; e.g. Ex(12+) − Ex(10+)
is smaller than Ex(10+) − Ex(8+). Note that the isoscalar
pairing plays an important role in the backbending of 48Cr
[26,27] and it is shown that the VMC calculations are suitable
for including the isoscalar-pairing correlations. The small
energy differences between the exact energies and J-VAP
VMC ones will be discussed in Sec. III D.

B. Variation after projection for odd-mass nuclei

In this subsection, we consider the odd-mass nuclei for a
test of the new trial wave function. We calculate the yrast
energies of 49Cr within the pf -shell model space and the
GXPF1A interaction [24]. The m-scheme dimension of the
M = 1

2 subspace reaches 6 004 205. In this VMC calculation,
we apply the full angular-momentum projection to the trial
state. In the MCMC process, we adopt the Gibbs sampler
with 640 random walkers, each of which contains 500 sample
steps after 100 burn-in steps. In order to suppress the biases

FIG. 2. Convergence of the J-VAP VMC energies of 49Cr with
GXPF1A interaction. The figure shows the energy expectation values
of 5/2− (filled black circles), 7/2− (open blue squares), 9/2− (filled
orange triangles), and 11/2− (open green circles) states, respectively,
as functions of the number of iterations. The exact shell-model
energies are shown as the rightmost red triangles.

induced by the initial state of the Markov Chain, we take the
last sample of the previous SR iteration as an initial sample of
the MCMC process.

Figure 2 shows the convergence of the J-VAP VMC energy
of 49Cr as an example of odd-mass nuclei. The energies of the
yrast states 5/2−, 7/2−, 9/2−, and 11/2− are shown in the
figure. The difference between the converged energy and
the exact one is similar to the one of the even case, which
means that our trial wave function (4) is considerably more
proper. However, the number of iterations of the odd case is
larger than the one of the even case.

C. Approximate angular-momentum projection

Since the correlated-pair wave function |ψ〉 does not have
good rotational and parity symmetries, the solution sponta-
neously breaks these symmetries, and it is crucial to restore
them by the projection method. In general, J-VAP has a
large effect of minimizing the energy in the context of the
configuration-interaction approach. Various variational calcu-
lation after the angular-momentum projection have therefore
been proposed, such as the Monte Carlo shell model [28],
the VAMPIR approach [10], and the hybrid multideterminant
method [29].

In these J-VAP calculations, since the energy and the en-
ergy gradient are computed under the mathematical conditions
[H,P I

MK ] = 0 and P I
MLP I

L′K = δLL′P I
MK , the high-precision

numerical evaluation of the projection is essential. The in-
sufficient number of points for the integral of the Euler an-
gles causes numerical instability, and the angular-momentum
projection fails in solving the Hill-Wheeler equation. The
angular-momentum projection is, therefore, a central bottle-
neck of the computation of various variational approaches to
the nuclear quantum many-body solver [30].

On the other hand, in the VMC formalism, since
the conditions [H,P I

MK ] = 0 and P I
MLP I

L′K = δLL′P I
MK are
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FIG. 3. VMC results with the variation after approximate
angular-momentum projection against the total number of the mesh
points for the integral, NzNy . The filled black symbols connected
with the dotted lines denote the converged results of the Iπ = 0+,
2+, 4+, 6+, 8+, 10+, and 12+ states of 48Cr with the GXPF1A
interaction [24]. The open orange symbols connected with the dashed
lines denote the fully projected energy of the resultant wave function.
See text for further details.

not adopted, high precision calculations for the angular-
momentum projection P̃ I

M are not necessarily needed, which
means that the number of mesh points for numerical in-
tegration could be reduced. In fact, even when we use a
small number of points for the integrals and the operator P̃ I

M

is mathematically no longer valid as a projection operator,
P̃ I

M |φ〉 works as a trial wave function with “approximated”
angular momentum, because this wave function is simply
a superposition of the rotated wave functions of |φ〉 with
appropriate weight coefficients:

P̃ I
M |φ〉 �

Nz∑
a=1

Ny∑
b=1

w(z)
a w

(y)
b R(βb, γa )|φ〉. (15)

Therefore, as an approximation to the projection operator, we
introduce the P̃ I

M with a set of the small numbers of Nz and
Ny and call it P̃ ′I

M hereafter. Note that P̃ ′I
M is still commutable

with the operator G for any (Nz,Ny ).
Figure 3 shows the converged VMC energies of the 0+, 2+,

and 4+ energies in 48Cr with the GXPF1A interaction [24]
as functions of the number of points for the integral of the
projection operator P̃ ′I

M . The VMC calculation was performed
with variation after the P̃ ′I

M projection. The number of the
points is taken as (Nz,Ny ) = (1, 1), (2,1), (4,2), (6,3), (8,4),
(10,5), and (21,11). The converged energies of the variation
after the approximated projection are shown as the black sym-

bols in Fig. 3. The case of (Nz,Ny ) = (1, 1) corresponds to
the variation without the angular-momentum projection. In the
figure, the rightmost red triangles denote the exact shell-model
energies. The VMC results well reproduce the exact ones,
even with the small number of NzNy . In order to improve
the precision of the angular-momentum projection so that the
expectation value of J 2 equals I (I + 1) exactly to six decimal
digits, the necessary number of points is higher than the
minimal one given by (Nz,Ny ) = (28, 14), (28,14), (31,16),
and (35,18) for Iπ = 0+, 2+, 4+, and 6+ states, respectively.

Astonishingly, the approximated projection works well
even for (Nz,Ny ) = (6, 3). The total number of points, NzNy ,
is almost proportional to the amount of computations of the
projected matrix elements, which is the most time-consuming
part of the VMC calculations. Therefore, the computation
amount would be dramatically reduced in comparison with
the full projection. The required number of points is rather
constant as a function of the angular momentum I , while
in the case of the full angular-momentum projection the
necessary number of points increases as I does. In the VMC
calculation, the wave function is analytically restricted to
the 〈Jz〉 = I subspace by the random walkers of m-scheme
basis states in Eq. (10). This removes the contamination of
the unwanted lower-I states independently of the number
of the points and makes the variational calculation stable.
The difference of the energies of the J-VAP calculation and
unprojected calculation becomes small in the high-I state.
However, we should mention that the numerical calculation is
stable as far as no higher spin state exists in the region lower
in energy than the target state.

Moreover, we apply the P̃ I projection, in which NzNy is
large enough to obtain the correct expectation value of J 2 of
the resultant wave functions. The orange symbols in Fig. 3
denote the “full” angular-momentum projected energies. They
are considered to be the variation after the approximated
projection and before the full projection. These energies are
quite close to those of the variation after full projection.
In practice the energies obtained by the (Nz,Ny ) = (6, 3)
variation agree with those of J-VAP VMC within 70-keV
difference. In some VMC results of the high-I state with
small (Nz,Ny ), the energies after full projection are worse
than those before projection, possibly because gK in Eq. (7)
is optimized by the variation before full projection and thus is
not optimized for the full projection.

D. Energy-variance extrapolation

As the VMC is a variational method, it must not necessarily
give us exact energies. The obtained energy is an upper limit.
To know the exact energy, one useful method is energy-
variance extrapolation [7,31–34], which uses a series of the
well-approximated wave functions |ψ1〉, |ψ2〉, . . . with mono-
tonically decreasing energies 〈ψ1|H |ψ1〉 > 〈ψ2|H |ψ2〉 >
· · · . By evaluating the energy variance as 〈�H 2〉 = 〈H 2〉 −
〈H 〉2 for each wave function, we can show a linear or
quadratic relation between the energy variances and the en-
ergies and show that the energy approaches the exact energy
along the sequence. By fitting a second-order polynomial for
data points of energy variance and energy, the exact energy
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FIG. 4. Energy variance extrapolation by the variation after the
approximate angular-momentum projection. The 0+, 2+, 4+, and
6+ shell-model energies of 48Cr are obtained with the GXPF1A
interaction [24]. The energy expectation values against the energy
variance are plotted as the black symbols with the approximate
projection. The numbers of the points for the projection are taken
as (Nz, Ny ) = (2, 1), (4,2), (6,3), (8,4), (10,5), and (21,11). The red
lines are chi-square-fitted to the symbols. The red squares on the y

axis are the exact shell-model energies.

can be expected by extrapolating the energy to the limit of
〈�H 2〉 = 0.

In the preceding application of the energy-variance ex-
trapolation to the nuclear shell model, we used a truncation
scheme concerning particle-hole excitations to prepare the
sequence of well-approximated wave functions [34]. In the
present J-VAP VMC scheme, the approximate projection
method also provides us with a sequence of approximated
wave functions by changing the number of points for the
integrals. This new method can be applied independently of
the underlying shell structure. Figure 4 shows the energy of
the VMC with the approximated projection as functions of the
expectation value of the energy variance, 〈�H 2〉 = 〈H 2〉 −
〈H 〉2. As the number of mesh points increases, the energy
expectation values decrease as a function of energy variances
and the exact energy is estimated as the intersection of the y
axis beyond the limitation of the VMC. These extrapolated
energies are close to the exact energies shown as the red
symbols on the y axis.

IV. SUMMARY

We presented the VMC method with the Pfaffian to solve
the nuclear shell model in Ref. [6], where we handle only
even-mass nuclei and variation before angular-momentum
projection. In the present paper, we extended the previous
VMC method for odd-mass nuclei, by deriving a new Pfaffian
expression for the VMC matrix element. We demonstrated
that the VMC is successfully applied to odd-mass nuclei. We

also extended the VMC to variation after angular-momentum
projection, which enhances the quality of the VMC energy.

In addition to these extensions, we also found that the “ap-
proximated” angular-momentum projection can work in the
VMC framework. So far, no feasible approximation scheme
for full angular momentum projection has been presented, and
its numerical calculations have been believed to be achievable
in quite a strict manner. However, we proposed a novel ap-
proximation scheme of angular momentum projection, which
reduces the computation drastically and brings about an effi-
cient way to calculate angular momentum projection.

Furthermore, we found that this “approximated”
angular-momentum projection also gives a series of
well-approximated wave functions, which is useful to the
energy variance extrapolation. By this development, we could
estimate the exact energies of the shell model beyond the
limitation of the VMC method.

The form of the trial wave function can be straightfor-
wardly extended to that of a one-broken-pair state, which
is used in the Tamm-Dancoff approximation and shown in
Appendix B 3. Its numerical application remains as a future
subject.
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APPENDIX A: PFAFFIAN AND ITS
RELEVANT FORMULAS

The Pfaffian plays the main role in evaluating the matrix
elements which appear in the present VMC formalism. Some
useful formulas relevant to the Pfaffian are given in this
Appendix. The Pfaffian of a 2n × 2n skew-symmetric matrix
A is defined as

Pf(A) ≡ 1

2nn!

∑
σ∈S2n

sgn(σ )
n∏

i=1

Aσ (2i−1)σ (2i)

= 1

n!

∑
σ∈S2n|σ (2i−1)<σ (2i)

sgn(σ )
n∏

i=1

Aσ (2i−1)σ (2i), (A1)

where σ is a permutation of {1, 2, 3, . . . , 2n}, sgn(σ ) is its
sign, and S2n is a group of the permutations.

For preparation, the recursive relation of Pfaffian is given
as

Pf(A) =
2n∑

j=1

(−1)i+j+1+θ (i−j )Aij Pf(Aij ), (A2)

where Aij denotes the matrix A with the ith and j th columns
and rows removed. θ (i − j ) is the Heaviside step function. Its
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special case with i = 1 is written as

Pf(A) =
2n∑

j=1

(−1)jA1j Pf(A1j ). (A3)

The differentiation of the Pfaffian is given by

∂

∂Aij

Pf(A) = −Pf(A)(A−1)ij . (A4)

APPENDIX B: OVERLAP WITH THE TRIAL WAVE
FUNCTION AND m-SCHEME BASIS STATE

In the present VMC formalism, the overlap between the
trial wave function and the m-scheme basis state must be
computed efficiently. The trial wave function is a product of
the Gutzwiller-like operator G and the pair-correlated wave
function. Since the operator G is diagonal in the m-scheme
basis, the overlap is factorized into the matrix element of G
and the pair-correlated part such as

〈m|ψ〉 = G(m)〈m|φ〉 (B1)

with

G(m) = exp

⎛
⎝∑

i�j

αijninj

⎞
⎠, (B2)

where ni is the number operator of the single-particle orbit
i and α’s are variational parameters. The differential with
respect to the variational parameter αij is obtained simply as

1

〈m|ψ〉
∂

∂αij

〈m|ψ〉 = ninj . (B3)

The overlap between the pair-correlated wave functions
[e.g., Eqs. (3) and (4)] and m-scheme basis state in Eq. (9)
are obtained by using the Pfaffian efficiently. Hereafter we
describe the overlap and its derivative concerning the pair-
correlated wave functions.

1. Even-mass nuclei

It is useful to obtain the overlap between the m-scheme
basis state for the 2n-valence-particles nuclei in Eq. (3) and
the pair-correlated state |φ〉. Using Eq. (A1), it is obtained as

〈m|φ〉 = 〈m|
(∑

fij c
†
i c

†
j

)n

|−〉 = n! Pf(F ), (B4)

where Frs = fmrms
− fmsmr

.
Utilizing Eq. (A4), its differential is obtained as

1

〈m|ψ〉
∂

∂Frs

〈m|ψ〉 = −(F−1)rs . (B5)

2. Odd-mass nuclei

The correlated wave function for the odd-mass case is
defined in Eq. (4). The number of particles is N = 2n − 1.
As a novelty, we show the overlap between this odd wave
function and the m-scheme basis state. Using Eq. (A3), the

overlap is obtained as

〈m|φ〉 = 〈m|
(∑

l

hlc
†
l

)(∑
kk′

fkk′c
†
kc

†
k′

)n−1

|−〉

= n! Pf(F ), (B6)

where F is a n × n skew-symmetric matrix and consists of
the first row being hmp

and the others being f̃ij = fmi,mj
−

fmj ,mi
:

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 hm1 hm2 hm3 · · · hmN

−hm1 0 f̃1,2 f̃1,3 · · · f̃1,N

−hm2 f̃2,1 0 f̃2,3 · · · f̃2,N

· · · · · ·
· · · · · ·

−hmN
f̃N,1 f̃N,2 f̃N,3 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B7)

Its differentiation is also obtained in a manner similar to
the even-mass case:

1

〈m|ψ〉
∂〈m|ψ〉
∂hmk

= −(F−1)1,k+1

1

〈m|ψ〉
∂〈m|ψ〉
∂f̃mk,ml

= −(F−1)k+1,l+1. (B8)

3. Tamm-Dancoff wave function

The wave function used in the Tamm-Dancoff approxi-
mation, which is called a one-broken-pair state, is a good
approximation to the excited state of the pair-condensed wave
function in even-mass nuclei having 2n valence particles. It
can also be used in the VMC formalism, and is defined as

|φ〉 =
(∑

ll′
hll′c

†
l c

†
l′

)(∑
kk′

fkk′c
†
kc

†
k′

)n−1

|−〉. (B9)

Its overlap is obtained using Eq.(A3) as

〈m|φ〉 =
2n∑

p,q=1

(−1)p+q−1hmpmq
(n − 1)! Pf(Fmpmq )

=
2n∑

p=1

(−1)p(n − 1)! Pf(Fp ). (B10)

Fp is defined as F
p
1,1 = 0, F

p
1,r+1 = hmp,mr

, and F
p
r+1,s+1 =

f̃rs = fmr ,ms
− fms,mr

with r, s �= p:

Fp =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 hmp,m1 hmp,m2 hmp,m3 · · (p)· hmp,m2n

−hmp,m1 0 f̃1,2 f̃1,3 · · (p)· f̃1,2n

−hmp,m2 f̃2,1 0 f̃2,3 · · (p)· f̃2,2n

· · (p)· · · (p)·
−hmp,mN

f̃2n,1 f̃2n,2 f̃2n,3 · · (p)· 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(B11)

where (p) denotes that the index p is skipped. The extension
to more-broken-pairs states is also expected.
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Equations (B6) and (B7) provide us with the overlap be-
tween the m-scheme basis state and the HFB wave function
by computing the Pfaffian once. On the other hand, Bertsch
and Robledo presented a simple formulation to obtain the
overlap of the HFB wave functions of odd-mass nuclei for
the projection method [35]. It is an extension to the overlap of
the HFB wave functions of even-mass nuclei, and is obtained
also by computing the Pfaffian once.

We presented Eqs. (B10) and (B11) for obtaining the
overlap between m-scheme basis state and one-broken-pair
wave function. Unfortunately, they require computing the 2n
Pfaffians, which would make the computation time greater.

APPENDIX C: STOCHASTIC RECONFIGURATION

In the present VMC framework, many variables are op-
timized simultaneously to minimize the energy expectation
values stochastically. Although the stochastic estimation of
the gradient vector enables us to use the steepest gradient
method, it is unstable due to the stochastic error. In order to
stabilize the numerical calculation and to accelerate it, Sor-
rella introduced the stochastic reconfiguration (SR) method
[7]. In this Appendix, we describe the details of the SR method
with variation after the angular-momentum projection.

The angular-momentum projection obliges us to introduce
complex numbers as variational parameters, while only real
numbers are often used as variational parameters in the pre-
ceding works in condensed matter physics (e.g., [1]). Here,
we describe the extension of the SR method of the projected
wave function including complex numbers as variational
parameters.

We define a derivative operator Oi , which is diagonal in the
m-scheme basis states, and its conjugate operator O†

i as

Oi =
∑
m

|m〉
[

1

〈m|ψα〉
∂

∂αi

〈m|ψα〉
]
〈m|

=
∑
m

|m〉Oi (m,α)〈m|,

O†
i =

∑
m

|m〉
[

1

〈ψα|m〉
∂

∂α∗
i

〈ψα|m〉
]
〈m|

=
∑
m

|m〉O∗
i (m,α)〈m|, (C1)

with

Oi (m,α) = 1

〈m|ψα〉
∂

∂αi

〈m|ψα〉,

O∗
i (m,α) = 1

〈ψα|m〉
∂

∂α∗
i

〈ψα|m〉, (C2)

and α denotes a set of variational parameters which are
complex numbers. In the present work for the odd-mass case,
the variational parameters are α = {gK, αij , hl, fkk′ }. These

operators satisfy the following derivative equations:

〈m|Oi |ψα〉 = ∂

∂αi

〈m|ψα〉

〈ψα|Ô†
i |m〉 = ∂

∂α∗
i

〈ψα|m〉 = 〈m|Oi |ψα〉∗. (C3)

The normalized trial wave function is written as

|ψα〉 = 1√〈ψα|ψα〉 |ψα〉. (C4)

The derivative of the normalized trial wave function with
respect to α can be written as

∂

∂αi

|ψα〉 =
(
Oi − 1

2
〈Oi〉

)
|ψα〉,

∂

∂α∗
i

|ψα〉 = −1

2
〈O†

i 〉|ψα〉, (C5)

where we use the shorthand notation 〈O〉 = 〈ψ |O|ψ〉.
The energy gradient gi is obtained utilizing these derivative

operators as

gi ≡ ∂

∂α∗
i

〈ψ |H |ψ〉 = 〈O†
i H 〉 − 〈O†

i 〉〈H 〉, (C6)

We evaluate 〈O†
i 〉, 〈Oi〉, 〈O†

iOj 〉, and 〈O†
i H 〉 stochastically

by

〈O†
i 〉 = 〈ψ |O†

i |ψ〉
|〈ψ |ψ〉|2 =

∑
m〈ψ |O†

i |m〉〈m|ψ〉∑
m |〈m|ψ〉|2

=
∑

m |〈ψ |m〉|2O∗
i (m,α)∑

m |〈m|ψ〉|2

=
∑
m

p(m)O∗
i (m,α), (C7)

where p(m) is defined as p(m) = |〈m|ψ〉|2/∑
m′ |〈m′|ψ〉|2.

The weighted summation
∑

m p(m) is realized by the Markov
chain Monte Carlo (MCMC) process in which |m〉 is gener-
ated obeying the probability p(m). The energy is also evalu-
ated in the same manner as

EL(m) = 〈m|H |ψ〉
〈m|ψ〉 , 〈H 〉 =

∑
m

p(m)El (m). (C8)

Other relevant values are evaluated as

〈Oi〉 =
∑
m

p(m)Oi (m,α) = 〈O†
i 〉∗, (C9)

〈O†
iOj 〉 =

∑
m

p(m)O∗
i (m,α)Oj (m,α), (C10)

〈O†
i H 〉 =

∑
m〈ψ |O†

i |m〉〈m|H |ψ〉∑
m |〈m|ψ〉|2

=
∑
m

p(m)O∗
i (m,α)EL(m), (C11)

〈HOi〉 =
∑
m

p(m)E∗
L(m)Oi (m,α). (C12)
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The derivative concerning the operator G is evaluated as

Oαij
(m,α) = 1

〈m|ψ〉
∂

∂αij

〈m|e
∑

i�j αij ninj |ψ〉

=
∑
i�j

n
(m)
i n

(m)
j (C13)

with n
(m)
i = 〈m|ni |m〉.

The derivative concerning correlated pairs is

Ofij
(m,α) = 1

〈m|ψ〉
∂

∂ (fm)ij
〈m|ψ〉

= 1

γm2N/2(N/2)! Pf(fm)

× [−(fm)−1
ij Pf(fm)γm2N/2(N/2)!

]
= −(fm)−1

ij = −fmimj

= 1

2

[
(fm)−1

ji − (fm)−1
ij

]
. (C14)

The derivative concerning the correlated-pair parameters of
the J -projected energy is

Ofkk′ (m,α) = 1

〈m|P J
M |φ〉

∂

∂Xab

〈m|P J
M |φ〉

= 1∑
nK gKwnK〈m|Rn|φ〉

×
∑
nK

gKwnK

∂

∂Xab

〈m|Rn|φ〉

= 1∑
nK gKwnK〈m|Rn|φ〉

∑
nK

gKwnK〈m|Rn|φ〉

×
⎛
⎝−

N∑
i,j=1

RT
ami

{[(RXRT )m]−1}mimj
Rmj b

⎞
⎠

(C15)

The derivative concerning the gK is

OgK
(m,α) = 1

〈m|ψ〉
∂

∂gK

〈m|ψ〉

= 1∑
nK ′ gK ′wnK ′ 〈m|Rn|φ〉

∑
n

wnK〈m|Rn|φ〉.

(C16)

By combining these equations and the MCMC procedure, we
can evaluate the energy gradient of the J -projected energy.

The norm of the small displacement of the |ψ〉 caused by
the small change of the variational parameters γi is

�2
norm = |||ψα+γ 〉 − |ψα〉||2

=
∑
ij

γ ∗
i γj

∂

∂α∗
i

∂

∂αj

〈ψ |ψ〉

=
∑
ij

γ ∗
i Sij γj (C17)

with the overlap matrix Sij ,

Sij = 〈O†
iOj 〉 − 〈O†

i 〉〈Oj 〉, (C18)

which is Hermitian and positive semidefinite [36].
In the steepest-gradient method, the small displacement is

taken as the derivative of energy as

γi = −�t
∂〈H 〉
∂α∗

i

= −�tgi . (C19)

On the other hand, in the SR method, the small displacement
is taken as the product of the inverse of Sij and derivative of
energy as

g′
i = −�t

∑
j

S−1
ij gj . (C20)

By using the inverse of Sij the direction with the small norm
ofSij , or the direction causing small displacement, is taken as
large step width and vice versa. In this work, we typically take
�t = 0.2.

In order to stabilize the SR method further, we apply two
modifications to the overlap matrix Sij following Ref. [1]. One
is the scaling of its diagonal matrix elements. We replace the
overlap matrix by the scaled one,

S ′
ij = (1 + εδij )Sij , (C21)

where ε is a small constant. This modification makes the
overlap matrix positive definite and stable even if Sij is
calculated stochastically including a certain error [37]. In this
work, we typically take ε = 0.01/

√
i, where i is the number

of iterations.
The other method to stabilize the SR method is the trun-

cation of the redundant directions by introducing the cutoff of
the small eigenvalues of the overlap matrix. As it is Hermitian,
we can diagonalize the overlap matrix by

Sij =
∑

k

UikλkU
†
kj . (C22)

The redundancy of the variational-parameter space causes
zero or small eigenvalues of the overlap matrix. Besides,
small eigenvalues with statistical errors cause instability in
evaluating the inverse matrix in Eq. (C20). In order to avoid
the problem, we replace 1/λi by 0 for λi < εcut. In this work,
we typically take εcut = 2/

√
i × 10−4, where i is the number

of iterations. Thus,

γk = −�t
∑

l

S−1
kl gl = −�t

∑
il

1

λi

UkiU
†
ilgl (C23)

is replaced by

γk = −�t
∑
il

�(λi − εcut )
1

λi

UkiU
†
ilgl, (C24)

where �(x) is the Heaviside function.

054309-9



NORITAKA SHIMIZU AND TAKAHIRO MIZUSAKI PHYSICAL REVIEW C 98, 054309 (2018)

As a summary, we iteratively shift the variational pa-
rameters by adding the direction provided by Eq. (C20)
in the SR method. It is expected to decrease the energy
expectation value and, at the same time, to suppress the

norm of the displacement of the wave functions by re-
moving the effect of the redundancy of the variational
parameters. This procedure is iterated until the energy
converges.
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