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Shape evolution and coexistence in neutron-deficient Nd and Sm nuclei
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The evolution of shapes and low-energy shape coexistence is analyzed in neutron-deficient Nd and Sm
nuclei, using a five-dimensional quadrupole collective Hamiltonian (5DCH). Deformation energy surfaces,
calculated with the relativistic energy density functional PC-PK1 and a separable finite-range pairing interaction,
exhibit a transition from spherical shapes near N = 80, to γ -soft shapes, and to prolate deformed minima in
lighter isotopes. The corresponding 5DCH model calculation, based on the self-consistent mean-field potentials,
reproduces the empirical isotopic trend of characteristic collective observables, and predicts significantly
different deformations for the first two 0+ states in the N = 74 isotones 134Nd and 136Sm. In addition to bands
based on the triaxial γ -soft ground state, in excellent agreement with data, the occurrence of a low-energy
rotational band is predicted, built on the prolate deformed (β ∼ 0.4) excited state 0+

2 .
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I. INTRODUCTION

An interesting phenomenon that occurs in many meso-
scopic systems is shape coexistence: sets of nearly degenerate
low-energy states are observed that can be characterized by
different geometrical shapes. In atomic nuclei, in particular,
coexistence of different shapes in a single nucleus, and shape
transitions as a function of nucleon number, have been ob-
served in light, medium-heavy, and heavy systems [1–3]. The
distinctive character of shape coexistence in nuclei reflects
the interplay between single-particle and collective degrees
of freedom. Experimental and theoretical studies of shapes,
their evolution and transitions, provide crucial information
on the origin of nuclear collectivity and modification of
shell structures in nuclei far from stability [4]. In a recent
systematic analysis of characteristic signatures of coexisting
nuclear shapes in different mass regions [5], quadrupole shape
invariants for more than 600 even-even nuclei were calculated
using a global self-consistent theoretical method based on uni-
versal energy density functionals (EDFs) and the quadrupole
collective model. A systematic comparison of shape invari-
ants for the two lowest 0+ states has identified regions of
possible shape coexistence. Different geometric shapes at
low energies emerge as a universal structure property that
occurs in different mass regions over the entire chart of
nuclides.

Neutron-deficient rare-earth nuclei in the mass A ≈ 140
region are known to exhibit a variety of coexisting structures
resulting from the midshell filling of the h11/2 intruder orbital.
Protons fill the lower part of the h11/2 shell with low-�
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orbitals favoring a prolate nuclear deformation, whereas for
neutrons the Fermi surface lies close to high-� h11/2 states,
favoring oblate shapes. This competition between opposing
trends for proton and neutron deformations can produce γ -
soft ground-state shapes with a significant degree of triax-
iality. Calculations by Möller and Bengtsson [6], based on
the finite-range droplet model, predicted the ground states of
neutron-deficient A ∼ 140 nuclei to be triaxial. In addition,
several studies indicated that the γ degree of freedom plays
an important role in the description of collective excited states
[7–11]. These nuclei exhibit additional interesting structure
effects, with the observation of isomeric states [7,12,13], and
magnetic rotation [14,15]. Based on experimental results, it
has been suggested that 144Dy [16] and 142Sm [17] exhibit
possible shape coexistence. Furthermore, in Ref. [5], medium-
deformed triaxial ground states coexisting with highly de-
formed prolate excited state have been predicted in this re-
gion, especially for the nuclei 134Nd, 136,138Sm, 140,142Gd, and
142,144Dy.

Rare-earth nuclei with neutron number N ≈ 90 present
some of the best examples of shape phase transitions. Em-
ploying a consistent framework of structure models based on
energy density functionals, in several studies we analysed mi-
croscopic signatures of ground-state shape phase transitions in
this region of the nuclear mass table. In the present work we
consider shape evolution and the possible occurrence of shape
coexistence in neutron-deficient Nd and Sm isotopes. The
analysis starts from self-consistent mean-field calculations of
deformation energy surfaces using relativistic energy density
functionals [18–21], and is extended to include the treatment
of collective correlations with the five-dimensional collective
Hamiltonian (5DCH) model. This approach has successfully
been applied to the description of low-lying collective states
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in a wide range of nuclei, from the mass region A ∼ 40 to
superheavy systems [22–34].

In Sec. II we present a short outline of the theoreti-
cal framework used to study shape coexistence in neutron-
deficient A ∼ 140 nuclei. The systematics of collective
deformation energy surfaces, the evolution of characteristic
signatures of deformed shapes, and the low-energy spectra
of 134Nd and 136Sm are discussed in Sec. III. Section IV
summarizes the principal results.

II. THE 5D COLLECTIVE HAMILTONIAN

Nuclear EDF-based studies of low-energy structure phe-
nomena start from a self-consistent mean-field (SCMF) cal-
culation of deformation energy surfaces with mass multipole
moments as constrained quantities. The results are static
symmetry-breaking product many-body states. The static nu-
clear mean-field is characterized by the breaking of symme-
tries of the underlying Hamiltonian—translational, rotational,
particle number, and, therefore, includes static correlations,
e.g., deformations and pairing. To calculate excitation spectra
and electromagnetic transition rates it is necessary to extend
the SCMF scheme to include collective correlations that arise
from symmetry restoration and fluctuations around the mean-
field minima.

Low-energy excitation spectra and transitions can be de-
scribed using a collective Hamiltonian, with deformation-
dependent parameters determined from microscopic SCMF
calculations. For instance, in the case of quadrupole degrees
of freedom, excitations determined by quadrupole vibrational
and rotational degrees of freedom can be described by con-
sidering two quadrupole collective coordinates β, γ and three
Euler angles � ≡ (φ, θ, ψ ) [22]. The corresponding 5DCH
Hamiltonian takes the following form:

Ĥ (β, γ,�) = T̂vib + T̂rot + Vcoll, (1)

where Vcoll is the collective potential that includes zero-point
energy (ZPE) corrections, and T̂vib and T̂rot are the vibrational
and rotational kinetic energy terms, respectively [22,35,36],

T̂vib =− h̄2
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Ĵk denotes the components of the angular momentum in the
body-fixed frame of a nucleus, and Bββ , Bβγ , Bγγ , are the
mass parameters. Two additional quantities that appear in T̂vib,
namely, r = B1B2B3 (see Ref. [22] for the definition of Bk),
and w = BββBγγ − B2

βγ , determine the volume element in
the collective space. The constrained SCMF solutions for the
single-quasiparticle energies and wave functions for the entire
energy surface, as functions of the quadrupole deformations

β and γ , provide the microscopic input for calculation of
the mass parameters, moments of inertia, and the collective
potential. The Hamiltonian describes quadrupole vibrations,
rotations, and the coupling of these collective modes. The
dynamics of the 5DCH is governed by the seven functions
of the intrinsic deformations β and γ : the collective poten-
tial Vcoll(β, γ ), three mass parameters Bββ (β, γ ), Bβγ (β, γ ),
and Bγγ (β, γ ), and three moments of inertia Ik (β, γ ) (k =
1, 2, 3). The corresponding eigenvalue equation is solved by
expanding the eigenfunctions on a complete set of basis
functions that depend on the deformation variables β and γ ,
and the Euler angles [35].

III. NEUTRON-DEFICIENT ND AND SM ISOTOPES

Just as our recent global analysis of quadrupole shape
invariants [5], the present study starts from a quadrupole
deformation-constrained relativistic mean-field (RMF) plus
Bardeen-Cooper-Schrieffer (BCS) pairing correlation calcula-
tion, with the point-coupling energy functional PC-PK1 [37]
and a separable pairing interaction [38] in the particle-hole
and particle-particle channels, respectively. The SCMF single-
nucleon Dirac equation is solved by expanding the Dirac
spinor in terms of a three-dimensional (3D) harmonic oscilla-
tor basis with 14 major shells. The SCMF states are calculated
on the grid: β ∈ [0.0, 0.8] and γ ∈ [0◦, 60◦] with �β = 0.05
and �γ = 6◦. More details about the mean-field calculations
can be found in Refs. [39,40]. For the collective Hamiltonian
(1) the mass parameters and moments of inertia are deter-
mined in the perturbative cranking approximation using the
SCMF triaxial quasiparticle states [22]. Diagonalization of
the 5DCH generates the excitation spectra and collective wave
functions that are used to calculate spectroscopic properties,
such as electric multipole transition strengths [22].

Figure 1 displays the collective potential energy surface
in the β-γ plane for even-even neutron-deficient isotopes
126–140Nd. For each nucleus the calculated energies are nor-
malized with respect to the binding energy of the absolute
minimum. The corresponding deformation energy maps of the
even-even isotopes 128–142Sm are shown in Fig. 2. For both
isotopic chains these plots illustrate a rapid transition from
spherical shapes near N = 80, to γ -soft shapes, and then to
prolate deformed energy surfaces in lighter isotopes. Starting
from the spherical nuclei 140Nd and 142Sm, a certain degree
of triaxiality develops in 138Nd and 140Sm, followed by the
occurrence of γ -soft minima in 136Nd and 138Sm. At neutron
number N = 74, both Nd and Sm exhibit a coexistence of γ -
soft and axially deformed prolate shapes. For N � 72 isotopes
only well-deformed axially symmetric prolate minima are
predicted by the SCMF calculation.

In Figs. 3 and 4 we analyze the evolution of several
quantities that can be used to characterize transitions between
different shapes as functions of the neutron number: the en-
ergy ratio R42 = E(4+ )−E(0+ )

E(2+ )−E(0+ ) and the B(E2; 2+ → 0+) values

for the ground-state band and the band based on 0+
2 , the energy

ratio E(2+
γ )/E(4+

1 ), the excitation energy of the 0+
2 state, and

the quadrupole deformation parameters β and γ in the ground
state 0+

1 and the first excited 0+
2 . For the even-even Nd and
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FIG. 1. Collective potential energy Vcoll of the even-even iso-
topes 126–140Nd in the (β, γ ) plane, obtained by constrained relativis-
tic mean-field plus BCS calculations. For each nucleus energies are
normalized to the absolute minimum. The energy difference between
neighboring contours is 0.5 MeV.

Sm isotopes these quantities are calculated using the 5DCH,
with parameters determined by the SCMF solutions shown
in Figs. 1 and 2. Where available, the results are shown in
comparison to data [41]. The evolution of R42 characterizes
shape transitions between axially deformed rotors (R42 =
3.33), γ -soft shapes (R42 = 2.50), and spherical vibrational
nuclei (R42 = 2.00). One notices how the energy ratio R42

for the ground-state band decreases from the rotational value
R42 ∼ 3.3 at N ∼ 66 to the transitional γ -soft value R42 ∼
2.5 in the region N = 74–78, in excellent agreement with
the empirical trend. A similar behavior, with the significant
exception of 136Sm, is also predicted for the sequence of levels

FIG. 2. Same as in the caption to Fig. 1 but for the neutron-
deficient isotopes of Sm.

built on the first excited 0+ state. As shown in Figs. 3(c) and
4(c), the ratio E(2+

γ )/E(4+
1 ) calculated with the 5DCH in Nd

and Sm isotopes is in excellent agreement with the available
data. The predicted values ∼1.0 for this energy ratio at N =
74–78 characterize the occurrence of low-energy γ -deformed
structures in these isotopes.

Figures 3(b) and 4(b) display the values B(E2; 2+ → 0+)
for the transitions from the first state 2+

1 to the ground state,
and for the state 2+ built on the excited 0+

2 state, in the Nd and
Sm isotopes, respectively. The corresponding experimental
values B(E2; 2+

1 → 0+
1 ) [41] are shown for comparison. The

5DCH calculation reproduce the data, and one notices the gap
between the value B(E2) for the ground-state sequence and
the corresponding value for the state built on the 0+

2 state, in
134Nd and 136,138Sm. This indicates that in these isotopes the
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FIG. 3. The energy ratio R42 = E(4+ )−E(0+ )
E(2+ )−E(0+ ) (a) and B(E2; 2+ →

0+) values (b) for the ground-state band and the band based on the
0+

2 state, the energy ratio E(2+
γ )/E(4+

1 ) (c), the excitation energy
of the 0+

2 state E(0+
2 ) (d), the values of the quadrupole deformation

parameters β (e), and γ (f) for the 0+
1 and 0+

2 state, as functions of
the neutron number in Nd isotopes. The data are from Ref. [41].

average deformations 〈β〉 for the ground state 0+
1 differ from

those of the 0+
2 state, as also shown in Figs. 3(e) and 4(e). The

energies of the first excited 0+ state of Nd and Sm isotopes
are shown in Figs. 3(d) and 4(d), respectively. For both chains
E(0+

2 ) decreases from N = 66 to N = 72, where it displays a

FIG. 4. Same as in the caption to Fig. 3 but for the chain of Sm
isotopes.

FIG. 5. 5DCH energy spectra of 134Nd and 136Sm (PC-PK1),
compared to available data [41,42] (Exp.), and to results obtained
with the 5DCH based on the Gogny force (D1S) [43].

pronounced minimum, and then increases sharply toward the
neutron closed shell at N = 82. This behavior clearly reflects
the evolution of the collective potential energy surfaces from
prolate deformed to γ soft, and to spherical shapes, as shown
in Figs. 1 and 2.

The occurrence of shape coexistence can be further il-
lustrated by analyzing the evolution of average quadrupole
deformations 〈β〉 and 〈γ 〉 for the two lowest 0+ states. In
Figs. 3 and 4 we plot the deformations 〈β〉 and 〈γ 〉 for 0+

1
and 0+

2 , as functions of neutron number in Nd and Sm iso-
topes, respectively. The average deformations are determined
from the calculated quadrupole shape invariants following the
procedure described in Ref. [5]. Note that, while they exhibit
similar trends, marked differences between 0+

1 and 0+
2 are

predicted in several nuclei, especially at N = 74. In 134Nd the
values of 〈β〉 for the 0+

1 and 0+
2 states are ∼0.25 and ∼0.4, and

the corresponding 〈γ 〉 are ∼15◦ and 2◦, respectively. There-
fore, not only the SCMF potential energy surface, but also the
5DCH model calculation predicts a coexistence of soft triaxial
and prolate axially deformed low-energy structures in 134Nd.
A very similar picture is also found in 136Sm.

For these two nuclei in Fig. 5 we display the 5DCH low-
energy spectra obtained in the present study (PC-PK1) and
with the Gogny force (D1S) [43], in comparison with avail-
able data [41,42]. Both models, without any additional ad-
justment, reproduce the excitation energies and E2-transition
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rates of the two lowest bands based on the γ -soft ground state.
In particular, we note that the very low band-head 2+

γ of the
γ band is calculated slightly below 4+

1 in 134Nd, in excellent
agreement with experiment. Both 5DCH calculations predict
the occurrence of a rotational sequence of levels in 134Nd and
136Sm, based on the low-lying 0+

2 state, that is, structures built
on the prolate deformed minima shown in Figs. 1 and 2. Com-
pared to the yrast sequences, these bands are characterized by
larger moments of inertia and enhanced E2-transition rates
for the few lowest levels. For higher angular momenta one
expects considerable mixing between the two structures. The
calculated E0-transition strengths ρ2(E0; 0+

2 → 0+
1 ) × 103

are 44.6 for 134Nd, and 98.8 for 136Sm, comparable to the val-
ues that characterize the well-known shape-coexisting nuclei
98Sr [51(5)] and 100Zr [108(19)] [44]. The bands built on the
0+

2 states have not yet been observed and it would, therefore,
be very important to be able to experimentally confirm the
predicted shape coexistence in these N = 74 isotones.

Shape coexistence in the 5DCH model is best illustrated
by considering the probability density distributions that corre-
spond to the collective wave functions in the β-γ plane. The
eigenfunctions of the collective Hamiltonian read

�JM
α (β, γ,�) =

∑
K∈�J

ψJ
αK (β, γ )�J

MK (�). (4)

For a given collective state, the probability distribution in the
(β, γ ) plane is defined as

ρJα (β, γ ) =
∑

K∈�J

∣∣ψJ
αK (β, γ )

∣∣2
β3 (5)

with the summation over the allowed set of values of the
projection K of the angular momentum J on the body-fixed
symmetry axis, and with the normalization

∫ ∞

0
βdβ

∫ 2π

0
ρJα (β, γ )| sin 3γ |dγ = 1. (6)

Figure 6 displays the distribution of probability density
ρJα (β, γ ) in the β-γ plane for the two lowest levels of the
yrast sequence and the prolate band based on 0+

2 , for 134Nd
and 136Sm. These distributions clearly show that the two
lowest collective states correspond to a triaxial but γ -soft
geometric shape, whereas the collective wave functions of
the states 0+

2 and 2+
3 are concentrated on the prolate axis at

considerably larger axial deformation β ∼ 0.4.
The rapid transition from triaxial-soft to prolate shape

around N ≈ 74 can be understood from a microscopic point
of view by considering the evolution of neutron and proton
single-particle levels as functions of deformation and parti-
cle number. Namely, the formation of deformed minima is
related to the occurrence of regions of low single-particle
level density around the Fermi surface. In Fig. 7 we plot the
neutron (upper panel) and proton (lower panel) single-particle
levels of 134Nd, as functions of the deformation parameters
along a closed path in the β-γ plane. Solid (black) curves
correspond to levels with positive parity, and dashed (red)
curves denote negative-parity levels. The dotted (blue) curves
correspond to the Fermi levels. Starting from the spherical
configuration, we follow the single-nucleon levels on a path

FIG. 6. Distribution of the probability density ρJα (β, γ ) Eq. (5)
for 0+

1 , 0+
2 , 2+

1 , and 2+
3 collective states of 134Nd and 136Sm.

along the prolate axis up to the approximate position of the
mean-field minimum (left panel), then for this fixed value
of β the path from γ = 0◦ to γ = 60◦ (middle panel) and,
finally, back to the spherical configuration along the oblate
axis (right panel). Configurations along the oblate axis are
denoted by negative values of β. One notices that both neutron
and proton levels display pronounced gaps between the last
occupied and first unoccupied states in the triaxial region close
to γ ∼ 20◦ (neutrons) and γ ∼ 30◦ (protons). These gaps give
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FIG. 7. Neutron (upper panel) and proton (lower panel) single-
nucleon energy levels of 134Nd, as functions of the deformation
parameters along a closed path in the β-γ plane. Solid (black) curves
correspond to levels with positive parity, and dashed (red) curves
denote negative-parity levels. The dotted (blue) curves correspond
to the Fermi levels. The panels on the left and right display prolate
(γ = 0◦) and oblate (γ = 60◦) axially symmetric single-particle lev-
els, respectively. In the middle panel the proton and neutron levels are
plotted as functions of γ for a fixed value |β| = 0.25, corresponding
to the approximate position of the mean-field minimum.

rise to the triaxial γ -soft minimum shown in Fig. 1 (cf. also
the distribution of the probability density for the states 0+

1 and
2+

1 in Fig. 6). The origin of the low-lying prolate minimum in
134Nd, on which the band based on 0+

2 is built (cf. the states
0+

2 and 2+
3 in Fig. 6), can be found in the large energy gap for

FIG. 8. Single-neutron and single-proton levels in 134Nd as func-
tions of the axial deformation parameter β. Solid (black) and dashed
(red) curves denote the positive- and negative-parity levels, respec-
tively. The dotted (blue) curves are the corresponding Fermi levels.

FIG. 9. Single-neutron levels in 132,134,136Nd isotopes as func-
tions of the axial deformation parameter β. Solid (black) and dashed
(red) curves correspond to the positive- and negative-parity levels,
respectively. The dotted (blue) curves denote the Fermi levels.

the proton levels at β ≈ 0.4, as shown in Fig. 8. By decreasing
the number of neutrons by two, one reaches 132Nd. The proton
levels do not change much, of course, whereas the neutron
Fermi level is lowered in energy. As a result the pronounced
triaxial gap present in the single-neutron spectrum of 134Nd
(cf. Fig. 7) disappears, while a large gap is formed among the
axial single-neutron levels at β ≈ 0.5. This is illustrated in
Fig. 9, where we plot the single-neutron levels in 132,134,136Nd
as functions of the axial deformation parameter β. Together
with the proton gap at β ≈ 0.4, the large gap exhibited by the
neutron levels leads to the formation of the prolate equilibrium
minimum in 132Nd, as shown in Fig. 1.

IV. SUMMARY

We have analyzed the evolution of shapes and possible oc-
currence of low-energy shape coexistence in neutron-deficient
Nd and Sm nuclei. Fully self-consistent mean-field triaxial
calculations, based on the relativistic energy density func-
tional PC-PK1 and a separable finite-range pairing interaction,
have been performed to produce deformation energy sur-
faces in the (β, γ ) plane. These surfaces display a transition
from spherical shapes near N = 80, to γ -soft shapes, and
eventually to pronounced prolate deformed minima in lighter
isotopes. In particular, the Nd and Sm N = 74 isotones exhibit
coexisting low-energy γ -soft and axially deformed prolate
minima.

The SCMF deformation-constrained solutions provide a
microscopic input for the parameters of the 5D quadrupole
collective Hamiltonian that has been used to calculate
spectroscopic properties of low-energy states. The 5DCH
model calculation reproduces the empirical isotopic trend of
the characteristic collective observables R42 = E(4+ )−E(0+ )

E(2+ )−E(0+ ) ,

B(E2; 2+ → 0+), and E(2+
γ )/E(4+

1 ), while the values of
〈β〉, 〈γ 〉 for the first two 0+ states indicate significantly
different deformations of these states in 134Nd and 136Sm. The
theoretical low-energy collective spectra of these two nuclei,
including excitation energies and E2 transition rates, are in
excellent agreement with the available data. In addition to the
bands based on the triaxial γ -soft ground state, the model
predicts the occurrence of a low-energy rotational band built
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on the prolate deformed (β ∼ 0.4) excited state 0+
2 . 134Nd

and 136Sm therefore present a very nice example of coexisting
triaxial and prolate deformed shapes at low energy in neutron
deficient rare-earth nuclei.
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Rev. C 95, 054321 (2017).
[6] P. Möller, R. Bengtsson, B. G. Carlsson, P. Olivius, T. Ichikawa,

H. Sagawa, and A. Iwamoto, At. Data Nucl. Data Tables 94, 758
(2008).

[7] W. Starzecki, G. DeAngelis, B. Rubio, J. Styczen, K. Zuber,
H. Güven, W. Urban, W. Gast, P. Kleinheinz, S. Lunardi, F.
Soramel, A. Facco, C. Signorini, M. Morando, W. Meczyn-
ski, A. M. Stefanini, and G. Fortuna, Phys. Lett. B 200, 419
(1988).

[8] B. G. Carlsson, I. Ragnarsson, R. Bengtsson, E. O. Lieder,
R. M. Lieder, and A. A. Pasternak, Phys. Rev. C 78, 034316
(2008).

[9] M. Müller-Veggian, H. Beuscher, D. R. Haenni, R. M. Lieder,
A. Neskakis, and C. Mayer-Böricke, Nucl. Phys. A 344, 89
(1980).

[10] H. L. Liu and F. R. Xu, Chin. Phys. Lett. 25, 1621 (2008).
[11] A. F. Mertz, E. A. McCutchan, R. F. Casten, R. J. Casperson, A.

Heinz, B. Huber, R. Lüttke, J. Qian, B. Shoraka, J. R. Terry, V.
Werner, E. Williams, and R. Winkler, Phys. Rev. C 77, 014307
(2008).

[12] M. Müller-Veggian, Y. Gono, R. M. Lieder, A. Neskakis, and
C. Mayer-Böricke, Nucl. Phys. A 304, 1 (1978).

[13] N. Yoshikawa, Nucl. Phys. A 243, 143 (1975).
[14] R. M. Lieder, T. Rzaca-Urban, H. Brands, W. Gast, H. M.

Jäger, L. Mihailescu, Z. Marcinkowska, W. Urban, T. Morek,
Ch. Droste, P. Szymański, S. Chmel, D. Bazzacco, G. Falconi,
R. Menegazzo, S. Lunardi, C. Rossi Alvarez, G. de Angelis, E.
Farnea, A. Gadea, D. R. Napoli, Z. Podolyak, Ts. Venkova, and
R. Wyss, Eur. Phys. J. A 13, 297 (2002).

[15] M. Sugawara, Y. Toh, M. Oshima, M. Koizumi, A. Osa, A.
Kimura, Y. Hatsukawa, J. Goto, H. Kusakari, T. Morikawa,
Y. H. Zhang, X. H. Zhou, Y. X. Guo, and M. L. Liu, Phys. Rev.
C 79, 064321 (2009).

[16] M. G. Procter, D. M. Cullen, C. Scholey, B. Niclasen, P. J. R.
Mason, S. V. Rigby, J. A. Dare, A. Dewald, P. T. Greenlees,
H. Iwasaki, U. Jakobsson, P. M. Jones, R. Julin, S. Juutinen,
S. Ketelhut, M. Leino, N. M. Lumley, O. Möller, M. Nyman,
P. Peura, T. Pissulla, A. Puurunen, P. Rahkila, W. Rother, P.

Ruotsalainen, J. Sarén, J. Sorri, and J. Uusitalo, Phys. Rev. C
81, 054320 (2010).

[17] S. Rajbanshi, A. Bisoi, S. Nag, S. Saha, J. Sethi, T. Trivedi,
T. Bhattacharjee, S. Bhattacharyya, S. Chattopadhyay, G.
Gangopadhyay, G. Mukherjee, R. Palit, R. Raut, M. Saha
Sarkar, A. K. Singh, and A. Goswami, Phys. Rev. C 89, 014315
(2014).

[18] P. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996).
[19] D. Vretenar, A. V. Afanasjev, G. A. Lalazissis, and P. Ring,

Phys. Rep. 409, 101 (2005).
[20] J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, and

L. S. Geng, Prog. Part. Nucl. Phys. 57, 470 (2006).
[21] J. Meng, Relativistic Density Functional for Nuclear Structure

(World Scientific, Singapore, 2016).
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