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Tensor correlations in 4He and 8Be within an antisymmetrized quasicluster model
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In this paper, we extend the framework of the improved version of a simplified method to take into account
the tensor contribution (iSMT) and propose the AQCM-T, a tensor version of the antisymmetrized quasicluster
model (AQCM). Although the AQCM-T is phenomenological, we can treat the 3S-3D coupling in the deuteronlike
T = 0 NN pair induced by the tensor interaction in a very simplified way, which allows us to proceed to
heavier nuclei. Using the AQCM-T and the V2m interaction, where the triplet-even channel of the Volkov no.
2 interaction is weakened to 60% so as to reproduce the binding energy of 4He after including the tensor term
of a realistic interaction, the significant tensor contribution in 4He is shown, which is almost comparable to the
central interaction, where the D state mixes by 8% to the major S state. The AQCM-T with the new interaction
is also applied to 8Be. It is found that the tensor suppression gives a significant contribution to the short-range
repulsion between two α clusters.
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I. INTRODUCTION

The nucleus 4He is the strongly bound four-nucleon system
with large binding energy per nucleon in the light mass region,
and α particles called α clusters can be basic building blocks
of the nuclear structure. Based on the assumption that nuclear
systems are composed of α clusters, α cluster models [1,2]
have been developed and applied in numerous works for the
description of nuclear structures including the so-called Hoyle
state of 12C [3–5]. Describing cluster states is a challenge for
the shell models including modern ab initio ones [6–8], since
quite a large model space is required. Our goal is to pave the
way to generally describe the nuclear structure, both cluster
and shell structures. In this study, we start with the cluster side
and construct a model that can deal with higher correlations,
in particular the tensor correlation, in an economic way with
less computational efforts.

There have been fundamental discussions for the appear-
ance of cluster structure in the 1960s on why clustering is
favored. The appearance could be related to the nature of
the meson exchange potential; one-pion exchange potential
(OPEP), which is the exchange of isovector mesons, vanishes
when each α cluster has isospin T = 0 [9]. As a result,
the intercluster interaction is weak, and two-pion exchange
potential gives almost satisfactory phase shifts of the α-α
scattering. Therefore, the appearance of cluster structure is
a natural consequence of the meson theory. In OPEP, the
tensor term plays a dominant role, thus the clustering can be
considered as the embodiment of suppression or screening of
the tensor interaction.

The tensor interaction also plays a crucial role inside 4He.
It has been already pointed out in ab initio calculations in the
1970s that the contribution of two-particle–two-hole (2p2h)

states is very important in 4He because of the strong tensor
effect [10]. According to the modern ab initio calculations,
the contribution of the tensor interaction to the 4He binding
energy is quite large. For instance, in the case of the AV8′
potential, it is more than 68 MeV and even more important
than the central interaction [11]. Therefore, the tensor inter-
action plays key roles in both mechanisms for the appearance
of the clustering: strong binding of each α cluster and weak
interaction between the clusters.

It has been pointed out that this strong tensor contribution
in 4He can be suppressed when another 4He approaches,
due to the Pauli blocking effect [12]. The appearance of the
α-α cluster structure in 8Be, which is confirmed by ab initio
quantum Monte Carlo calculation [13], is also attributed to
the tensor suppression effect. In Ref. [12], the Brueckner
theory has been introduced to estimate this suppression effect,
while keeping each α cluster to a simple (0s)4 configuration.
The improvement of this model space has been performed in
Ref. [14]; nevertheless, it is quite important to discuss this
suppression effect by treating the tensor contribution in a more
direct way.

In most of the conventional cluster models, each α
cluster is often assumed as a simple (0s)4 configuration
placed at some spatial point. In such simple models, since
α cluster is a spin singlet object, contributions of noncentral
interactions such as the tensor interaction, as well as the
spin-orbit interaction, completely vanish, even though they
play crucial roles in the nuclear structure. One needs to take
into account cluster breaking components to explicitly deal
with the noncentral interactions. Recently, many microscopic
attempts of directly taking into account the noncentral
interactions for the studies of cluster structure have begun.
For instance, the methods of antisymmetrized molecular
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dynamics (AMD) [15–18] and Fermionic molecular dynamics
(FMD) [19–21] combined with the unitary correlation method
(UCOM) have been developed and extensively applied. In
AMD and FMD, each nucleon is independently treated as a
Gaussian wave packet localized in the phase space, which
enables us to describe various cluster structures and also
the shell-model structure, where clusters are broken. Also,
the complex Gaussian centroid of the single-nucleon wave
function is suitable for taking into account the noncentral
interactions. The tensor effect in 4He has been studied by
extended AMD [22]. In UCOM, by unitary transforming the
Hamiltonian, the tensor effect is included, which in principle
induces many-body operators up to A (mass number) body,
thus the truncation of the model space is required. Our
strategy is slightly different; although it is phenomenological,
we introduce an effective model to directly take into account
the noncentral interactions in a simplified manner.

Concerning the inclusion of the rank-1 noncentral inter-
action, the spin-orbit interaction, in the cluster model, we
proposed the antisymmetrized quasicluster model (AQCM)
[23–33]. By introducing a parameter for the imaginary part of
the Gaussian centroids of α clusters, we can smoothly trans-
form α clusters to jj -coupling shell model wave functions,
and the transformed α clusters are called quasiclusters. As
it is well known, the conventional α cluster models cover
the model space of closure of major shells (N = 2, N = 8,
N = 20, etc.), but not subclosure configurations, where the
spin-orbit interaction contributes. Our AQCM can be regarded
as an extended cluster model that covers also the jj -coupling
subclosure configurations.

However the rank-2 noncentral interaction, i.e., the tensor
interaction, is more complicated to treat in the cluster model.
The tensor interaction has two features: the first order type and
the second order type. The first order one is rather weak and
characterized by the attractive effect for a proton (neutron)
with the j -upper orbit of the jj -coupling shell model and
a neutron (proton) with a j -lower orbit [34], which can be
included just by switching on the tensor interaction using the
AQCM.

For the second order type (2p2h type), which is more
difficult to treat in the cluster model, we have proposed a
simplified model to directly take into account the tensor con-
tribution (SMT) [35]. We started with the (0s)4 configuration
for an α cluster as an unperturbed configuration and expressed
deuteronlike excitation of a proton and a neutron to higher
shells by shifting the positions of Gaussian centroids of these
two particles. However, the resultant tensor contribution was
not as large as expected. Shifting the positions of Gaussian
centroids could not be sufficient in mixing higher momentum
components of the 2p2h configurations.

According to the tensor optimized shell model
(TOSM) [36–40] and tensor optimized AMD (TOAMD)
[41,42] calculations, the p orbits of this 2p2h state must have
a very shrunken shape compared with the normal shell model
orbits, and this means that mixing of very high momentum
components is quite important. Then, we further developed an
improved version of the SMT, which is the iSMT [43]. In the
method, imaginary parts of the Gaussian centroids are shifted.
The imaginary part of the Gaussian centroid corresponds

to the expectation value of momentum for the nucleon.
The tensor interaction has the character which is suited
to be described in the momentum space, and this method
is more efficient in directly mixing the higher momentum
components of 2p2h configurations. The contribution of the
tensor interaction in 4He was more than −40 MeV—four
times larger than the previous version. The method was also
applied to 16O, where the tensor contribution is also large,
and this is coming from the finite size effect for the distances
among α clusters with a tetrahedral configuration. The model
space of the iSMT is further extended in high-momentum
AMD (HM-AMD) [44,45], and even more tensor contribution
was obtained in 4He.

It should be commented that the shifting imaginary parts
of the Gaussian centroids has been already achieved in the
original AQCM for the spin-orbit force; centroids were shifted
so that two neutrons (or two protons) in an α cluster have finite
momenta in opposite directions. What is essential in the iSMT
is that high momentum component is taken into account by
shifting imaginary part for a proton and a neutron with the
isospin T = 0. In this sense, the iSMT can be regarded as an
extended AQCM for the tensor effect.

In this paper, we further develop the iSMT and newly
propose the AQCM-T, which is the tensor version of the
AQCM introduced by the authors and their collaborators.
This is also regarded as a specific version of the HM-AMD
developed by Myo et al. In the previous analyses based on the
iSMT and HM-AMD, the tensor interaction was just added
to the (conventional) effective Hamiltonian. Since the tensor
effect was already renormalized in the strong triplet-even
(3E) central part of the effective Hamiltonian, it was double
counted. Indeed, 4He was too much overbound, different from
the realistic one. In this study, we construct a new framework
of the AQCM-T and examine an effective interaction with
the central and tensor parts, where the triplet-even part of the
central interaction is weakened so as to reproduce the binding
energy of 4He within the AQCM-T. We analyze internal wave
functions of the correlated NN pairs and show the contri-
bution of the tensor correlation in relatively shorter ranges
of the 3D and 3S channels compared with the uncorrelated
[(0s)2] NN pair. We also apply the method to 8Be and study
tensor effects in the two α cluster structure. It is found that the
suppression of the tensor correlation significantly contributes
to the short-range repulsion of two α clusters.

This paper is organized as follows: In Sec. II, the frame-
work, especially for the model wave function, is explained. In
Sec. III, the Hamiltonian of the present model including the
new effective interaction is described. In Secs. IV and V, the
numerical results for 4He and 4Be are presented, respectively.
The summary is presented in Sec. VI. The fitting procedure
of the tensor term of a realistic interaction is explained in
Appendix A, and the width parameter dependence of the
results for 4He is shown in Appendix B.

II. FORMULATIONS

A. AQCM-T for a N N pair

In this article, we introduce a new framework called
the AQCM-T. Although all the nucleons can be treated as
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independent Gaussians, we take notice of the correlation of
two nucleons, which is taken into account by properly setting
the Gaussian centroids of the two nucleons. We start the
discussion with a single NN pair.

Each single-particle wave function is written by a Gaussian
wave packet as

ψj (i) = φSj
(r i )χj (si, τi ), (1)

φSj
(r i ) =

(
2ν

π

)3/4

e−ν(r i−Sj )2
, (2)

where Sj (j = 1, 2) is the Gaussian centroid and χj is the
spin-isospin wave function. The width parameter ν is set to
ν = 0.25 fm−2 and fixed for all the cases in the present article.

For the two nucleons in a correlated NN pair, we introduce
their Gaussian centroids with complex conjugate values,

S1,2 = R ± i K
ν

, (3)

where R and K are real vectors, and plus (minus) signs are
for j = 1 (j = 2). These two nucleons in the NN pair are the
time reversal states to each other.

Then the spatial part of the NN pair wave function can be
rewritten by relative and center-of-mass (cm) wave functions
using k ≡ 2K as

φS1 (r1)φS2 (r2) = ϕk(r )φg (rg ), (4)

ϕk(r ) =
(

ν

π

)3/4

e−(ν/2)r2+ik·r+k2/2ν, (5)

φg (rg ) =
(

4ν

π

)3/4

e−2ν(rg−R)2
, (6)

where r = r1 − r2 and rg = (r1 + r2)/2 are the relative and
cm coordinates of the NN pair, respectively. The expectation
values of the coordinates and momenta are given as

〈r〉 = 0, 〈 p〉 = k, (7)

〈rg〉 = R, 〈 pg〉 = 0. (8)

Here, p = ( p1 − p2)/2 and pg = p1 + p2 are the relative
and cm momenta of the NN pair. It should be noted that
the Fourier components of the relative wave function ϕk(r )
also have a Gaussian form, which is localized at k with the
dispersion of ν.

As pointed out by Myo et al., the relative wave function
ϕk(r ) has the angler dependence coming from the factor
eik·r and contains not only S-wave but higher partial-wave
components as

eik·r = 4π
∑
lm

iljl (kr )Ylm(ek )Ylm(er ). (9)

For the inclusion of the tensor correlation, the 3D component
in the T = 0 NN pair, which couples to the 3S component,
is essential. Therefore, we project the NN pair state on the
positive-parity state. Suppose that k is set along the z axis as
k = (0, 0, k); the positive-parity state ϕ+

k projected from ϕk is

expanded with the l-even basis states as

ϕ+
k (r ) =

(
ν

π

)3/4

e−(ν/2)r2+k2/2ν cos(kz)

=
(

ν

π

)3/4

e−(ν/2)r2+k2/2ν4π

×
∑

l=even

√
2l + 1

4π
iljl (kr )Yl0(er ),

=
∑

l=even

alϕ
(l)
k (r )Yl0(er ), (10)

where al is the normalization factor, and ϕ
(l)
k (r ) is the nor-

malized radial wave function of the l-even basis state and is
proportional to e−(ν/2)r2

jl (kr ).

B. AQCM-T for 4He

Next, the NN pair wave function introduced in the previ-
ous subsection is applied to the two nucleons in 4He.

1. Model wave function of 4He

For the 4He system, in addition to the correlated NN pair
introduced in the previous subsection, we consider a (0s)2

(uncorrelated) pair, and both pairs are placed at the origin.
The AQCM-T wave function for 4He is expressed as

�
AQCM-T
4He,0+ = P̂ 0+A{φi K/νχ1, φ−i K/νχ2, φ0χ3, φ0χ4}

= P̂ 0+A{φi K/νφ−i K/νφ0φ0 ⊗ χ1χ2χ3χ4}, (11)

where A is the antisymmetrizer, P̂ 0+ is the projection operator
to Jπ = 0+ (in practice numerically performed), and φ0 =
φS=0 is the spatial wave function for a nucleon in the 0s orbit.
The spatial wave function of the total system in the intrinsic
frame before the projections is rewritten as

φi K/νφ−i K/νφ0φ0 = φg (rg )φg (r ′
g )ϕk(r )ϕ0(r ′), (12)

rg = r1 + r2

2
, r ′

g = r3 + r4

2
, (13)

r = r1 − r2, r ′ = r3 − r4. (14)

This means that the NN correlation is taken into account
through ϕk(r ) of the correlated pair.

The AQCM-T wave function for 4He in Eq. (11) is a gen-
eral expression, which contains basis wave functions used in
the preceding works by Itagaki et al. [43] and Myo et al. [44].
In Ref. [43], the orientation of the vector k was introduced
along the z axis, which is the axis of the spin quantization,
and in Ref. [44], basis states with k direction perpendicular
to the z axis were further introduced, while keeping the spin
orientations to the original z and −z directions. In principle,
if we prepare spin configurations properly, the orientation of
the vector k can be arbitrarily chosen, because the intrinsic
wave function is projected to the physical 4He state with
J = 0. In the present model space, we choose the parameter
k as k = (0, 0, k) and consider the important spin and isospin
configurations properly. The present choice of the z direction
is the same as that in Ref. [43], and this is convenient when
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extending the method to heavier systems such as 8Be, because
4He is an axial symmetric object in the intrinsic frame.

One should care about the redundancies originating from
the parity and angular momentum projections as well as the
Fermi statistics (antisymmetrization). In this model, we take
into account all the spin and isospin configurations necessary
to express 0+ states and avoid the redundancy. As a result, for
a given k value, the model space for 0+ states of 4He contains
five independent spin and isospin configurations;

χ1χ2χ3χ4 = {p↑p↓n↑n↓, n↑n↓p↑p↓, p↑n↑p↓n↓,

p↑n↓p↑n↓, p↑n↓p↓n↑}. (15)

Owing to the projection to Jπ = 0+, �
AQCM-T
4He,0+ contains only

the S-wave (ϕ(0)
k ) and D-wave (ϕ(2)

k ) components, which are
coupled with the total intrinsic spin S = 0 and S = 2 of four
nucleons, respectively. Here ϕ

(l)
k stands for the l-wave relative

wave function for the NN pair in the partial wave expansion
of Eq. (10). Note that ϕ

(0)
k=0 expresses the uncorrelated NN

pair with the (0s)2 configuration.
When we ignore small breaking of the isospin symmetry

by the Coulomb interaction, the five configurations in Eq. (15)
can be reduced into three channels with respect to spin and
isospin symmetries of the NN pair as

1S : φg (rg )φg (r ′
g ) ⊗ ϕ

(0)
k (r )ϕ(0)

0 (r ′)

⊗Y00(er )Y00(er ′ ) ⊗ χσ
0 χσ

0 ⊗ [
χτ

1 χτ
1

]
T =0, (16)

3S : φg (rg )φg (r ′
g ) ⊗ ϕ

(0)
k (r )ϕ(0)

0 (r ′)

⊗Y00(er )Y00(er ′ ) ⊗ [
χσ

1 χσ
1

]
S=0 ⊗ χτ

0 χτ
0 , (17)

3D : φg (rg )φg (r ′
g ) ⊗ ϕ

(2)
k (r )ϕ(0)

0 (r ′)

⊗[
Y20(er )Y00(er ′ ) ⊗ [

χσ
1 χσ

1

]
S=2

]
J=0 ⊗ χτ

0 χτ
0 , (18)

where χσ
S (χτ

T ) is the spin (isospin) function of the NN pairs
coupled to the spin S (isospin T ) state. The first (second)
configuration in (16) [(17)] takes into account the NN cor-
relation in the 1S (3S) channel. In principle, the short-range
correlation caused by the repulsive hard core contributes in
these channels, and amplitudes of two nucleons close to each
other should be suppressed; however, the central interaction
adopted in the present study is not a realistic nuclear force but
an effective interaction without a hard core. The third config-
uration is the so-called D-state component, which is essential
in the tensor correlation. We call the first, second, and third
configurations, the 1S, 3S, and 3D channels, respectively.

In the present framework, �
AQCM-T
4He,0+ defined in Eqs. (11)

and (12) is a basis wave function specified by the k value
in Eq. (5) and the spin-isospin configuration. The total wave
function for the ground state, �4He,gs, is expressed by linear
combination of various k values and the spin and isospin
configurations as

�4He,gs = c0�
0s
4He +

∑
k

∑
β

c(k, β )�AQCM-T
4He,0+ (k, β ), (19)

where β is the label for the spin-isospin configurations in
Eq. (15) [or channels in (16)–(18)]. Here, the first term of �0s

4He

is the (0s)4 wave function equivalent to �
AQCM-T
4He,0+ (k, β ) with

k = 0 and β = p↑p↓n↑n↓. The coefficients c0 and c(k, β )
are determined by diagonalizing the norm and Hamiltonian
matrices comprised of the basis wave functions. The superpo-
sition with respect to k in Eq. (19) is nothing but the expansion
of the correlated NN pair wave function in terms of Gaussians
with mean momentum k in the momentum space, and the
sum of β corresponds to the coupled-channel calculation of
β = {1S, 3S, and 3D}.

In the present framework, we take notice of a single NN
pair among the four nucleons and explicitly treat the two-body
correlations, but we omit higher-order correlations, where
more than two nucleons are involved. This ansatz is supported
by the four-body calculations by Horii et al. in Ref. [46],
which demonstrates that the D state coupling with the S
state, which is dominant, in a single NN pair with T = 0 is
essential in describing the 4He ground state. This is a natural
consequence of the bosonic feature of two NN pairs with
T = 0 in 4He.

In this article, we present a new framework and call it the
“AQCM-T,” because this is a tensor version of the AQCM, in
which clusters are changed into quasiclusters characterized by
the complex Gaussian centroids. The AQCM has been origi-
nally proposed to describe the breaking of nn and α clusters
by the spin-orbit interaction at the nuclear surface, and this
can be regarded as an extended version of the Brink cluster
model or a specific version of the AMD model. The AQCM
treatment of introducing the imaginary part for the Gaussian
centroids has been applied to a pn pair to describe the tensor
correlation in 4He by Itagaki and Tohsaki in Ref. [43], in
which the method was called the “iSMT.” The model space
of the iSMT was extended in “HM-AMD” by Myo et al. for
the study of the tensor correlations of 4He in Ref. [44]. In
order to treat short-range correlations as well as the tensor
correlations, they have achieved further extension of the HM-
AMD model by taking into account higher-order correlations
beyond two body [45]. Our parameter k in Eq. (5) for the
imaginary centroids of the Gaussian wave packets is related to
the notations of the parameters d in the iSMT and D in HM-
AMD as d = D = K/ν = k/(2ν). It should be commented
that the model spaces of Refs. [43,44] correspond to subsets of
the present spin and isospin configurations defined in Eq. (15).
One of the key points of the present model is that we explicitly
represent not only the isospin symmetry of the correlated pair
but also that of the (0s)2 pair, which is essential in describing
the isoscalar property of the 4He ground state.

2. Parameter settings for 4He

For the ground state of 4He (4Hegs), we perform calcu-
lations with the three channels defined in (16)–(18) (β =
{1S, 3S, 3D}). This three-channel calculation can be practically
done using five configurations defined in Eq. (15). If we
can omit the effect of the charge symmetry breaking by
the Coulomb interaction, these two sets of configurations
are equivalent. Indeed, the three-channel calculation gives
almost the same result as that of the full five configurations,
indicating that the symmetry breaking in the isospin space
is negligibly small. For each channel, the basis states with
k = 0.5, 1.0, . . . , 5.5 fm−1 (11 points) are adopted in addition
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to the (0s)4 configuration. As a result, the total number of the
basis states in Eq. (19) is 11 × 3 + 1 = 34 corresponding to
the dimension of the Hamiltonian to be diagonalized. We also
perform calculations with truncated model space and compare
with the full result to clarify the roles of the 1S, 3S, and 3D
components.

C. AQCM-T for 8Be

1. AQCM-T wave function of 2α

Our aim is to investigate the tensor effect in heavier nuclei.
Here we extend the AQCM-T framework to 8Be with the two
α cluster structure, in which one of the α clusters is changed
from the (0s)4 configuration to the correlated 4He wave func-
tion previously explained. We label the correlated α cluster
as αk , and another α cluster with the (0s)4 configuration is
labeled as α0. We place αk at R = dα

2 and α0 at R′ = − dα

2
with the relative distance of dα . After the antisymmetrization,
the 0+ projected 2α wave function is

�
AQCM-T
2α,0+ (k, β, dα ) = P̂ 0+A{

�αk
(k, β, R)�α0 (R′)

}
, (20)

where β is the label for the spin and isospin configurations
of the αk cluster. The two α clusters are expressed using the
AQCM-T wave function for 4He as

�αk
(k, β, R) = �

AQCM-T
4He,+ (k, β, R)

= 1 + P̂k

2
A{φR+i K/νφR−i K/νφRφR

⊗χ1χ2χ3χ4}, (21)

�α0 (R′) = �0s
4He(R′)

= A{φR′φR′φR′φR′ ⊗ p↑p↓n↑n↓}. (22)

Here K = (0, 0, k/2), and the operator P̂k transforms the
imaginary part of the correlated NN pair as k → −k. Thus,
the intrinsic wave function of the correlated NN pair is
projected onto the positive-parity state by the operator (1 +
P̂k )/2. The parameter dα for the relative distance is chosen as
dα = (dα sin θα, 0, dα cos θα ). For fixed dα , states with various
k, θα , and β values are superposed as

�2α,0+ (dα )

= c0�
BB
2α,0+ (dα ) +

∑
k,β,θα

c(k, β, θα )�AQCM-T
2α,0+ (k, β, dα ),

(23)

where �BB
2α,0+ is the Brink-Bloch (BB) 2α cluster wave func-

tion projected to 0+,

�BB
2α,0+ (dα ) = P̂ 0+A{

�α0 (R)�α0 (R′)
}
. (24)

For each dα value, the coefficients c0 and c(k, β, θα ) are deter-
mined by diagonalizing the norm and Hamiltonian matrices.
We investigate the tensor correlations of the two α system as
a function of dα .

In the present framework, not only for the relative motion
between clusters, the angular momentum of the subsystem

αk is practically projected; although the projection in
�2α,0+ (dα ) is only for the total angular momentum, the dou-
ble projection is achieved. This is owing to the rotational
symmetry of the α0 cluster, the axial symmetry of the αk ,
and the superposition effect of states with various θα values
(0 � θα � π/2). The range of π/2 � θα � π is redundant in
the present case since the intrinsic parity of the αk cluster is
already projected.

Here the angle θα is treated as a generator coordinate, while
the parameter dα is fixed, and the intercluster wave function is
localized around dα . In principle, dα can be also treated as
a generator coordinate; superposing �2α,0+ (dα ) with different
dα values gives a better solution for the intercluster motion.
However, such calculation requires huge computational costs,
and we perform our calculation for each fixed dα value.

In the present AQCM-T framework for the two α sys-
tem, we explicitly treat the NN correlation in one of
the two α clusters, but we omit configurations that NN
pairs in both α clusters are simultaneously excited from
(0s)2, which could significantly contribute in the asymp-
totic region (dα → ∞). If each 4Hegs cluster contains the
(0s)4 component (|0s〉) still dominantly and the mixing
of the correlated component (|corr〉) is minor in ampli-
tude as |4Hegs〉 ∝ |0s〉 + ε|corr〉 with small enough |ε|, the
present ansatz is a good approximation; the 2α state at
R and R′ is written as |4Hegs〉R|4Hegs〉R′ = |0s〉R|0s〉R′ +
ε|0s〉R|corr〉R′ + ε|corr〉R|0s〉R′ + O(ε2), which can be ap-
proximately described by the present model space within the
order of O(ε). Note that the exchange of the α positions,
R ↔ R′, is implicitly performed in the present model by the
parity projection of the total system using α clusters, whose
intrinsic parities are already projected.

2. Parameter setting for 8Be

For the generator coordinate θα for the angle, we adopt
five mesh points of θα = 0, π/8, . . . , π/2, which gives almost
converged results. Regarding the correlated α cluster (αk)
wave function, we truncate the configurations introduced for
4He in order to save the computational costs; here we employ
only two channels of β = {3S, 3D}, because the 1S channel
is found to be not essential for the tensor correlations in 4He
as we discuss later. The calculation with these two channels
is practically performed by employing the following three
configurations:

χ1χ2χ3χ4 = {p↑n↑p↓n↓, p↑n↓p↑n↓, p↑n↓p↓n↑}.
For the parameter k in Eq. (20), we use three points k =
{1, 2, 3} fm−1, which efficiently describes the properties of
4Hegs. Therefore, the number of the basis states in Eq. (23)
corresponding to the dimension of the diagonalization is 3 ×
2 × 5 + 1 = 31 for a given distance of dα .

D. 0s, 1S, 3S, and 3D probabilities

In this study, we analyze the probabilities of the 1S, 3S, 3D
components in the obtained 4He and two α states (|�〉),

P1S,3S,3D = |〈�|P̂1S,3S,3D|�〉|, (25)
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and the 0s probability is given as

P0s = |〈0s|�〉|2. (26)

Here |�〉 = |�4He,gs〉 and |0s〉 = |�0s
4He

〉 for the 4He system,
and |�〉 = |�2α,0+〉 and |0s〉 = |�BB

2α,0+〉 for the two α system.
P̂1S,3S,3D are the projection operators onto the 1S, 3S, 3D com-
ponents. We also calculate the probabilities

P⊥
1S,3S

= |〈�|�⊥
0s P̂1S,3S�

⊥
0s |�〉|, (27)

�⊥
0s = 1 − |0s〉〈0s|, (28)

of the correlated 1S, 3S components, which are defined in the
�⊥

0s-projected space orthogonal to the 0s state. Note that P⊥
1S,3S

somewhat depends on the adopted width parameter ν of the
Gaussian wave packet defined in Eq. (2) and therefore one
should be careful in quantitative discussions on the absolute
values of P⊥

1S,3S
.

III. HAMILTONIAN

The Hamiltonian used in the present calculation is

Ĥ =
A∑
i

T̂i − T̂G

+
A∑

i<j

[V̂c(i, j ) + V̂so(i, j ) + V̂t (i, j ) + V̂Coulomb(i, j )],

(29)

where T̂i is the kinetic energy operator of ith nucleon, and
the total kinetic energy operator for the cm motion (T̂G)
is subtracted. The two-body interaction consists of central
interaction (V̂c), spin-orbit interaction (V̂so), tensor interaction
(V̂t), and Coulomb interaction (V̂Coulomb) terms. The Coulomb
interaction for the protons is approximated by a seven-range
Gaussian form.

A. Central interaction

For the central interaction V̂c, we use an effective nucleon-
nucleon interaction. Our central interaction is based on the
Volkov no. 2 interaction [47], which is a phenomenological
one and reproduces the α-α scattering phase shift when the
Majorana exchange parameter is properly chosen. The orig-
inal Volkov interaction has only the Wigner and Majorana
exchange terms, but here we add the Bartlett and Heisenberg
terms as

V̂c =
[
Vα exp

(
− r2

ij

α2

)
+ Vρ exp

(
− r2

ij

ρ2

)]

× [
w + bP̂ σ

ij − hP̂ τ
ij − mP̂ σ

ij P̂ τ
ij

]
, (30)

where Vα = −60.65 MeV, Vρ = 61.14 MeV, α = 1.80 fm,
and ρ = 1.01 fm, which are the original values.

This is a phenomenological interaction, and tensor effect as
well as the hard-core contribution is effectively renormalized
in the central interaction, and if we just add the tensor inter-
action to the Volkov interaction, the tensor effect is double
counted. As explained in Sec. III D, we examine the case

of an effective interaction containing the central and tensor
interaction terms by modifying the original Volkov no. 2
interaction.

B. Spin-orbit interaction

For the spin-orbit interaction V̂so, we use the spin-orbit part
of the G3RS interaction [48], which is a realistic nucleon-
nucleon interaction, given by

V̂so =
[
u1 exp

(
− r2

ij

η2
1

)
+ u2 exp

(
− r2

ij

η2
2

)]
P̂ij (3O )L̂ij · Ŝij ,

(31)

where u1 = 600 MeV, u2 = −1050 MeV, η1 = 0.447 fm,
and η2 = 0.6 fm which are the values of “case 1” of G3RS.
Here P̂ij (3O ) is the projection operator to the triplet odd (3O)
state.

C. Tensor interaction

For the tensor interaction V̂t , we consider a r2-weighted
Gaussian form for the r dependence, which is for the conve-
nience of the practical AQCM-T calculation. Our final goal
is to apply the AQCM-T to systems heavier than 4He, and
therefore, we here prepare a new parametrization of the r2-
weighted Gaussian with three ranges by fitting the tensor part
of G3RS [48], which is a realistic interaction and its spin-orbit
part was explained in the previous subsection. The tensor term
with the r2-weighted Gaussian form has been proposed by
Furutani et al. in the 3N + N cluster model calculation for
the A = 4 system [49] and used for the study of the tensor
effect in 4He with an extended AMD by Doté et al. [22].
Since Furutani’s tensor interaction (called simply Furutani
tensor interaction) was tuned for simple wave function, it
gives too strong attraction for more sophisticated wave func-
tions containing tensor correlations of NN pairs as shown in
Ref. [44], and therefore it is not suitable for the study of the
tensor correlation in the realistic 4He. In the present paper,
we adopt the same form as the Furutani tensor interaction but
tune coefficient of each range so as to reasonably simulate the
G3RS tensor interaction. This parametrization is the default
tensor part in the AQCM-T calculations for 4He and 8Be.
We also show some results of 4He for cases of the original
G3RS and Furutani tensor parts just for comparison. Below
we present functional forms of the G3RS and Furutani’s and
our tensor interactions.

The tensor part of G3RS is given by

V̂
(G3RS)

t = Ŝij

[
3∑

n=1

V
(G3RS)3E

t,n P̂ij (3E) exp

(
− r2

ij

η2
t,n

)

+
3∑

n=1

V
(G3RS)3O

t,n P̂ij (3O ) exp

(
− r2

ij

η2
t,n

)]
, (32)

Ŝij = 3(σ̂ i · r̂ ij )(σ̂ j · r̂ ij )/r2
ij − (σ̂ i · σ̂ j ), (33)

where P̂ij (3E) is the projection operator to the triplet even (3E)
state. We use the parameter set of “case 1” of G3RS.
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TABLE I. The parameter sets of G3RS tensor part (case 1),
Furutani tensor, and new three-range fit (3R fit) tensor, which is
G3RS tensor part fitted by using the functional form of the Furutani
tensor defined in Eqs. (33)–(35).

n 1 2 3

G3RS tensor part (case 1)

ηt,n (fm) 2.5 1.2 0.447

V
(G3RS)3E

t,n (MeV) −7.5 −67.5 67.5

V
(G3RS)3O

t,n (MeV) 2.5 20 −20

Furutani tensor
βn (fm−2) 0.53 1.92 8.95
V

(Furutani)
t,n (MeV fm−2) −16.96 −369.5 1688.0

Wn 0.3277 0.4102 0.5
Hn 0.6723 0.5898 0.5

New three-range fit tensor
βn (fm−2) 0.53 1.92 8.95

V
(3R-fit)3E

t,n (MeV fm−2) −17.02 −209.89 −289.59

V
(3R-fit)3O

t,n (MeV fm−2) 5.27 62.91 89.87

Furutani tensor interaction is given by

V̂
(Furutani)

t = Ŝij

3∑
n=1

V
(Furutani)

t,n

(
Wn − HnP̂

τ
ij

)
r2
ij exp

(−βnr
2
ij

)
.

(34)

This interaction was used in our previous SMT and iSMT
works. Compared with the Gaussian form of the G3RS tensor
part, the Furutani tensor has the r2-weighted Gaussian form,
which allows us to calculate the matrix element easily, when
the local Gaussian type of the wave function is introduced as
in the present case.

Our newly prepared tensor interaction is given by the r2-
weighted Gaussian form with the same ranges as the Furutani
tensor interaction as

V̂
(3R-fit)

t = Ŝij

[
nmax=3∑
n=1

V
(3R-fit)3E

t,n P̂ij (3E)r2
ij exp

(−βnr
2
ij

)

+
nmax=3∑
n=1

V
(3R-fit)3O

t,n P̂ij (3O )r2
ij exp

(−βnr
2
ij

)]
. (35)

We fit the G3RS tensor part using this functional form and
propose a new G3RS-like tensor interaction in a convenient
form. The details of the fitting are explained in Appendix A.
The parameter sets of all three tensor interactions are summa-
rized in Table I. The radial part of the 3E and 3O components
of the G3RS tensor part, the Furutani tensor, and the new
three-range fit (3R fit) of the G3RS tensor part are compared
in Fig. 1.

D. Parametrization of the interactions

In this paper, we compare the results of different parameter
sets for the central and tensor interactions, which give major
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FIG. 1. The comparison of the radial part of the G3RS tensor
term (solid line), Furutani tensor (dotted line), and three-range fit
(dash-dotted line). (a) Triplet even part, (b) triplet odd part.

contributions to the binding energy, while the spin-orbit and
Coulomb parts are fixed.

As mentioned previously, the Volkov interaction is a phe-
nomenological central interaction, and the tensor contribu-
tion is effectively renormalized. Therefore, if we just add
the tensor interaction to the Volkov interaction, the tensor
effect is double counted. In this study, we weaken the Volkov
interaction for the central part and add the tensor term, which
reasonably reproduces energies of 4He and two-nucleon
systems.

We start with the Volkov no. 2 interaction with m = 0.6,
w = 1 − m, b = h = 0.15. This parameter set is called “V2”
and is often used in the conventional cluster models. This
set has been known to reproduce the energy and radius of
4Hegs, and also the α-α scattering phase shift within the
(0s)4 configuration for the α cluster(s). The Bartlett and
Heisenberg parameters of b = h = 0.15 are chosen so as to
reproduce the NN scattering lengths of 1S and 3S without the
tensor interaction as as = −24 and at = 5.4 fm, respectively
(the experimental values are as = −18.5 ± 0.4 fm [51] and
as = −23.749 ± 0.008 fm [50] for the nn and pn channels,
respectively, and at = 5.423 ± 0.005 fm [51]).

Now we combine the modified V2 interaction for the
central part and the three-range fitted G3RS interaction for
the tensor part. In the original V2 interaction, the large tensor
contribution is effectively renormalized in the 3E central term.
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TABLE II. The parameter sets of the different combinations of
the tensor and central interactions. The 1S scattering length (as) and
the deuteron properties (binding energy εd and D-state probability
PD) for each interaction set are shown. The column Vc is for the
central interactions, and the column Vt is for the tensor interac-
tions. The V2m interaction is the modified version of Volkov no.
2 newly introduced in the present study. The experimental data for
the two-nucleon system are as = −23.749 ± 0.008 fm for the pn

channel [50] (as = −18.5 ± 0.4 fm for the nn channel [51]) and
−εd = 2.22 MeV.

V2m-3R V2-3R V2-F V2

Vc V2m V2 V2 V2
Vt 3R fit 3R fit Furutani
as (fm) −24 −24 −24 −24
εd (MeV) −4.38 −11.02 −18.46 −2.65
PD 4.9% 6.0% 8.7%

As a result, the 3E part of the V2 interaction with b = h =
0.15 is much stronger than the 1E part, as the ratio of 3E/1E =
1.3/0.7, inconsistent to the realistic interactions. To avoid
double counting of the tensor contribution, we reduce the 3E
part by introducing a factor δ3E as

V̂ (V2m)
c = (1 − (1 − δ3E )P̂ij (3E))V̂ (V2)

c , (36)

where V̂ (V2)
c is the original V2. We adopt δ3E = 0.6 (reduction

of the 3E part to 60% of the original strength) which gives
the reasonable binding energy of 4Hegs within the AQCM-T
after including the tensor interaction. This modified central
interaction is labeled as “V2m.” After the reduction, the 3E
strength becomes almost the same as the 1E one with the
ratio of 3E/1E = 0.78/0.7. Then we add the three-range fitted
G3RS tensor interaction. We label the newly constructed
interaction containing the central and tensor interactions as
“V2m-3R.”

We also introduce other two interactions by just adding
tensor interactions to the V2 interaction without any reduction
and compare the results with that obtained by the V2m-3R
interaction. One is the “V2-3R” interaction, in which the
three-range fitted G3RS tensor interaction is added to the V2
interaction. The other is “V2-F,” where the Furutani tensor
interaction is added to V2.

The parameter sets for these four interactions (V2m-3R,
V2-3R,V2-F, and V2) are summarized in Table II. The 1S
scattering length and the deuteron properties (binding energy
and D-state probability) obtained with these interactions are
also shown. It should be commented that our newly con-
structed interaction, V2m-3R, gives reasonable results for the
low-energy properties of both 1E and 3E channels, whereas
the V2 interaction combined with the tensor interactions has
the overbinding problem of the deuteron, because of the dou-
ble counting of the tensor effect in the 3E channel. However,
the deuteron energy of V2m-3R (−4.38 MeV) is much deeper
compared with the experimental value of −2.224 566 MeV.
We may need further improvement of the model wave func-
tion and fine tuning of the central part.

TABLE III. Energies, radii, and probabilities of 4He obtained
with AQCM-T full configurations and the V2m-3R, V2-3R, and V2-
F interactions together with the experimental energy and radius [52].
The result for the (0s )4 state with the V2 interaction is also shown
[V2:(0s )4]. In V2m-G3RS, V2m is used for the central part, and the
precise (20-range) fit of G3RS tensor part is used. See Appendix A
for the precision of the 20-range fit.

V2m-3R V2-3R V2-F V2:(0s )4 V2m-G3RS Expt.

E (MeV) −30.3 −52.6 −69.2 −27.9 −30.7 −28.296
T (MeV) 64.6 72.3 86.1 46.7 64.9
Vc (MeV) −56.7 −83.3 −85.1 −75.3 −56.7
Vt (MeV) −39.9 −43.2 −72.2 0.0 −40.6
Rm (fm) 1.46 1.38 1.33 1.50 1.46 1.455
P0s 0.901 0.867 0.801 1.00 0.899
P3D 0.077 0.082 0.112 0.079
P⊥

3S
0.018 0.050 0.086 0.019

P⊥
1S

0.004 0.016 0.027 0.004

IV. RESULTS OF 4He

A. Properties of 4He

Properties of 4Hegs obtained with the AQCM-T and V2m-
3R, V2-3R, and V2-F interactions are shown in Table III.
The total energy (E), contributions of the kinetic term (T ),
central (Vc) and tensor (Vt) interactions, root-mean-square
(rms) matter radii (Rm), and 0s, 1S, 3S, and 3D probabilities are
listed. The result calculated with the single (0s)4 configuration
(�0s

4He
) using the V2 interaction is also shown for comparison.

For V2-3R (V2-F), 4He is unrealistically overbound as
seen in much larger binding energy of −E = 52.6 MeV
(−E = 69.2 MeV) and the smaller radius of Rm = 1.38 fm
(Rm = 1.33 fm) compared with the experimental values of
−E = 28.296 MeV and Rm = 1.455 fm, because of extra
attraction by the strong tensor interaction (tensor effect is
already renormalized in the V2 interaction).

On the contrary, the V2m-3R interaction gives the rea-
sonable binding energy of −E = 30.3 MeV, because the 3E
central term is reduced to 60% of the V2 interaction. In the
present paper, we use this V2m-3R as the default parameter
set of the interaction, though it is possible to fine-tune the
reduction factor to exactly reproduce the experimental binding
energy. In practical calculations of heavier systems, possible
truncations of the model space may be required to save
computational costs. Therefore, this reduction factor for the
3E central term can be regarded as an adjustable parameter,
which may depend on the model space adopted.

It is quite instructive to compare the contribution of each
term of the Hamiltonian obtained in two different cases: the
AQCM-T with V2m-3R and the (0s)4 configuration with V2;
the latter is the nuclear interaction containing only the central
part. The total energy is almost the same; however, the contri-
butions of T , Vc, and Vt are much different. The contribution
of the central interaction is reduced by ∼20 MeV in V2m-
3R, because of the weaker 3E central interaction compared
with that in V2. The remarkable feature of V2m-3R is that
a large gain of the tensor energy compensates this reduction
and even overcomes the increase of the kinetic energy. It
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FIG. 2. Matter density distribution of 4Hegs obtained with
AQCM-T and V2m-3R. The single Gaussian shape for the (0s )4

configuration with ν = 0.264 fm−2 that gives the equivalent radius
1.46 fm is also drawn.

should be stressed that this effect is attributed to the D-state
mixing with the dominant S-state component. Although the
D-state mixing is only 8%, the second order perturbation
causes significant gain of the tensor energy through the 3S-3D
coupling.

The AQCM-T calculation with V2m-3R gives the radius
of Rm = 1.46 fm, which well agrees with the experimental
rms point-proton radius, 1.455 fm, reduced from the observed
charge radius. The matter density distribution is shown in
Fig. 2 together with the single Gaussian shape [the (0s)4

configuration with ν = 0.264 fm−2 that gives the equiva-
lent radius of Rm = 1.46 fm]. About 10% enhancement of
the central density is obtained in the AQCM-T calculation,
because of the NN correlations beyond the simple (0s)4

configuration.
In Table III, we also show the result of the G3RS tensor

interaction combined with the V2m interaction (labeled as
“V2m-G3RS”), which are practically calculated by using the
precise (20-range) fit of the G3RS tensor part. One can see that
the three-range fit used in V2m-3R gives an almost equivalent
contribution of each term of the Hamiltonian compared with
the 20-range fit.

As explained in Sec. II, we use the fixed value of ν =
0.25 fm−2 as the width parameter in the present article in order
to compare results within the same model space. If the ν is
optimized so as to minimize the total energy of 4He, the value
is slightly changed to ν = 0.24 fm−2 for V2m-3R. The ν de-
pendence of the result for 4He is shown in Appendix B. In the
case of the optimized value of ν = 0.24 fm−2, we obtain the
total energy E = −30.3 MeV, kinetic energy T = 63.8 MeV,
central interaction Vc = −56.2 MeV, tensor interaction Vt =
−39.5 MeV, radius Rm = 1.47 fm, and D-state probability
P3D = 0.078. Nevertheless the differences from the results of
the fixing ν to ν = 0.25 fm−2 in Table III are only 1% at most
in the case of V2m-3R.
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FIG. 3. The squared overlaps Oβ (k) and pair wave func-
tions φNN (r ) in 4Hegs calculated with AQCM-T and the V2m-
3R interaction. (a) Squared overlaps obtained by the full calcu-
lation (three-channel calculation with full k configurations, k =
{0.5, 1.0, . . . , 5.5} fm−1); (b) pair wave functions in the 3D, 3S, and
1S, and 0s components obtained by the full calculation; (c) those
obtained by the two-channel calculation with k = {1, 2, 3} fm−1; (d)
those obtained by the single-channel calculation with k = 2 fm−1. In
(b), the 3S pair wave functions in the (0s )4 configuration and that
(3Sortho) in the orthogonal configuration (1 − |0s〉〈0s|)|�4He,gs〉 are
also shown.

B. N N correlations in 4He

1. Contributions of correlated N N pairs

Next, we discuss the NN correlations in 4He, which are
incorporated in the present AQCM-T calculation by introduc-
ing the correlated NN pairs. Figure 3(a) shows the squared
overlap (Oβ) of �4He,gs with each basis state of the AQCM-T
specified by k and β shown in Eq. (19). The overlap with the
3D channel is calculated as

O3D (k) = ∣∣〈�AQCM-T
4He,0+ (k, 3D)

∣∣�4He,gs

〉∣∣2
. (37)

The overlaps with the 1,3S channels are defined for the space
orthogonal to |0s〉 as

O1,3S (k) = ∣∣〈�AQCM-T
4He,0+ (k, 1,3S )�⊥

0s

∣∣�4He,gs

〉∣∣2
. (38)

This is to measure the correlated 1,3S components beyond the
simple (0s)2 pair. The ground state (�4He,gs) has the largest
overlap with the correlated 3D pair at k ∼ 1.5–2.0 fm−1,
indicating that the intermediate momentum dominantly con-
tributes to the tensor correlation. The present result is qual-
itatively consistent with the result of Ref. [44], in which
the interactions are almost equivalent to V2-F of the present
paper. But quantitatively speaking, the result with V2m-3R
is more or less different from that with V2-F; in the latter
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TABLE IV. Energies, radii, and probabilities of 4He obtained
with the truncated configurations using the V2m-3R interaction. The
results obtained by three-, two-, single-channel calculations with
full k configurations (k = {0.5, 1.0, . . . , 5.5} fm−1), the two-channel
calculation with k = {1, 2, 3} fm−1, and single-channel calculation
with k = 2 fm−1 are shown together with the result for the (0s )4 state.

β 3ch 2ch 1ch 2ch 1ch (0s )4

k {1S, 3S, 3D} {3S, 3D} {3D} {3S, 3D} {3D}
full full full {1, 2, 3} {2}

E (MeV) −30.3 −30.0 −28.2 −28.2 −23.1 −8.3
T (MeV) 64.6 65.7 58.9 64.8 56.4 46.7
Vc (MeV) −56.7 −57.1 −53.7 −57.4 −54.0 −55.8
Vt (MeV) −39.9 −40.2 −35.0 −37.3 −26.9 0.0
Rm (fm) 1.46 1.44 1.49 1.43 1.50 1.50
P0s 0.901 0.903 0.927 0.905 0.940 1.00
P3D 0.077 0.078 0.073 0.080 0.060
P⊥

3S
0.018 0.019 0.016

P⊥
1S

0.004

case the dominant contribution shifts to a slightly higher
region of k, around k ∼ 2 fm−1. This interaction gives un-
realistically overbound 4He, because the tensor interaction is
already renormalized in the central part of V2-F. It is worth
mentioning that �4He,gs has finite overlap with the correlated
3S pair, which gives a non-negligible contribution to the tensor
correlation, as discussed later.

In order to clarify the contribution and role of each channel
and basis state, we perform the AQCM-T calculations within
truncated model spaces. At first, we truncate the channels,
β = {1S, 3S, 3D}, which is the truncation of the spin-isospin
space; we omit the {1S} and {1S, 3S} channel(s) and perform
two- and single-channel calculations using only β = {3S, 3D}
and {3D} channel(s), respectively, whereas we employ all
the basis states for the k values in Eq. (19). In Table IV,
the results of two- and single-channel calculations with the
V2m-3R interaction are listed and compared with the those
of the three-channel (β = {1S, 3S, 3D}) calculation. The two-
channel calculation gives quite a similar result to the full
(three-channel) one, indicating there is almost no effect of
the 1S correlation. However, if we compare the two-channel
and single-channel calculations, it can be seen that the 3S
truncation gives significant effects on the T , Vc, and Vt

energies, even if it gives a minor effect on the total energy
E. For instance, the Vt contribution is suppressed by about
5 MeV when the correlated 3S component is missing since
it directly couples with the NN pair in the 3D state with
T = 0. Although the 3D component plays a primary role in
the tensor correlation, the coupling of the two channels, 3S
and 3D, is necessary to quantitatively describe the features
of the tensor correlation. The single-channel calculation only
describes basic features of 4He, such as tensor contribution in
energy or D-state probability, qualitatively.

For comparison, we also show the results of three-, two-,
and single-channel calculations obtained with the V2-F in-
teraction in Table V. Unlike the V2m-3R case, the inclusion
of the correlated 3S component significantly contributes to
all energy terms (E, T , Vc, and Vt) as well as the D-state

TABLE V. Energies, radii, and probabilities of 4He obtained with
truncated configurations using the V2-F interaction. The results of
three-, two-, single-channel calculations with full k configurations
are listed.

β 3ch 2ch 1ch

k {1S, 3S, 3D} {3S, 3D} {3D}
full full full

E (MeV) −69.2 −68.9 −60.3
T (MeV) 86.1 85.5 65.1
Vc (MeV) −85.1 −84.4 −73.1
Vt (MeV) −72.2 −72.1 −54.2
Rm (fm) 1.33 1.33 1.49
P0s 0.801 0.803 0.902
P3D 0.112 0.112 0.098
P⊥

3S
0.086 0.085

P⊥
1S

0.027

probability. However, it may be an artifact because of the
unrealistic overbinding of 4He due to the double counting of
the tensor contribution in the central and tensor terms.

Next, we truncate the k values in Eq. (19); we perform the
two-channel (β = {3S, 3D}) calculations with reduced num-
ber of the basis states with different k values. Here we
employ only three values of k = {1, 2, 3} fm−1 for the 3S
and 3D channels, which represent the important features of
the ground state of 4He and cover most of the functional
space, as one can see in Fig. 3(a), the overlap with the full
calculation. As expected, the two-channel calculation only
with k = {1, 2, 3} fm−1 efficiently describes the properties of
4He in the level almost comparable to the full calculation.
On the other hand, when we further reduce the model space
and perform the single-channel calculation with a single k =
2 fm−1 configuration, we obtain the binding energy of −E =
23.1 MeV. This energy is much lower compared with −E =
8.3 MeV of the pure (0s)4 case owing to the mixing of the
single correlated configuration; however, compared with the
full calculation, the Vt contribution is significantly reduced,
indicating that superposition of different k configurations in
the 3S and 3D channels is important to quantitatively describe
the tensor correlation.

2. Pair wave functions

Using the partial wave expansion of ϕ+
k (r ) shown in

Eq. (10), we reconstruct the intrinsic wave function of the
correlated NN pair, which we call the pair wave function
φNN (r ). The pair wave functions φNN (r ) defined here are
those for the NN pair with correlations in the 1S, 3S, and 3D
components of �4He,gs as

1S : φNN (r )ϕ(0)
0 (r ′) ⊗ Y00Y00 ⊗ χσ

0 χσ
0 ⊗ [

χτ
1 χτ

1

]
T =0,

3S : φNN (r )ϕ(0)
0 (r ′) ⊗ Y00Y00 ⊗ [

χσ
1 χσ

1

]
S=0 ⊗ χτ

0 χτ
0 ,

and
3D : φNN (r )ϕ(0)

0 (r ′) ⊗ [
Y20Y00 ⊗ [

χσ
1 χσ

1

]
S=2

]
J=0 ⊗ χτ

0 χτ
0 ,

respectively. They are given by the linear combina-
tion of ϕ

(0)
k (r ) or ϕ

(2)
k (r ), respectively, and their Fourier
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transformation is related to the overlap O(k) of the corre-
sponding channel. Figure 3(b) shows the pair wave functions
φNN (r ) in the ground state (�4He,gs) obtained with the full
AQCM-T basis states and the V2m-3R interaction. The 3S
pair wave function in the (0s)4 configuration projected from
the ground state (|0s〉〈0s|�4He,gs〉) and that in the orthogo-
nal correlated component [(1 − |0s〉〈0s|)|�4He,gs〉] are also
shown. The pair wave function in the 3D component has a
peak around the r ∼ 1 fm region and shows a tail behavior
in the 2 � r � 3 fm region. The amplitude at the peak in the
short distances is represented by high k components, whereas
the long-range tail is expressed by low k components. It is
also interesting to see that the 3S pair wave function shows a
significant enhancement around r ∼ 1 fm, consistent with the
peak position of the 3D pair wave function. The enhancement
of the 3S pair wave function in this region is caused by
the 3S-3D coupling attributed to the tensor interaction, which
effectively provides an extra attraction for the 3S channel. This
3S-3D coupling gives the answer why mixing of the correlated
3S component has a significant effect on the tensor correlation
in 4He, discussed previously.

For a more quantitative discussion on the spatial extent of
the 3D pair, we calculate the rms distance of the pair wave
function defined as

rpair ≡
√∫

drr4|φNN (r )|2
/ ∫

drr2|φNN (r )|2. (39)

We obtain rpair = 1.70 fm for the 3D pair, which is smaller
than rpair = 2.24 fm for the 3S pair [for the 3S pair in the pure
(0s)4 state, rpair = √

3/(2ν) = 2.45 fm].
Since the enhancement of the 3D and 3S pair wave functions

are seen in the r � 2 region, we can say that this region is of
special importance for the T = 0 pair because of the tensor
correlation. This region of r � 2 for the NN pair roughly
corresponds to the internal area of ri � 1 fm for the total 4He
system.

Let us turn to the pair wave functions [φNN (r )] ob-
tained by using truncated model space. Figure 3(c) shows
φNN (r ) for the two-channel (β = {3S, 3D}) calculation with
k = {1, 2, 3} fm−1, and Fig. 3(d) shows that for the single-
channel (β = 3D) calculation with k = 2 fm−1. In the two-
channel calculation with k = {1, 2, 3} fm−1, φNN (r ) shows
similar behaviors to that of the full calculation, that is, the
appearance of short-range peak and long-range tail for 3D and
short-range enhancement for 3S. On the other hand, in the
single-channel calculation with k = 2 fm−1, somewhat differ-
ent features of the pair wave function are seen. The 3D pair
wave function shows a short-range peak, but it is milder and
slightly shifted toward the outer region, r ∼ 1.5 fm, than that
of the full calculation. Moreover, in the long distance region,
the pair wave function has a negative amplitude instead of the
gradually decreasing tail obtained in the full calculation. The
reason is that a single k configuration for the 3D channel is not
enough and it gives an oscillating function of ϕ

(2)
k (r ) with the

e−(ν/2)r2
j2(kr ) dependence.

The present analysis indicates that the superposition of
different k configurations in a wide momentum space is

essential for detailed description of the tensor correlation,
even though the contribution of k ∼ 2 fm−1 is dominant. In
particular, higher k components in the 3S and 3D channels,
typically k � 3 fm−1, are necessary for precisely describing
the tensor correlation at the shorter range around r ∼ 1 fm of
the T = 0 pair.

V. RESULTS OF 8Be

In this section, we investigate the tensor correlations in 8Be
with a two α configuration, where the V2m-3R interaction
is adopted. Here, the AQCM-T is applied to one of the α
clusters, and we adopt only two channels, β = {3S, 3D} with
k = {1, 2, 3} fm−1.

In Fig. 4, we show the energies of 8Be as a function of
dα , which is the parameter for the relative distance between
two α clusters, (a) total energy, (b) probabilities of the 0s and
3D configurations, (c) contribution of each component of the
Hamiltonian. In (c) and (d), the relative energies are measured
from values at dα = 7 fm. Also we list in Table VI the values
for the contribution of each term of the Hamiltonian and the
probabilities of the 0s and 3D configuration as functions of
dα . The results calculated with BB cluster model with V2
interaction are shown in Figs. 4(a) and 4(d) and Table VI for
comparison. In Fig. 4(a) and Table VI, we also show the ideal
values of the asymptotic energies corresponding to the ones at
dα → ∞, evaluated as twice the 4He energy calculated with
the consistent model space, i.e., the two-channel calculation
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FIG. 4. Energy and the probabilities of 0s and D states in 8Be
calculated with AQCM-T and the V2m-3R interaction, as a function
of the relative distances dα between the two α clusters, (a) total
energy, (b) 0s and 3D probabilities, and (c) energy of each component
of the Hamiltonian. The total energy calculated using the V2m
central interaction without the odd part combined with the three-
range fit tensor interaction is also shown in (a). The results calculated
with the BB cluster model and V2 are shown in (a) and (d). In
panel (a), the asymptotic energy for AQCM-T and BB are shown by
arrows. The energy calculated with AQCM-T using the V2m central
interaction without the odd part combined with the three-range fit
tensor interaction is also shown in (a). In (c) and (d), the relative
energies measured from dα = 7 fm are plotted.
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TABLE VI. Energy for each component of the Hamiltonian and
the probabilities of 0s and D-states in 8Be calculated with AQCM-T
and the V2m-3R interaction, as a function of the relative distances
dα between the two α clusters (upper column). The asymptotic and
threshold energies are given as twice the 4He energy calculated with
a consistent model space. For the asymptotic values, the constant
shift of Tr = h̄ω/4 = 5.2 MeV is added for the kinetic and total
energies, corresponding to the localization of clusters with fixed
relative distance. The asymptotic value of the 0s probability given by
the square of P0s for 4He is also shown. The results obtained by the
BB 2α cluster model with the V2 interaction are also shown (lower
column).

AQCM-T:V2m-3R

dα 〈E〉2α 〈T 〉2α 〈Vc〉2α 〈Vt〉2α P0s P3D

1 3.4 148.1 −132.8 −16.1 0.94 0.04
2 −18.6 149.1 −132.3 −40.0 0.90 0.09
3 −39.7 142.3 −127.0 −59.8 0.86 0.12
4 −47.4 132.3 −119.7 −64.4 0.86 0.12
5 −47.8 127.6 −115.3 −64.2 0.86 0.12
6 −47.4 126.7 −113.9 −64.1 0.86 0.12
7 −47.3 126.7 −113.7 −64.1 0.86 0.12

2〈E〉α + Tr 2〈T 〉α + Tr 2〈Vc〉α 2〈Vt〉α {P0s}2
α

Asymptotic −51.2 134.9 −114.9 −74.5 0.82
2α threshold −56.4

BB:V2
dα (fm) 〈E〉2α 〈T 〉2α 〈Vc〉2α

1 −38.5 145.3 −187.6
2 −45.7 132.1 −181.4
3 −51.8 116.0 −171.1
4 −53.0 104.1 −160.2
5 −51.3 99.5 −153.5
6 −50.2 98.6 −151.3
7 −49.9 98.5 −150.8

2〈E〉α + Tr 2〈T 〉α + Tr 2〈Vc〉α

Asymptotic −50.6 98.5 −150.7
2α threshold −55.8

with k = {1, 2, 3} fm−1. Note that here the constant shift of
Tr = h̄ω/4 (=h̄2ν/2m, m is the mean value of proton and
neutron masses) is added for the kinetic and total energies,
which corresponds to the increase of the kinetic energy due to
the localization of the intercluster motion around dα .

In Table VI, we can confirm that the two α system largely
gains the tensor contribution in the dα � 6 fm region with the
significant mixing of 3D and dominant 0s components. The
energy of each component of the Hamiltonian in this region is
almost comparable to the asymptotic values indicating that the
two α system is approaching a weak coupling 4Hegs + 4Hegs

state. However, small deviations from the asymptotic values
still remain, because in the present model with the αk + α0

cluster wave functions, higher order correlations of αk + αk

configurations, where both clusters contain the correlated T =
0 NN pair, are omitted.

As seen in Table VI and Fig. 4(a), in the region of dα � 3
fm, the system gets more excited as the α-α distance (dα)
becomes smaller. In particular, in the dα � 2 fm region, the

total energy rapidly increases, because the tensor correlation
is remarkably suppressed as can be seen in the reductions
of Vt and 3D in Table VI and Fig. 4(b). Namely, although
the Vt contribution stays almost constant in the dα � 3 fm
region, it rapidly decreases in the shorter region, the dα � 2
fm, as the α clusters come close to each other. Also, the 3D
probability is almost unchanged in the dα � 3 fm region, but
it rapidly decreases in the dα � 2 fm region. This means that
the suppression of the tensor correlation strongly contributes
to the repulsion between two α clusters at short distances.
On the other hand, the total energy starts increasing already
around dα ∼ 3 fm, and its origin is the increase of the kinetic
energy rather than the tensor suppression. In other words,
in the α-α energy curve, the tensor suppression contributes
to the repulsion at a relatively short range between two α
clusters, whereas the increase of the kinetic energy contributes
in the longer range. These two repulsive effects enhance the
characteristic development of the two α cluster structure in
8Be.

Both of these repulsive effects between two α clusters can
be understood as the realization of the Pauli blocking effect,
but they come from different origins. Indeed, the longer-
range one can be seen even in the BB calculation, because
it comes from the increase of the kinetic energy due to the
Pauli blocking between 0s-orbit nucleons in the α cluster and
that in the other α cluster. However, the shorter-range one
comes from the tensor suppression, which is the blocking of
(0s)−2(0p)2 excitations induced by the tensor interaction in
the correlated α cluster by the other α cluster. As discussed
in the analysis for 4He, the spatial extension of the tensor
correlated NN pair is relatively smaller than the typical range
of the uncorrelated NN pair in the (0s)4 state. As a result, the
tensor suppression occurs only when two α clusters are close
enough to block the particle hole excitation of the correlated
pair with a compact distribution. This scenario of the tensor
suppression and the consequent appearance of the two α
cluster structure is consistent with the ones already proposed
and discussed quite a long time ago [12,14]. We also discussed
a similar effect for the tetrahedron configuration of four α
clusters in 16O that the finite distance between α clusters is
favored due to the tensor suppression [43].

As seen in Fig. 4(a), the BB calculation with V2 (dot-
ted line) gives a shallow energy pocket around dα = 3 ∼ 4
fm. However, in the present calculation with the V2m-3R
interaction, this energy pocket disappears because of the
weaker central interaction. If we remove the odd part of the
central interaction, we obtain an energy pocket with almost
the same depth as the V2 interaction [see the dash-dotted
line of Fig. 4(a)]. Note that this change of the odd part of
the central interaction keeping the even part unchanged gives
almost no effect to the 4He results. Fine tuning of the central
interactions, in particular the odd part, is a remaining problem
for the study of heavier systems in the near future.

VI. SUMMARY

In this paper, we directly treated the tensor interaction and
examined the effect in 4He and 8Be. We extend the framework
of iSMT and the newly proposed AQCM-T, the tensor version
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of the AQCM. Although the AQCM-T is a phenomenological
model, we can treat the 3S-3D coupling in the deuteronlike
T = 0 NN pair induced by the tensor interaction in a very
simplified way, which allows us to proceed to heavier nuclei.
The model is also regarded as a specific version of the HM-
AMD. In the previous analyses based on the iSMT and HM-
AMD, the tensor interaction was just added to the effective
Hamiltonian, and the tensor effect was double counted. In this
study, we examined the case of an effective interaction, V2m,
where the triplet-even part of the central interaction (V2) was
reduced to 60% of the original strength so as to reproduce
the correct binding energy of 4He within the AQCM-T model
space. For the tensor term, G3RS interaction was adopted,
which was refitted using three Gaussians with a factor of
r2. This combination of the central and tensor interactions is
called V2m-3R.

For 4He, the two results of the AQCM-T with V2m-3R
and (0s)4 configuration with V2 give almost the same total
energy, however, the contributions of each component of the
Hamiltonian are much different. The contribution of the cen-
tral interaction is reduced by ∼20 MeV in V2m-3R, because
of the weaker triplet-even channel compared with that in V2,
whereas the large gain of the tensor energy compensates this
reduction and even overcomes the increase of the kinetic
energy. This effect is attributed to the D-state mixing with
the S state, which is still a dominant component; the 3D
probability (P3D) is only 8%. The AQCM-T calculation with
V2m-3R gives the rms matter radius of 1.46 fm, which well
agrees with the value reduced from the experimental charge
radius, 1.455 fm.

The present AQCM-T was also applied to 8Be within
the two α model space, where one of the α clusters was
transformed from the (0s)4 configuration using the AQCM-T.
The tensor effect was investigated as a function of relative
distance between α clusters, dα , and found to give a significant
contribution to the short-range repulsion between two α clus-
ters. In the large dα region, the contribution of each term of the
Hamiltonian is almost comparable to the asymptotic values
deduced from twice of the values for 4He, indicating that the
two α system is approaching a weak coupling, 4Hegs + 4Hegs,
state. It also indicates that, although the present AQCM-T
model for 8Be explicitly treats the tensor correlation only in
one of the α clusters, this is a good approximation at least
for the two α system owing to the Bosonic nature of the α
clusters.

The tensor interaction is really the key ingredient of the
cluster structure. It contributes to the strong binding of the
subsystems, 4He, called the α cluster, and it is also related to
the weak interaction between the subsystems. Furthermore,
the tensor suppression in each α cluster contributes to the
strong repulsion at short relative distances. This scenario of
the tensor suppression and the consequent appearance of the
two α cluster structure was proposed quite a long time ago,
and here we have discussed it in a more direct way. It is
worthwhile to investigate such an important effect of the
tensor interaction in heavier nuclei, which may be possible
because of the simple AQCM-T treatment proposed here.
Extension of the AQCM-T for nuclear matter is also an
important issue, which may be associated with the saturation
property of nuclear matter.
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APPENDIX A: GAUSSIAN FIT FOR TENSOR FORCE

1. Determination of parameters for tensor interaction

We aim to propose a G3RS-like tensor interaction in a
convenient form, which can be easily used in practical cal-
culations; we fit the G3RS tensor force with the multirange
Gaussian functional form with a factor of r2 as follows.

The radial part of the G3RS tensor term for the 3E or 3O
channel is

V
(G3RS){3E,3O}

t (r ) =
3∑

n=1

V
(G3RS){3E,3O}

t,n exp

(
− r2

η2
t,n

)
, (A1)

and that of the nmax-range fit introduced in this work is

V
(fit){3E,3O}

t (r ) =
nmax∑
n=1

V
(fit){3E,3O}

t,n r2 exp(−βnr
2). (A2)

Our aim here is to fit f (r ) = V
(G3RS){3E,3O}

t (r ) with g(r ) =
V

(fit){3E,3O}
t (r ). For this aim, we define the function F , which

TABLE VII. The parameters {bn} and {V (fit)
t,n } of the 20-range fit

tensor interaction for the 3E and 3O channels.

n bn (fm) V
(fit)

t,n (MeV fm−2)

3E 3O

1 0.1000 −1403.1 467.67
2 0.1322 387.27 −129.09
3 0.1747 −443.05 147.72
4 0.2308 50.189 −16.847
5 0.3051 −90.076 30.307
6 0.4032 −35.449 10.705
7 0.5329 −160.83 48.483
8 0.7043 −76.453 22.860
9 0.9308 −53.823 16.165
10 1.2302 −12.189 3.6997
11 1.6258 −0.73858 0.28279
12 2.1487 −1.0741 0.34869
13 2.8398 1.2481 × 10−2 −1.2718 × 10−3

14 3.7531 −1.3513 × 10−2 3.5475 × 10−3

15 4.9602 5.0273 × 10−3 −1.3535 × 10−3

16 6.5555 −1.7096 × 10−3 4.6338 × 10−4

17 8.6638 5.3737 × 10−4 −1.4603 × 10−4

18 11.4503 −1.4765 × 10−4 4.0172 × 10−5

19 15.1329 3.1296 × 10−5 −8.5195 × 10−6

20 20.0000 −3.7491 × 10−6 1.0209 × 10−6
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TABLE VIII. The values of the F 3E
S-D and F 3O

P -P calculated
with the G3RS, Furutani, three-range fit, and 20-range fit tensor
interactions.

V
(fit){3E,3O}

t (r ) F 3E
S-D (MeV) F 3O

P -P (MeV)

G3RS −35.056 6.8319
Furutani −44.980 3.6135
Three-range −34.805 6.6619
20-range −35.058 6.8323

is the square of the difference between these two integrated in
the a � r � b region as

F
({

V
(fit)

t,n

}) =
∫ b

a

[f (r ) − g(r )]2dr. (A3)

We optimize the strength parameters {V (fit)
t,n } by minimizing F ,

while the range parameters {βn} and the integration interval (a
and b) are fixed. We construct the three-range fit (nmax = 3)
tensor interaction for the use of economical calculations. For
the range parameters {βn} (n = 1, 2, 3) of the three-range
fit, we employ the values of the Furutani interaction, whose
functional form is identical to g(r ). The range parameters
{βn} (n = 1, 2, 3) are well scattered, so it is appropriate to
take a = 1/

√
β3 and b = 1/

√
β1 in Eq. (A3).

As shown in Fig. 1, the r dependence of the three-range
fit agrees well with that of the G3RS tensor part, but the
fitting precision is not perfect. We also prepare the 20-range
fit (nmax = 20) version, which fits almost perfectly. In or-
der to reproduce the G3RS tensor part in a wide range,
we choose the range parameters bn = b1 × (b20/b1)(n−1)/19

with b1 = 0.1 fm and b20 = 20.0 fm, where βn = 1/b2
n. The

parameters {bn} and {V (fit)
t,n } of the 20-range fit are shown

in Table VII.

2. Precision of the fitting

To evaluate the precision of the fitting for the radial part of

the tensor interactions V
(fit){3E,3O}

t (r ), we calculate the matrix
element

F = 〈ψf |V̂t|ψi〉, (A4)

where ψi,f is the normalized relative wave function for the
NN pair. For the 3E channel, the dominant contribution to
the energy of 4He comes from the S-D coupling in the 3E
pair through the nondiagonal matrix element of the tensor
interaction. In particular, the coupling of the 3D component
with k = 2 fm−1 with the 3S component is important as shown
in the present AQCM-T result of 4He. The corresponding

TABLE IX. ν dependence of energies, radii, and D-state prob-
ability of 4He obtained with AQCM-T full configurations for V2m-
3R.

ν (fm−2) 0.23 0.24 0.25

E (MeV) −30.32 −30.33 −30.30
T (MeV) 62.87 63.76 64.61
Vc (MeV) −55.62 −56.17 −56.70
Vt (MeV) −39.06 −39.49 −39.86
Rm (fm) 1.49 1.47 1.46
P3D 0.078 0.078 0.077

matrix element is calculated as

F 3E
S-D =

√
8

∫ ∞

0
ϕ

(2)
k (r )V

3E
t (r )ϕ(0)

k=0(r )r2dr

∝
√

8
∫ ∞

0
V

3E
t (r )e−(ν/2)r2[

e−(ν/2)r2
j2(kr )

]
r2dr, (A5)

where ϕ
(l)
k (r ) is the normalized radial wave function in

Eq. (10) and proportional to e−(ν/2)r2
jl (kr ). For the 3O chan-

nel, we evaluate here the diagonal matrix element for the 3P
pair contained in the D state of 4He using the ADCM-T wave
function with k = 2 fm−1 as

F 3O
P -P = 2

∫ ∞

0
ϕ

(1)
k (r )V

3O
t (r )ϕ(1)

k (r )r2dr

∝ 2
∫ ∞

0
V

3O
t (r )

[
e−(ν/2)r2

j1

(
k

2
r

)]2

r2dr. (A6)

The calculated values of F 3E
S-D and F 3O

P -P for the G3RS, Fu-
rutani, three-range fit, and 20-range fit tensor interactions are
shown in Table VIII. The values for the three-range fit well
agree with those for G3RS within the accuracy of a few %.
For the 20-range fit, the agreement is almost perfect meaning
that it can be regarded as an equivalent potential to the G3RS
tensor interaction.

APPENDIX B: ν DEPENDENCE OF 4He

The dependence of the 4He results on the size parameters
of the Gaussian-type wave function, ν, obtained with the
AQCM-T full configurations and the V2m-3R interaction, is
shown in Table IX. The energy contribution of each Hamil-
tonian term, radius, and D-state probability calculated with
ν = 0.23, 0.24, and 0.25 fm−2 are shown. The minimum
energy of 4He is obtained with the optimized size parameter,
ν = 0.24 fm−2. Comparing the results for the optimized ν
value (0.24 fm−2) with those for ν = 0.25 fm−2 adopted in
the present article, the differences in the energy, radius, and
probability are found to be 1% at most.
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