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The π− + 2H → γ + n + n, π− + 3He → γ + 3H, π− + 3He → γ + n + d , π− + 3He → γ + n + n + p,
and π− + 3H → γ + n + n + n capture reactions are studied with the AV18 two-nucleon potential and the
Urbana IX three-nucleon potential. We provide for the first time realistic predictions for the differential and
total capture rates for all these processes, treating consistently the initial and final nuclear states. Our results are
based on the single-nucleon Kroll-Ruderman-type transition operator and concentrate on the full treatment of
the nuclear final state interactions. They are compared with older theoretical predictions and experimental data.
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I. INTRODUCTION

Studies of radiative pion capture were initiated in 1951 by
Panofsky, Aamodt, and Hadley [1], who measured the ratio
of mesonic (π− + p → n + π0) to radiative (π− + p → n +
γ ) capture of stopped negative pions in hydrogen. Measure-
ments of capture reactions in the early 1950s played an impor-
tant role in fixing fundamental properties of the pions and their
interactions with the nucleons. Later, experiments performed
at the Lawrence Radiation Laboratory in Berkeley delivered
photon spectra from radiative pion capture on different nuclei.
Many such measurements with improved resolution were
conducted in the 1970s at the Swiss Institute for Nuclear
Research (SIN) [later the Paul Scherrer Institute (PSI)] by a
collaboration including the Universities of Lausanne, Munich,
and Zurich. All the early experimental and theoretical work
prior to January 1976 was summarized in Ref. [2]. Since we
restrict ourselves to reactions with two and three nucleons in
the present paper, we only refer the reader to Refs. [3–12] for
later studies of systems with A > 3.

The studies of the π− + 2H → γ + n + n reaction con-
centrated on the extraction of the 1S0 neutron-neutron scat-
tering length, ann. This reaction produces three detectable
particles in a final state, and the interaction of the photon with
two emerging neutrons is so weak that the final state inter-
action (FSI) is absolutely dominated by the neutron-neutron
(nn) scattering. As early as in 1951 Watson and Stuart [13]
showed with quite simple dynamics that the corresponding
photon spectrum very strongly depends on the properties of
the nn interaction. Since then many theoretical efforts [14–21]
combined with more and more precise measurements [22–32]

have contributed decisively to our present day knowledge
about ann. Detailed information about this rich field can be
found in the review by Šlaus, Akaishi, and Tanaka [33] and
in the more recent review by Gårdestig [34], where also
complementary efforts [35,36] to determine ann from the
2H(n, np)n reaction were reported.

In order to extract ann from the π− + 2H → γ + n + n
process, various theoretical frameworks were employed. The
approach formulated and applied by Gibbs, Gibson, and
Stephenson [16,17,37] used a nonrelativistic one-body tran-
sition operator containing relativistic corrections and a nn
scattering wave function generated from the Reid soft-core
potential [38]. The wave function was obtained in coordinate
space, starting from the asymptotic region and then integrating
towards smaller internucleon distances r . For r � 1.4 fm a
fifth-degree polynomial with appropriate boundary conditions
was used to represent the wave function. In order to minimize
the error in the ann extraction, the calculations had to be
restricted to small relative nn energies, that is, to the nn
FSI peak region. While the first analysis of the experiment
conducted at the Clinton P. Anderson Meson Physics Facility
at Los Alamos (LAMPF) reported in Ref. [31] used theoretical
cross sections derived with nonrelativistic phase space factors,
the results published later in Ref. [32] were obtained with the
corresponding relativistic formulas.

The second theoretical approach treated the nn rescat-
terings by means of Muskhelishvili-Omnès dispersion
relations [39,40]. De Téramond and collaborators [18,19,41]
considered various dynamical ingredients—like pion rescat-
tering terms, off-shell effects and the impact of higher partial
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waves—and studied their importance for the extraction of
ann. This theoretical framework was employed in the analysis
of two experiments performed at SIN [27–30]. It is quite
remarkable that the analyses of the SIN and LAMPF ex-
periments led to equivalent results for ann, with very small
theoretical errors of 0.3 fm in ann, even though they were
based on different theories. Namely, the final result from
the SIN experiment [30] was ann = (−18.7 ± 0.6) fm, rep-
resenting a weighted mean of two data sets with systematic
and theoretical errors added in quadrature. The corresponding
result from the LAMPF experiment reported in Ref. [32] read
ann = [−18.63 ± 0.27(experiment) ± 0.30(theory)] fm.

Further progress in the theoretical treatment of radiative
pion capture reactions and the inverse process, pion photo-
production, was made in the framework of chiral effective
field theory. In particular neutral pion photoproduction from
a nucleon was studied by Bernard and collaborators [42]
in the framework of heavy baryon chiral perturbation the-
ory (HBCHPT). The same authors calculated also the one-
loop corrections to the Kroll-Ruderman low-energy theorems
for charged pion photoproduction at threshold in Ref. [43].
Within the same framework Fearing et al. [44] evaluated the
transition amplitude for the photoproduction process away
from threshold and obtained expressions for the s- and p-wave
multipoles. They made connection with the radiative capture
reaction at the cross section level via the detailed balance
equation.

Several years later, Gårdestig and Phillips applied
HBCHPT to the π− + 2H → γ + n + n reaction [20,21,45]
and for the first time used a consistent transition operator (with
one- and two-body contributions) as well as the deuteron and
nn scattering states. Namely, they worked in coordinate space
and, starting from the asymptotic state, calculated the nn wave
function solving the Schrödinger equation, which contained
the lowest order chiral potential. For distances r smaller than
a few fermis, a solution for the spherical well potential was
chosen to account for the unknown short-distance physics.
First calculations of Gårdestig and Phillips were carried out
at next-to-next-to-leading order of chiral expansion and made
it possible to extract ann with a precision at the 0.2 fm level.

Further investigations [21,45] at higher order of chiral
expansion revealed important relations between the short-
distance physics in a number of reactions on light nuclei, since
the same axial isovector two-body contact term was found
to contribute in the radiative pion capture on the deuteron,
pion production in nucleon-nucleon (NN) scattering, triton
β decay, proton-proton fusion, neutrino-deuteron scattering,
muon capture on the deuteron, nucleon-deuteron scattering,
and the p + 3He → 4He + e+ + νe (hep) process. The corre-
lation found by Gårdestig and Phillips had direct impact on
the accuracy with which ann was estimated, and allowed them
to reduce the theoretical error to approximately 0.05 fm.

Investigation of the radiative (and nonradiative) negative
pion capture in the three-nucleon (3N) bound states also
started in the early 1950s. Even though this work prior to
January 1976 is described in Ref. [2], we mention here a
pioneering contribution by Messiah [46], who formulated a
theoretical framework to deal with pion capture (not only
radiative), discussed various dynamical aspects, and gave pre-

dictions for all the six reaction channels for the 3He nucleus,
which were, however, based on very crude approximations in
the closure formulas.

Further theoretical efforts to describe radiative capture con-
centrated on the π− + 3He → γ + 3H process. Some authors
used very simple parametrizations of the 3He and 3H wave
functions and the Kroll-Ruderman [47] form of the transition
operator to calculate directly the pertinent nuclear matrix
elements (see for example Ref. [48]). In other papers the so-
called “elementary particle treatment of nuclei” was adopted
[49–52]. Since the early measurements [53,54] yielded no ab-
solute capture rates but rather relative probabilities of various
processes, the theories tried to reproduce measured branching
ratios. In particular the so-called Panofsky ratio—that is,
the ratio of the probabilities of the charge exchange π− +
3He → π0 + 3H and radiative capture π− + 3He → γ + 3H
reactions—was studied in many papers, as exemplified by
Refs. [55,56]. An important paper by Truöl et al. [57] not
only brought new experimental data on the photon spectrum
and several branching ratios but also corrections to the earlier
theoretical predictions published in Refs. [48,52,58]. Using
a formula from Ref. [59] and making a connection between
the Gamow-Teller matrix element in triton β decay and the
corresponding matrix elements in nonbreakup pion radiative
capture on 3He, the authors of Ref. [57] also provided a result
for the π− + 3He → γ + 3H capture rate.

The photon spectrum and the branching ratios from
Ref. [57] were analyzed by Phillips and Roig [55]. Radiative
breakup rates were calculated in the impulse approximation
and FSI among the three nucleons was treated in the Amado
model [60,61], by solving the Faddeev equations with a
simple separable s-wave NN potential. The 3N bound states
were not calculated consistently but had an analytical form,
which allowed the authors to regulate strengths of the prin-
cipal S-state, S ′-state and D-state components. Despite these
simplifications, Phillips and Roig could describe the shapes
of the experimental photon spectrum and the branching ratios
given in Ref. [57]. They also predicted the decisive role of FSI
and the dominant contribution of the π− + 3He → γ + n + d
channel in the radiative breakup of 3He.

In Ref. [62], the same authors made calculations for the
π− + 3H → γ + n + n + n capture reaction, later confronted
with experimental results obtained by Bistirlich et al. [63] and
(in an improved experiment) by Miller et al. [64]. This reac-
tion allows one to study the 3N system in a pure total isospin
T = 3/2 state and to search for resonant or even bound three-
neutron states. None were found in the two above-mentioned
LAMPF experiments and the smooth shape of the experimen-
tal photon spectrum was in satisfactory agreement with the
theoretical predictions by Phillips and Roig. In particular FSI
raised the theoretical spectrum obtained under a plane wave
impulse approximation. Since later all pion beam facilities
were shut down and the more recent theoretical work on
radiative pion capture was focused on the single-nucleon and
two-nucleon (2N) sector, no calculations for the 3N system
with modern realistic nuclear forces have been performed.

Recently we have established a theoretical framework for
the A � 3 muon capture reactions [65,66]. Important building
blocks of this framework were cross-checked with the results
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from Ref. [67], obtained using the hyperspherical harmonics
formalism [68]. It has then become very natural to adapt our
momentum space techniques for corresponding radiative cap-
ture reactions. Thus we provide, for the first time, predictions
with consistent treatment of the initial and final nuclear states
calculated from realistic 2N and 3N forces for the differential
and total capture rates of the π− + 2H → γ + n + n, π− +
3He → γ + 3H, π− + 3He → γ + n + d, π− + 3He → γ +
n + n + p, and π− + 3H → γ + n + n + n reactions.

The paper is organized in the following way. In Sec. II
we introduce the single-nucleon transition operator. In the
following sections, we show selected results, concentrating on
the photon spectra and total capture rates. In Sec. III, we start
with the π− + 2H → γ + n + n reaction and demonstrate
that our framework possesses the same sensitivity to ann as the
older [30,32] and more recent, chiral calculations [20]. Our re-
sults concerning π− + 3He → γ + 3H and breakup reactions
with trinucleons are described in further sections, where we
compare predictions obtained with different treatment of FSI.
All our results for the total capture rates are shown together
and compared to earlier theoretical predictions in Sec. VII.
Finally, Sec. VIII contains our summary and outlook.

II. THE TRANSITION OPERATOR

The radiative capture process is treated in the same way
as muon capture from the 1s atomic orbit. Namely, the initial
state | i〉 comprises the K-shell pion wave function | ψ〉 and
the initial nucleus state | �iPimi〉 with the three-momentum
Pi and the spin projection mi :

| i〉 =| ψ〉 | �iPimi〉. (2.1)

In the final state | f 〉 the photon occurs, described by the state
| γ pγ ε〉 with the three-momentum pγ and the polarization
vector ε perpendicular to pγ , accompanied by the final nuclear
state | �f Pf mf 〉 with the total three-momentum Pf and the
set of spin projections mf :

| f 〉 =| γ pγ ε〉 | �f Pf mf 〉. (2.2)

We assume that the transition from the initial to final nuclear
state is governed by the one-body operator. It is constructed by
considering the π− + p → γ + n process or its inverse, the
negative pion photoproduction reaction: γ + n → π− + p.
The most general Lorentz-invariant matrix elements for these
reactions contains several terms [2]. In order to establish the
connection between radiative pion capture and weak pro-
cesses, such as muon capture, the hypothesis of partial conser-
vation of axial-vector current (PCAC) is used. Additionally,
since the pion is captured (or produced) essentially at rest, the
soft-pion limit is calculated by setting mπ− → 0. In this limit
only the so-called Kroll-Ruderman term jKR [47] remains in
the matrix element. Its simple nonrelativistic form is given in
Ref. [2] as

jKR = −ie
gA

gV

1

fπ

ε · σ τ−, (2.3)

where e, gA, gV , fπ , and σ are the elementary charge,
axial-vector and vector coupling constants, the pion decay
constant, and the nucleon spin operator, respectively. In the

isospin formalism, also the isospin lowering operator, τ− =
(τx − iτy )/2, is introduced. In order to use numerical expe-
rience from our work on muon capture [65,66] we replace
Eq. (2.3) by

jKR = −i
e

fπ

ε · jA, (2.4)

where jA is the single-nucleon axial current from
Refs. [65,69]. This step is justified by the fact that for
low momentum transfers the term gA

1 σ absolutely dominates
momentum space matrix elements of jA, which contain
additionally (p/m)2 relativistic corrections and read

〈p′ | jA(1) | p〉 =
{
gA

1

(
1 − (p + p′)2

8M2

)
σ + gA

1

4M2
[(p · σ )p′

+ (p′ · σ )p + i(p × p′)]

+ gA
2 (p − p′)

σ · (p − p′)
2M

}
τ−, (2.5)

with M ≈ 939 MeV being the nucleon mass. The detailed
information about the nucleon form factors gA

1 and gA
2 is

provided in Ref. [69].
In practice it is always possible to set p̂γ = −ẑ, which

means that for a real photon only nuclear matrix elements
of the transverse components of jA (here represented in the
spherical notation) need to be calculated:

N±1 = 〈�f Pf mf | jA,±1 | �iPimi〉. (2.6)

The transversality condition implies also that the term in
Eq. (2.5) proportional to gA

2 does not contribute.
The form of the transition operator employed in this article

definitely leaves room for improvement. The assumptions
leading to the Kroll-Ruderman result cannot be exactly ful-
filled, not only because mπ− > 0 but also due to the fact
that protons in the nucleus are not at rest. That means that
additional terms in the transition operator might play a role.
Also the flaw caused by the inconsistency between the nuclear
forces and the transition operator cannot be removed in the
present framework. The current operator we employ consti-
tutes, however, a good starting point for further investigations.
A similar form of the current operator has been widely used
in the literature; see for example [12].

Radiative pion capture by a single nucleon and the inverse,
photoproduction process was studied in heavy baryon chiral
perturbation theory in Refs. [42–44] and corrections to the
Kroll-Ruderman low-energy theorem were calculated. One
can also expect many-nucleon, most importantly 2N, con-
tributions to the capture process. They were derived more
recently by Gårdestig [20,21,45].

Our first predictions, however, are based on the single-
nucleon transition operator and focus on other dynamical
ingredients. Like for muon capture, we want to concentrate
on FSI in the nuclear sector. To this end we calculate 2N and
3N scattering states using the AV18 NN potential [70] and the
Urbana IX 3N force [71]. To the best of our knowledge, we
provide, for the first time, consistent predictions for the total
capture rates of the π− + 2H → γ + n + n, π− + 3He →
γ + 3H, π− + 3He → γ + n + d, π− + 3He → γ + n +
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n + p, and π− + 3H → γ + n + n + n reactions, obtained
with realistic 2N and 3N forces.

Many elements of our calculations for all the listed re-
actions are essentially the same as those performed for the
corresponding muon capture reactions in Refs. [65,66]. In
particular the formulas concerning kinematics can be directly
used, if the muon mass is replaced by the negative pion mass.
The radiative pion capture rates for the totally unpolarized
reactions are also easily obtained from the corresponding
expressions for the muon capture rates.

III. RESULTS FOR THE π− + 2H → γ + n + n REACTION

Our description of nuclear initial and final states is based
on the nonrelativistic potentials and dynamical equations. It
should then be used with the nonrelativistic kinematics. It is
then mandatory to verify if the nonrelativistic approximations
in the kinematics of the nuclear sector (the photon is of course
treated relativistically) is justified. Clearly the pion is heavier
than the muon, so pion absorption brings more energy to
the nuclear system. Thus the comparisons of various results
computed from the nonrelativistic and relativistic nuclear
kinematics performed in Refs. [65,66] for muon capture had
to be repeated with a new mass of the absorbed particle.

Starting from the energy and momentum conservation, we
obtain first the maximal relativistic and nonrelativistic photon
energies:

(
Emax,nn

γ

)rel = 1

2

(
− 4Mn

2

Md + Mπ

+ Md + Mπ

)
(3.1)

and
(
Emax,nn

γ

)nrl = 2
√

MdMn + MπMn − Mn
2 − 2Mn. (3.2)

Assuming Mp = 938.272 MeV, Mn = 939.565 MeV,
Mπ = 139.570 MeV, and Md = Mp + Mn − 2.225 MeV,
we obtain (Emax,nn

γ )rel = 131.459 MeV and (Emax,nn
γ )nrl =

131.454 MeV, respectively, with a difference which is clearly
negligible.

In Fig. 1, we demonstrate additionally that the kinemati-
cally allowed regions in the plane defined by the photon en-
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FIG. 1. The kinematically allowed region in the Eγ − En

plane calculated relativistically (solid curve) and nonrelativistically
(dashed curve) for the π− + 2H → γ + n + n capture process. The
lines practically overlap.

ergy (Eγ ) and the neutron kinetic energy (En) calculated rel-
ativistically and nonrelativistically essentially overlap, which
means that the nonrelativistic kinematics can be safely used.

Taking the form of the transition matrix element into
account, introducing the bosonic factors from the pion and
photon fields, and evaluating the phase space factor in terms of
the relative nn momentum, p = 1

2 (p1 − p2) (p1 and p2 are the
two individual neutron momenta), we arrive at the following
expression for the total unpolarized capture rate:

�nn = 1

2

1

(2π )2

2πα

f 2
π Mπ

(
M ′

dα
)3

π

∫ π

0
dθpγ

sin θpγ

∫ 2π

0
dφpγ

×
∫ Emax,nn

γ

0
dEγ Eγ

1

2
Mnp

∫ π

0
dθp sin θp

∫ 2π

0
dφp

× 1

3

∑
md

∑
m1,m2

(|Nnn,+1(m1,m2,md )|2

+ |Nnn,−1(m1,m2,md )|2), (3.3)

where the factor (M ′
dα)3

π
stems from the K-shell atomic wave

function, M ′
d = MdMπ

Md+Mπ
, α ≈ 1

137 is the fine structure con-
stant, and p ≡ |p| = p(Eγ ). We use in our calculations fπ ≡√

2Fπ = 0.932Mπ [2].
We can further simplify Eq. (3.3), since for the unpolarized

case only the relative angle between p and pγ matters. There-
fore we set p̂γ = −ẑ and choose the azimuthal angle of the
relative momentum φp = 0, which leads to

�nn = 1

2

1

(2π )2

2πα

f 2
π Mπ

(M ′
dα)3

π
4π

∫ Emax,nn
γ

0
dEγ Eγ

1

2
Mnp2π

×
∫ π

0
dθp sin θp

1

3

∑
md

∑
m1,m2

(|Nnn,+1(m1,m2,md )|2

+ |Nnn,−1(m1,m2,md )|2). (3.4)

For this direction of the three-momentum transferred to the
nuclear system Q = −pγ and the process considered here
with the real photon, we need only two spherical components
of the current operator:

j+1 ≡ − 1√
2

(
j 1

2N + ij 2
2N

) ≡ − 1√
2

(jx2N + ijy2N ),

j−1 ≡ 1√
2

(
j 1

2N − ij 2
2N

) ≡ 1√
2

(jx2N − ijy2N ). (3.5)

Note that the same choice is also made for radiative pion cap-
ture in 3He and 3H. It provides the simplest relations between
the total angular momentum projections of the initial and final
nuclear systems. We generate the nuclear matrix elements
Nnn,±1(m1,m2,md ) in momentum space [65], as summarized
briefly in Appendix A. Although the three-dimensional for-
malism of Ref. [72] could be applied also to radiative pion
capture in 2H, in this article we discuss results obtained solely
with a standard partial wave decomposition (PWD). In the
calculations, we exclusively used the AV18 NN potential [70].
However, based on our experience from the muon capture
process [65], we expect that predictions calculated with other
realistic NN potentials would not differ significantly. The
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FIG. 2. The differential capture rate d�nn/dEγ as a function of the photon energy Eγ (a) and the differential capture rate d�nn/dp as a
function of the magnitude of the relative nn momentum p (b) for the π− + 2H → γ + n + n process, calculated with the AV18 potential [70]
and using the transition operator from Eq. (2.4). The dashed curves show the plane wave results and the solid curves are used for the full
results.

calculations have been performed including all partial wave
states with the total angular momentum j � 4. In order to
achieve fully converged results, 60 Eγ points and 50 θp points
are used.

From Eq. (3.4), one can easily extract the differential cap-
ture rate d�nn/dEγ . This quantity is shown in the left panel
of Fig. 2 for the plane wave part of Nnn,±1(m1,m2,md ) (PW,
dashed line) and for the full Nnn,±1(m1,m2,md ) (“Full,” solid
line). When the full result for Nnn,±1(m1,m2,md ) is taken, a
very narrow peak in the vicinity of Emax,nn

γ emerges. Here, the
relative energy of the two-neutron system is very small, which
explains strong rescattering effects in d�nn/dEγ . Another
form of the differential capture rate, d�nn/dp, is displayed in
the right panel of Fig. 2, now as a function of the magnitude of
the relative nn momentum. The transition between d�nn/dEγ

and d�nn/dp reads

d�nn

dp
= 4p

Eγ + 2Mn

d�nn

dEγ

. (3.6)

Despite the fact that the shapes of the differential rates
shown in Fig. 2 for the plane wave and full dynamics are
quite different, the corresponding integrated results for the
total capture rate are rather similar. We obtain �nn = 0.318 ×
1015 s−1 (PW) and �nn = 0.328 × 1015 s−1 (Full). Results of
earlier calculations are displayed in Table I and discussed in
Sec. VII.

The total capture rate �nn can be also evaluated using other
variables:

�nn = 1

2

1

(2π )2

2πα

f 2
π Mπ

(M ′
dα)3

π

∫ π

0
dθpγ

sin θpγ

∫ 2π

0
dφpγ

×
∫ π

0
dθp1 sin θp1

∫ 2π

0
dφp1

×
∫ Emax

1

0
dE1

M2
np1Eγ

Eγ + Mn + p1 cos θγ 1

× 1

3

∑
md

∑
m1,m2

(|Nnn,+1(m1,m2,md )|2

+ |Nnn,−1(m1,m2,md )|2), (3.7)

where Eγ is the only physical solution of the nonrelativistic
equation

E2
γ + 2(Mn + p1 cos θγ 1)Eγ

+ 2
[
p2

1 − Mn(Md + Mπ − 2Mn)
] = 0, (3.8)

and it depends on the magnitude of the detected neutron
momentum, p1, as well as on the angle between the detected
neutron and photon momentum, θγ 1. Note that the maxi-
mal neutron energy Emax

1 , which equals 1
2 (Md + Mπ − 2Mn),

does not depend on θγ 1. Like Eq. (3.3), also Eq. (3.7) can be
simplified, choosing p̂γ = −ẑ and the azimuthal angle of the
neutron momentum φ1 = 0.

The building block of Eq. (3.7) is the differential capture
rate

d5�nn/(dp̂γ dp̂1dE1)

= 1

2

1

(2π )2

2πα

f 2
π Mπ

(M ′
dα)3

π

M2
np1Eγ

Eγ + Mn + p1 cos θγ 1

× 1

3

∑
md

∑
m1,m2

(|Nnn,+1(m1,m2,md )|2

+ |Nnn,−1(m1,m2,md )|2). (3.9)

TABLE I. The total radiative capture rate �nn in 1015 s−1 for
the π− + 2H → γ + n + n reaction calculated with the AV18 [70]
NN potential and the nonrelativistic single-nucleon transition opera-
tor (2.5). Plane wave impulse approximation based results (PW) and
the predictions including nn FSI (Full) are displayed together with
earlier theoretical predictions.

PW 0.318
Full 0.328

Earlier theoretical predictions:
Ref. [76] (1966) 0.332 0.4 (corrected in

Ref. [77])
Ref. [77] (1976) 0.375 (based on pion

photoproduction data)
Ref. [77] (1976) 0.383 (based on

soft-pion limit)
Ref. [17] (1977) 0.420 ± 0.05
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FIG. 3. The differential capture rate d5�nn/(dp̂γ dp̂1dE1) calcu-
lated with the AV18 potential [70] and using the transition operator
from Eq. (2.4) as a function of the neutron energy En ≡ E1 for three
different angles between the emitted photon and neutron momentum
θγ 1: 179◦ (solid line), 175◦ (dashed line), and 171◦ (dotted line). All
the results correspond to ann = −18.8 fm.

As early as in 1951 Watson and Stuart [13] showed with
quite simple dynamics that the corresponding photon spec-
trum is very sensitive to the properties of the low-energy
nn interaction. Since then many calculations [14–21,32,41],
summarized in Ref. [34], have also demonstrated that this
capture process can be used to study the properties of low-
energy nn scattering.

Also results of our calculations (see Figs. 3 and 4) show
that the photon spectrum has two salient peaks: the nn FSI
peak around En ≡ E1 = 2 MeV and the so-called QFS peak
arising from the quasifree π−p process around En = 9 MeV.
From Fig. 3, it is clear that heights of the peaks increase with
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FIG. 4. The differential capture rate d5�nn/(dp̂γ dp̂1dE1) as a
function of the neutron energy En ≡ E1 calculated with the transition
operator from Eq. (2.4) and with three versions of the AV18 potential
[70] yielding different ann values: −21.8 fm (solid line), −18.8 fm
(dashed line) and −16.5 fm (dotted line). All the results correspond
to θγ 1 = 179◦.
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FIG. 5. The differential capture rate d5�nn/(dp̂γ dp̂1dt1) (neu-
tron time-of-flight spectrum for a flight path of 2.55 m) obtained from
the results shown in Fig. 4. The results corresponding to different ann

values, represented by the same lines as in Fig. 4, are normalized at
the (left) QFS peak.

increasing θγ 1. More importantly, for fixed θγ 1 small varia-
tions of the 1S0 nn interaction lead to quite visible changes
in the FSI peak. We study this effect, performing additional
calculations with the altered nn AV18 potential whose 1S0

matrix elements are multiplied by the factors 1.01 and 0.99.
This leads to the following changes of the ann values: for
the stronger version of the potential we get ann = −21.8 fm,
while for the weakened force ann = −16.5 fm. (The original
value is ann = −18.8 fm.) The primary and modified neutron
spectra are displayed in Fig. 4 and we see that the FSI peak
becomes higher if the absolute value of ann grows. Note that in
all these calculations the nn AV18 potential was used without
electromagnetic contributions.

Actually, in order to minimize systematic uncertainties in
the ann extraction, the very shape of the neutron time-of-
flight spectrum in the area corresponding to the FSI peak is
considered [30,32]. The nonrelativistic relation between the
time-of-flight variable t1 and the kinetic energy of the neutron
En reads

En = 1

2
Mns

2 1

t2
1

, (3.10)

where s is the flight path to the neutron detector. A sim-
ple step then leads to the neutron time-of-flight spectrum
demonstrated in Fig. 5 (for s = 2.55 m) for the same three
values of ann:

d5�nn/(dp̂γ dp̂1dt1)

= 1

2

1

(2π )2

2πα

f 2
π Mπ

(M ′
dα)3

π

Mnp
3
1Eγ

t1(Eγ + Mn + p1 cos θγ 1)

× 1

3

∑
md

∑
m1,m2

(|Nnn,+1(m1,m2,md )|2

+ |Nnn,−1(m1,m2,md )|2). (3.11)

Equation (3.11) can be compared with the relativistic formula
from Eq. (3) in Ref. [20].
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We do not intend here to work on the extraction of ann with
our present theory. Before moving to calculations with 3N
systems we wanted to make sure that our framework possesses
the same important features as the calculations used in the
old and more recent analyses of the π− + 2H → γ + n + n
process [14–20,32].

IV. RESULTS FOR THE π− + 3He → γ + 3H REACTION

In this case, we deal with two-body kinematics and we can
compare the photon energy calculated nonrelativistically and
using relativistic equations. The relativistic result, based on

Mπ + M3He = Eγ +
√

E2
γ + M2

3H
, (4.1)

reads

(Eγ )rel = (M3He + Mπ )2 − M2
3H

2(M3He + Mπ )
. (4.2)

In the nonrelativistic case, we start with

Mπ + M3He = Eγ + M3H + E2
γ

2M3H
(4.3)

and arrive at

(Eγ )nrl = −M3H +
√

M3H[−M3H + 2(M3He + Mπ )]. (4.4)

Again the obtained numerical values, (Eγ )rel = 135.760 MeV
and (Eγ )nrl = 135.743 MeV, are very close to each other.

For this reaction we calculate only the total capture rate

�3H = 1

2

1

(2π )2
R 2πα

f 2
π MπEγ

(
2M ′

3Heα
)3

π
ρ

× 4π
1

2

∑
m3He

∑
m3H

(|N+1(m3H,m3He)|2

+ |N−1(m3H,m3He)|2), (4.5)

where the factor
(2M ′

3He
α)3

π
, as in the deuteron case, comes from

the K-shell atomic wave function and M ′
3He = M3HeMπ

M3He+Mπ
. For

the unpolarized reaction the angular integration over the pho-
ton momenta leads to the 4π factor, and in all the considered
cases we set p̂γ = −ẑ. The phase space factor ρ is

ρ = E2
γ

1 + Eγ√
E2

γ +M2
3H

≈ E2
γ

(
1 − Eγ

M3H

)
. (4.6)

As in muon capture, the additional factor R stems from the
overlap of the 1s solution of the Schrödinger equation and
the 3He charge distribution [73]. For the Hamiltonian used in
the present paper it has been calculated explicitly in Ref. [67]
with the result R = 0.98, very close to the value calculated
from the experimental 3He charge density and commonly
used in the literature [67,73]. The corresponding correction
in the deuteron case is much smaller and therefore has been
neglected.

The nuclear matrix elements involve the initial 3He and
final 3H states,

N±1(m3H,m3He)

≡ 〈�3HPf = −pγ m3H | jA,±1 | �3HePi = 0 m3He〉, (4.7)

and are obtained employing our standard PWD techniques
[65,74]. Basic information about the way we calculate the 3N
bound states is deferred to Appendix B.

Our results for this process are obtained for two cases.
When we generate the 3He and 3H wave functions using the
AV18 NN potential only, we get �3H = 2.059 × 1015 s−1. For
the wave functions calculated with the AV18 NN potential
augmented by the Urbana IX 3N force, the rate is slightly
reduced to �3H = 2.013 × 1015 s−1. These predictions are
compared with the results of earlier calculations in Table II
and discussed in Sec. VII.

TABLE II. Rates � in 1015 s−1 for radiative pion capture in
3He and 3H calculated with the AV18 [70] NN potential and the
nonrelativistic single-nucleon transition operator (2.5). Results ob-
tained using the plane wave impulse approximation (PW 2NF), with
consistent treatment of the initial and final nuclear states based on 2N
forces only (Full 2NF), and, additionally, employing the Urbana IX
[71] 3N force (Full 2NF+3NF) are presented. Earlier theoretical
predictions are also displayed.

π− + 3He → γ + 3H �3H

Full 2NF 2.059
Full 2NF+3NF 2.132

Earlier theoretical predictions:
Ref. [58] (1962) 8.32 4.28 (corrected in Ref. [57])
Ref. [48] (1965) 0.97 3.88 (corrected in Ref. [57])
Ref. [51] (1968) 2.32
Ref. [52] (1970) 3.37 2.25 (corrected in Ref. [57])
Ref. [57] (1974) 3.60
Ref. [55] (1974) 3.1–3.7
Ref. [56] (1978) 3.30

π− + 3He → γ + n + d �nd

PW 2NF 5.201
Full 2NF 2.013
Full 2NF+3NF 1.840

π− + 3He → γ + n + n + p �nnp

PW 2NF 3.816
Full 2NF 0.659
Full 2NF+3NF 0.615

(�nd + �nnp )/�3H

Full 2NF 1.30
Full 2NF+3NF 1.15

Earlier theoretical predictions:
Ref. [55] (1974) 0.84–1.27

Experimental data:
Ref. [57] (1974) 1.12 ± 0.05

π− + 3H → γ + n + n + n �nnn

PW 2NF 0.117
Full 2NF 0.141
Full 2NF+3NF 0.128

Earlier theoretical predictions:
Ref. [62] (1975) 0.07
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FIG. 6. The kinematically allowed region in the Eγ − Ed (a) and Eγ − En (b) plane calculated relativistically (solid curve) and
nonrelativistically (dashed curve) for the π− + 3He → γ + n + d process. The lines overlap except for small photon energies.

V. RESULTS FOR THE π− + 3He → γ + n + d AND
π− + 3He → γ + n + n + p REACTIONS

The kinematics of the π− + 3He → γ + n + d and π− +
3He → γ + n + n + p reactions is treated exactly in the same

way as in muon capture on 3He [65], so we can immediately
evaluate the maximal photon energies for the two breakup
channels as

(
Emax,nd

γ

)rel = (M3He − Md + Mπ − Mn)(M3He + Md + Mπ + Mn)

2(M3He + Mπ )
, (5.1)

(
Emax,nnp

γ

)rel = M3He
2 + 2M3HeMπ + Mπ

2 − (2Mn + Mp )2

2(M3He + Mπ )
, (5.2)

(
Emax,nd

γ

)nrl =
√

(Md + Mn)(2M3He + 2Mπ − Md − Mn) − Md − Mn, (5.3)

(
Emax,nnp

γ

)nrl = √
(Mp + 2Mn)(2M3He + 2Mπ − 2Mn − Mp ) − 2Mn − Mp. (5.4)

The numerical values are the following: (Emax,nd
γ )

rel =
129.794 MeV, (Emax,nd

γ )
nrl = 129.792 MeV, (Emax,nnp

γ )rel =
127.668 MeV, and (Emax,nnp

γ )nrl = 127.667 MeV. The kine-
matically allowed regions in the planes spanned by the photon
energy (Eγ ) and the deuteron kinetic energy (Ed ) or the
neutron kinetic energy (En) for the two-body breakup of 3He
are shown in Fig. 6. For both cases, lines obtained with the
relativistic and nonrelativistic kinematics fully overlap except
for very small photon energies. The same is also true for
the three-body breakup, as demonstrated in Fig. 7 for the
allowed region in the plane given by the photon energy and
the proton kinetic energy (Ep). In this case the minimal proton
kinetic energy is greater than zero for Eγ > E2sol

γ (see the

inset in Fig. 7), which means that 0 < Elow
p < Ep < E

high
p for

E2sol
γ < Eγ < E

max,nnp
γ , with boundary values Elow

p and E
high
p .

The values of E2sol
γ based on the relativistic kinematics,

(
E2sol

γ

)rel = (M3He+Mπ )(M3He + Mπ − 2Mp ) − 4Mn
2+Mp

2

2(M3He+Mπ − Mp )

(5.5)

and nonrelativistic one,

(
E2sol

γ

)nrl = 2
(√

M3HeMn + MπMn − Mn
2 − MnMp − Mn

)
,

(5.6)

yield very similar numerical values: 126.318 and 126.314
MeV, respectively. All these results clearly show that the
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FIG. 7. The kinematically allowed region in the Eγ − Ep

plane calculated relativistically (solid curve) and nonrelativistically
(dashed curve) for the π− + 3He → γ + n + n + p process. The
inset focuses on the highest photon energy region. Note that the
minimal proton kinetic energy is zero for Eγ � E2sol

γ . The lines
practically overlap except for very small photon energies.
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nonrelativistic kinematics can be safely used also for the
breakup channels.

Using standard steps we obtain the formulas for the total
capture rates. In the case of the two-body breakup it reads

�nd = 1

2

1

(2π )2

2πα

f 2
π Mπ

R
(
2M ′

3Heα
)3

π
4π

×
∫ Emax,nd

γ

0
dEγ Eγ

2

3
Mq0

1

3

∫ π

0
dθq0 sin θq0 2π

×1

2

∑
m3He

∑
mn,md

(|Nnd,+1(mn,md,m3He)|2

+ |Nnd,−1(mn,md,m3He)|2), (5.7)

where we used the relative neutron-deuteron momentum

q0 ≡ 2

3

(
pn − 1

2
pd

)
, (5.8)

given in terms of the final neutron (pn) and deuteron (pd )
momenta, to evaluate �nd . For the π− + 3He → γ + n + n +
p reaction we obtain in a similar way

�nnp = 1

2

1

(2π )2

2πα

f 2
π Mπ

R
(
2M ′

3Heα
)3

π
4π

∫ E
max,nnp
γ

0
dEγ Eγ

1

3

∫ π

0
dθq sin θq2π

∫ π

0
dθp sin θp

∫ 2π

0
dφp

∫ pmax

0
dpp2 2

3
Mq

1

2

∑
m3He

∑
m1,m2,mp

(|Nnnp,+1(m1,m2,mp,m3He)|2 + |Nnnp,−1(m1,m2,mp,m3He)|2). (5.9)

Here the integral is expressed in terms of the Jacobi relative momenta p and q, that is,

p ≡ 1

2
(p1 − p2),

q ≡ 2

3

(
pp − 1

2
(p1 + p2)

)
, (5.10)

obtained from the proton momentum (pp) and the momenta of the two neutrons (p1 and p2). In Eq. (5.9) pmax is a function of Eγ

and q ≡ |q| = q(Eγ , p) [66]. Note that we used the same geometrical arguments as before to simplify the angular integrations
in Eqs. (5.7) and (5.9).

The crucial matrix elements

Nnd,±1(mn,md,m3He) ≡ 〈� (−)
nd Pf = −pγ mnmd | jA,±1 | �3HePi = 0 m3He〉 (5.11)

and

Nnnp,±1(m1,m2,mp,m3He) ≡
〈� (−)

nnpPf = −pγ m1m2mp | jA,±1 | �3HePi = 0 m3He〉 (5.12)

are calculated in momentum space, as explained concisely in
Appendix B. We use the numerical framework developed in
Refs. [74,75]. Also in Ref. [74] the detailed definitions of
various 3N dynamics can be found.

Since the convergence of our PWD-based results with
respect to the total subsystem angular momentum j and the
total 3N angular momentum J was discussed in Ref. [65],
we can start the discussion of our predictions with Fig. 8,
where, for the π− + 3He → γ + n + d reaction, we compare
in the left panel results of calculations employing various 3N
dynamics: symmetrized plane wave approximation obtained
with the AV18 NN potential, consistent calculations of the
initial and final nuclear states with the AV18 interaction only,
and calculations based on the Hamiltonian containing addi-
tionally the Urbana IX 3N force. The results are qualitatively
quite similar to the ones obtained for muon capture. The three
differential capture rates d�nd/dEγ rise very slowly with
the photon energy and form a single maximum close to the
maximal photon energy. This maximum is higher and broader

for the plane wave case. Effects introduced by FSI are very
important and, in the maximum, reduce the full d�nd/dEγ to
about one-half of the plane wave prediction. The inclusion of
the 3N force lowers the peak further by about 14%.

The FSI effects are even stronger for the π− + 3He → γ +
n + n + p reaction, as displayed in the right panel of Fig. 8
for the differential rate d�nnp/dEγ . The reduction factor is
already about 4.5 for the case without 3N force. The 3N force
has roughly the same effect as in the two-body breakup case.
In Ref. [65] we suggested that this might be a consequence of
the overprediction of the A = 3 radii when 3N interaction is
neglected.

Since the values of d�nnp/dEγ are much smaller (by a fac-
tor of 5) than d�nd/dEγ , at least in the peak area, the picture
shown in the left panel of Fig. 9 for the total breakup capture
rate, d�br/dEγ = d�nd/dEγ + d�nnp/dEγ , is similar to the
one for d�nd/dEγ . Finally, in the right panel of Fig. 9, we
show the contributions from the two-body and three-body
breakup channels calculated with our full dynamics, that
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FIG. 8. The differential capture rate d�nd/dEγ for the π− + 3He → γ + n + d process (a) and the differential capture rate d�nnp/dEγ

for the π− + 3He → γ + n + n + p reaction (b) as a function of the photon energy, calculated with the single-nucleon transition operator and
with different treatment of 3N dynamics: taking the symmetrized plane wave (SPW) approximation (dotted line) and calculating the initial
and final 3N states without (dashed curve) and with (solid line) 3N force. The calculations are based on the AV18 NN potential [70] and the
Urbana IX 3N force [71].

is, including the 3N force. This figure clearly demonstrates
that the breakup is dominated by the two-body channel. The
corresponding predictions for the total �nd and �nnp capture
rates are presented in Table II together with earlier theoretical
predictions and experimental information about the relative
probability of the breakup and nonbreakup radiative capture.
These results will be discussed in Sec. VII.

VI. RESULTS FOR THE π− + 3H → γ + n + n + n
REACTION

The kinematically allowed region in the Eγ -En plane for
the three-body breakup of 3H is shown in Fig. 10. As in
the π− + 3He → γ + n + n + p capture process, we show
the border lines based on the relativistic and nonrelativistic
kinematics and evaluate correspondingly the maximal photon
energy relativistically (Emax,nnn

γ )rel = 126.940 MeV and non-
relativistically (Emax,nnn

γ )nrl = 126.939 MeV. For complete-

ness we give also values of E2sol
γ : (E2sol

γ )rel = 125.604 MeV

and (E2sol
γ )nrl = 125.600 MeV. As expected, the kinematics

of this reaction can be described using the nonrelativistic for-
mulas in the nuclear sector, consistent with the nonrelativistic
dynamics.

In the calculations of the three-neutron continuum only the
nn version of the AV18 potential [70] appears. The nuclear
Hamiltonian contains the same Urbana IX 3N force [71]. The
formula for the total �nnn capture rate,

�nnn = 1

2

1

(2π )2

2πα

f 2
π Mπ

(
M ′

3H
α
)3

π
4π

∫ Emax,nnn
γ

0
dEγ Eγ

2

3
Mq

1

9

×
∫ π

0
dθq sin θq2π

∫ π

0
dθp sin θp

∫ 2π

0
dφp

∫ pmax

0
dp p2

× 1

2

∑
m3H

∑
m1,m2,m3

(|Nnnn,+1(m1,m2,m3,m3H)|2

+ |Nnnn,−1(m1,m2,m3,m3H)|2), (6.1)

is a modification of Eq. (5.9), taking into account that, as in the
deuteron case, Z = 1, R = 1, and that there are three identical
particles in the final state.

 0

 20

 40

 60

 80

 60  75  90  105  120  135

dΓ
br

/d
E

γ 
[1

015
 fm

-1
s-1

]

Eγ [MeV]

 (a) 

 0

 6

 12

 18

 24

 30

 36

 60  75  90  105  120  135

dΓ
/d

E
γ 

[1
015

 fm
-1

s-1
]

Eγ [MeV]

 (b) 

FIG. 9. As in Fig. 8 but for (a) the differential breakup capture rate d�br/dEγ = d�nd/dEγ + d�nnp/dEγ . In (b) the two-body d�nd/dEγ

(dotted curve) and three-body d�nnp/dEγ (dashed curve) breakup contributions to the differential breakup radiative pion capture rate
d�br/dEγ (solid curve) are displayed as a function of the photon energy. They are obtained with the single-nucleon transition operator
and with full 3N dynamics (including 3N force in the initial and final nuclear states). As before, the calculations are based on the AV18 NN
potential [70] and the Urbana IX 3N force [71].
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FIG. 10. The kinematically allowed region in the Eγ -En

plane calculated relativistically (solid curve) and nonrelativistically
(dashed curve) for the π− + 3H → γ + n + n + n capture process.

The values of the differential capture rates d�nnn/dEγ are
smaller (see Fig. 11) than the d�nnp/dEγ results for the three-
body breakup of 3He. The maximum is still broader for the
plane wave case but FSI now raises the results by a factor of
1.8, playing a crucial role also for this process. The inclusion
of the 3N force leads to a reduction of the peak’s height by
about 15%. Also the total rates for pion capture on 3H are
displayed in Table II and described in the next section.

VII. COMPARISON WITH EARLIER THEORETICAL
PREDICTIONS

A comparison with earlier theoretical predictions and ex-
perimental data is not simple for several reasons. Experimen-
tal work never actually aimed at obtaining total radiative cap-
ture rates. Very often measurements covered different reaction
channels and tried to gather information about their relative
probabilities. The famous Panofsky ratio for 3He, studied in
Refs. [55,56], is a very good example. Unfortunately, such
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FIG. 11. The same as in the right panel of Fig. 8 but for the
differential capture rate d�nnn/dEγ in the case of the π− + 3H →
γ + n + n + n process.

ratios involve rates, which are not calculated by us in the
present paper. Also we do not have experimental (unnormal-
ized) photon energy spectra for the reactions of interest at our
disposal.

Many calculations for the π− + 2H → γ + n + n concen-
trated on the extraction of the nn scattering length and their
authors did not provide results for the total radiative capture
�nn. This is because already Gibbs, Gibson, and Stephenson
pointed out in Ref. [17] that the total radiative rate is clearly
insensitive to uncertainties of the low-energy nn scattering
parameters. Namely, they observed that variation of ann from
−15 to −20 fm or the effective range rnn from 2.6 to 3.0 fm
changed �nn by less than 1%. Thus predictions for the �nn

capture rate can be found in only few theoretical papers
[17,76,77].

Additional problems are caused by the fact that some pre-
dictions originate from combined theoretical and experimen-
tal evidence. Finally, earlier calculations are often corrected in
subsequent publications. Nonetheless, we have tried to collect
the available information and we show it in Tables I and II.

In Table I the total radiative capture rates for the π− +
2H → γ + n + n reaction are displayed. As already men-
tioned, for this observable our plane wave and full results are
rather similar despite the fact that final state rescattering is
very important and substantially affects the differential rates
in Figs. 2 and 3. We notice also that our full predictions agree
with the earlier theoretical results, except for Ref. [17].

Table II contains rates for radiative capture in the trinu-
cleons. We consider several capture channels, starting from
the only nonbreakup process: π− + 3He → γ + 3H. Here the
values of the rates are much higher than for the π− + 2H →
γ + n + n reaction. The capture rate is raised by approxi-
mately 3.5%, when the 3N bound states are calculated con-
sistently not only with the 2N but also with the 3N potentials.

The breakup of 3He is clearly dominated by the π− +
3He → γ + n + d reaction, since the rate for the π− +
3He → γ + n + n + p process is three times smaller. For
both breakup reactions FSI effects based on the 2N forces are
very strong and reduce the rates significantly. The inclusion
of the 3N force leads to a further reduction, which amounts
to 9% (two-body breakup) and to 7% (three-body breakup).
Our best results (obtained with the 3N force) for the ratio of
the total breakup rate to the nonbreakup rate agree both with
the experimental data from Ref. [57] and with the theoretical
prediction in Ref. [55]. That means that the nonbreakup and
breakup channels in radiative pion capture in 3He are equally
important.

Comparing the total rates for the π− + 3H → γ + n +
n + n reaction, one might draw a false conclusion that FSI
and 3N force effects are very small. From Fig. 11 it is,
however, clear that the agreement between the plane wave
and full results for the total rates is rather accidental, since
the differential rates are quite different. Contrary to the three-
body breakup of 3He, FSI effects enhance the plane wave
result. The 3N force reduces the rate by approximately 10%.
Our result for the total radiative capture rate is by about 70%
larger than the prediction from Ref. [62].

In view of the fact that the theoretical results obtained
before were based on quite different approaches, in many
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cases the agreement with earlier theoretical predictions is
satisfactory. In particular, we obtained similar shapes of the
photon energy spectra for all studied reactions. Our predic-
tions about the role of the final state interactions based on
the realistic semiphenomenological nuclear forces are fully
converged with respect to the number of partial wave states.
That means that, in contrast to Phillips and Roig [55,64], we
are ready to calculate not only capture rates but also any
polarization observables. Our much more advanced model
confirms qualitatively the S-wave based results for capture
rates from Refs. [55,64]. Thus it will be very interesting
to compare results of modern calculations performed with
improved transition operator and consistent nuclear forces.

VIII. SUMMARY AND CONCLUSIONS

Recent theoretical work by Gårdestig and Phillips [21,45]
shows that radiative pion capture is not only interesting by
itself but also correlated with a variety of other processes
when studied within chiral effective field theory. This is very
important because the other reactions (like muon capture)
or neutrino induced processes are much harder to measure,
and the information from the radiative capture on light nuclei
could significantly improve our understanding of the other
processes. Thus a uniform framework for the calculations
of various electromagnetic and weak reactions on the single
nucleon, deuteron, 3He, 3H, and other light nuclei should
be formulated and applied. This framework would comprise
consistent two-nucleon and more-nucleon forces as well as
transition operators (“currents”) with one-body and many-
body parts. Results of fully converged calculations should be
ultimately compared with precise experimental data, to yield a
broad and complete picture of these reactions in few-nucleon
systems.

In the present paper, we studied the π− + 2H → γ + n +
n, π− + 3He → γ + 3H, π− + 3He → γ + n + d, π− +
3He → γ + n + n + p, and π− + 3H → γ + n + n + n re-
actions using traditional nuclear forces (the AV18 NN poten-
tial and the Urbana IX 3N force) and a simple single-nucleon
transition operator. These calculations, like our studies of
muon capture [65,66] or very recent investigations of some
neutrino induced reactions [78], are ready to be systematically
improved to encompass more complicated dynamical input.
Many aspects of the performed calculations—like the role
of the relativistic kinematics, the efficient methods of partial
wave decomposition, or the convergence of our results with
respect to the number of partial wave states—have been
established already, and the predictions presented here can
serve as an important benchmark.

Our calculations already provide first realistic predictions
for the differential d�3H/dEγ , d�nd/dEγ , d�nnp/dEγ , and
d�nnn/dEγ capture rates as well as for the corresponding
total radiative capture rates �3H, �nd , �nnp, and �nnn. The
formalism used in the present paper will be extended in
the future to study other pion capture reactions, including
nonradiative and double radiative pion capture.
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APPENDIX A: THE 2N MATRIX ELEMENTS

For the π− + 2H → γ + n + n reaction the nuclear ma-
trix element Nnn,±1(m1,m2,md ) introduced in Eq. (3.3) is
evaluated as

Nnn,±1(m1,m2,md ) ≡ (−)〈pm1m2 |jA,±1 | φdmd〉, (A1)

where | φdmd〉 is the initial deuteron state with the spin
projection md and | pm1m2〉(−) is the antisymmetrized two-
neutron scattering state with the relative momentum p and
the individual neutron spin projections m1 and m2. While the
deuteron state is obtained in momentum space as a solution to
a simple algebraic eigenvalue problem,(

H 2N
0 + V

) | φd〉 = Ed | φd〉, (A2)

where H 2N
0 is the free 2N Hamiltonian and V is a given NN

potential, the 2N scattering state is formally defined as

| pm1m2〉(−) ≡ lim
ε→0+

−iε

E2N − iε − H 2N
0 − V

| pm1m2〉 (A3)

and can be readily computed from the scattering t matrix as

|pm1m2〉(−)

= lim
ε→0+

(
1 + G2N

0 (E2N − iε)t (E2N − iε)
)|pm1m2〉, (A4)

where G2N
0 (E2N ) is the free 2N propagator, and the kinetic

energy of the relative motion in the 2N system, E2N = p2

M
, is

given by the energy-momentum conservation, which for the
pionic atom at rest in our nonrelativistic approximation reads

Mπ− + Md =| pγ | +2Mn + p2
γ

4Mn

+ p2

Mn

, (A5)

where Mπ− , Md , Mn, pγ are the negative pion mass, deuteron
mass, neutron mass, and the final photon momentum, respec-
tively. Finally, the t matrix is obtained as a solution of the
Lippmann-Schwinger equation:

t (E2N ) = V + t (E2N )G2N
0 (E2N )V. (A6)

Using Eq. (A4), the nuclear matrix element (A1) becomes

Nnn,±1(m1,m2,md )

= 〈pm1m2|
(
1 + t (E2N )G2N

0 (E2N )
)
jA,±1(Pf , Pi )|φdmd〉,

(A7)

with Pi = 0 and Pf = −pγ .
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−π

n

n
d

p

γ
−πγ

n

n
dt pn

+nnN =

FIG. 12. Diagrammatic representation of the 2N matrix element
for the radiative pion capture reaction, assuming a single-nucleon
mechanism. The circular segment on the right stands for the initial
deuteron. The left diagram corresponds to the plane wave (PW)
part of Nnn,±1, and the circle in the second diagram represents the
rescattering described by the t matrix.

The sense of this equation can be explained diagrammati-
cally, as shown in Fig. 12, where we assumed that the negative
pion is absorbed only by the single proton. Namely the nuclear
matrix element contains the plane wave (PW) part and the
rescattering term, with the t matrix present.

APPENDIX B: THE 3N MATRIX ELEMENTS

In the general case the 3N Hamiltonian H contains the
3N kinetic energy (H0), potential energies for each two-body
subsystem (V12, V23, and V31), as well as the three-body
potential energy (V123), usually called a 3N force (3NF). It
is always possible to decompose V123 into three terms,

V123 = V (1) + V (2) + V (3), (B1)

in such a way that V (i) is symmetric under the exchange of
nucleons j and k (i, j, k = 1, 2, 3, i 
= j 
= k 
= i).

We calculate the 3N bound states in the Faddeev scheme,
using the method described, for example, in Ref. [79]. First
we solve the Faddeev equation

| ψ〉 = G0t23P | ψ〉 + (1 + G0t23)G0V
(1)(1 + P ) | ψ〉, (B2)

where | ψ〉 is the Faddeev component of the full 3N wave
function | �〉, G0 ≡ 1/(E − H0) is the free 3N propagator,
t23 is the two-body t operator for the (2,3) subsystem, and
P ≡ P12P23 + P13P23 is the permutation operator built from
transpositions Pij , which interchange nucleons i and j . The
wave function | �〉 is easily obtained from the Faddeev com-
ponent as

| �〉 = (1 + P ) | ψ〉. (B3)

We distinguish between the strong neutron-neutron and
proton-proton forces, obtaining the 3He and 3H wave func-
tions and in the latter case include also the Coulomb potential
acting between the two protons.

Although many-nucleon mechanisms of pion radiative cap-
ture are neglected in the present work, the 3N current operator
j

μ
3N might in principle contain the single-nucleon, 2N, and 3N

contribution. Therefore we write (μ denotes any component
of the current operator):

j
μ
3N = j

μ
1 + j

μ
2 + j

μ
3 + j

μ
12 + j

μ
23 + j

μ
31 + j

μ
123, (B4)

where the 3N part can be split into three parts (just like the
3NF), j

μ
123 = jμ1 + jμ2 + jμ3. Thus we can decompose the

3N current operator into three parts, jμ(i) (i = 1, 2, 3), which

3HN

−π

3H n p

γ

n

3He
p

−π

n p

γ

3H p

n

3He +=

FIG. 13. Diagrammatic representation of the 3N matrix element
for the π− + 3He → γ + 3H reaction, assuming that the pion is
captured only by single protons. The circular segment on the right
(left) stands for initial 3He (final 3H).

possess the same symmetry properties as V (i):

j
μ
3N = jμ(1) + jμ(2) + jμ(3), (B5)

where for example jμ(1) ≡ j
μ
1 + j

μ
23 + jμ1. As in the 2N

case, we have to consider only two spherical components of
the current operator, j+1 and j−1.

For a given choice of the 3N Hamiltonian and the current
operator, the nuclear matrix elements N±1(m3H,m3He) are
calculated as given in Eq. (4.7). Figure 13 corresponds to a
particular case where radiative pion capture in 3He can take
place only on two individual protons inside the nucleus.

FIG. 14. The same as in Fig. 13 but for the π− + 3He → γ +
p + n + n breakup reaction, assuming a single-nucleon pion capture
mechanism and neglecting the 3N force. The open circles and ovals
represent the two-nucleon t matrices acting in the three different
subsystems. The subsequent rows show the symmetrized plane wave
contributions (SPW) and selected diagrams representing rescattering
of the first, second, and third order in the t matrix.
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The matrix elements for the nucleon-deuteron (Nd)
channel

N
μ
Nd = 〈� (−)

Nd | j
μ
3N | �〉 (B6)

and the 3N breakup channel

N
μ
3N = 〈� (−)

3N | j
μ
3N | �〉 (B7)

comprise the corresponding channel scattering states. Actu-
ally we do not compute these 3N scattering states explicitly,
but solve a Faddeev-type equation for an auxiliary state
| Uμ〉 [74],

| Uμ〉 =
(

t23G0 + 1

2
(1 + P )V (1)G0(1 + t23G0)

)

× (1 + P )jμ(1) | �〉 +
(

t23G0P

+ 1

2
(1 + P )V (1)G0(1 + t23G0)P

)
| Uμ〉. (B8)

The solutions of Eq. (B8) are calculated for each component
of the current operator and two kinematical quantities: the
3N internal energy Ec.m. and the magnitude of the three-
momentum transferred to the 3N system, | Q |. It is, however,
crucial that | Uμ〉 is independent of the final state kinematics.

The matrix elements N
μ
Nd and N

μ
3N for arbitrary exclusive

kinematics are then generated by simple quadratures:

N
μ
Nd = 〈φNd | (1 + P )jμ(1) | �〉 + 〈φNd | P | Uμ〉,

(B9)

N
μ
3N = 〈φ3N | (1 + P )jμ(1) | �〉

+ 〈φ3N | t23G0(1 + P )jμ(1) | �〉
+ 〈φ3N | P | Uμ〉 + 〈φ3N | t23G0P | Uμ〉, (B10)

where | φNd〉 is a product of the internal deuteron state
and the state describing the free relative motion of the
third nucleon with respect to the deuteron, and | φ3N 〉
is a state [antisymmetrized in the (2,3) subsystem]
representing the free motion of the three outgoing
nucleons. Note that for the two breakup channels the SPW
approximations are obtained with N

μ
Nd,SPW = 〈φNd | (1 +

P )jμ(1) | �〉 and N
μ
3N,SPW = 〈φ3N | (1 + P )jμ(1) | �〉,

respectively.
Exclusive observables can be further integrated over suit-

able phase space domains to obtain the semiexclusive or fully
inclusive observables. The 3N Faddeev-type equation (B8) is
solved by iterations in the partial wave momentum-space basis
[74]. In order to achieve convergence, the calculations employ
all partial wave states with the total 2N subsystem angular
momentum j � 4 and the total 3N angular momentum J �
15/2.

In Fig. 14 the physical contents of the nuclear matrix
element for one of the breakup channels is shown diagram-
matically. For the case of the π− + 3He → γ + p + n + n
process we show various contributions stemming from the
SPW approximation and rescattering in different orders of the
t matrix. A similar diagram can be drawn for the two-body
breakup reaction.
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