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Few-body universality in the deuteron-α system
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We treat 6Li as an effective three-body (n-p-α) system and compute the d-α S-wave scattering length and
three-body separation energy of 6Li for a wide variety of nucleon-nucleon and α-nucleon potentials which have
the same (or nearly the same) phase shifts. The Coulomb interaction in the p-α subsystem is omitted. The
results of all calculations lie on a one-parameter curve in the plane defined by the d-α S-wave scattering length
and the amount by which 6Li is bound with respect to the n-p-α threshold. We argue that these aspects of the
n-p-α system can be understood using few-body universality and that 6Li can thus usefully be thought of as a
two-nucleon halo nucleus.
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Introduction. Few-body universality is a powerful tool to
analyze the low-energy properties of quantum mechanical
systems that are weakly bound [1,2]. Applications of few-
body universality range from atomic and molecular physics,
e.g., atomic species near a Feshbach resonance [3] or dimers
and trimers of 4He atoms [4], to nuclear physics, e.g., few-
nucleon systems [5] and halo nuclei [6], to hadronic physics,
e.g., the X(3872) and other “exotic” mesons near two-meson
thresholds. All these systems have in common that their two-
body separation energy is small enough that the wave function
of the effective low-energy degrees of freedom (e.g., atoms,
nucleons, D and D̄ mesons) has much of its support in a
region outside the interaction potential, i.e., in the tunneling
regime. The properties of the two-body systems are then,
to a first approximation, independent of details of the po-
tential, and are correlated solely with the separation energy.
The qualitative picture of two-body universality laid out in
this paragraph can be systematically organized in terms of
an effective field theory (EFT) expansion in powers of R,
the range of the two-body potential, times γ = √

2μE2, the
binding momentum of the two-body bound state (with E2

the two-body separation energy and μ the two-body reduced
mass) since γ determines the exponential fall-off of the two-
body wave function outside the potential.

Many of these systems also exhibit three-body bound
states. However, the three-body separation energy E3 is not
solely determined by the two-body separation energy, al-
though it does depend on it. At leading order (LO) in the γR
expansion, one three-body observable must be used to fix a
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“three-body parameter.” All other properties of the three-body
system are then determined by the three-body observable
chosen (e.g., the separation energy E3) and E2 [7–9]. It is
important to note—especially in the context of our calculation
presented below—that the three-body parameter need not
arise from “intrinsic” three-body forces. It may, instead, in
part or in whole, reflect off-shell properties of two-body forces
that are not observable in the two-body system, and first have
experimental consequences in the three-body system [10,11].
If E2 is small compared to E3 and

√
2νE3R (with ν the 2+1

reduced mass) is also small, then there is the possibility to
observe a sequence of three-body bound states, which are re-
lated to one another by a scaling transformation, as predicted
by Efimov [12,13]. But even in systems where the conditions
for the emergence of bound excited Efimov states are not
met, universality still connects disparate three-body systems
to one another and provides insights that aid in organizing
their phenomenology [14,15].

For example, one important consequence of universality
in the three-body system is that E3 is correlated with the
scattering length of the third particle and the two-body bound
state. This correlation persists to much smaller 2+1 scattering
lengths a21 than does the correlation obtained by considering
the three-body system to be weakly bound with respect to
the 2+1 threshold, E3 = 1

2νa2
21

+ E2. In the three-nucleon
system, the E3-a21 correlation—which in this case is with
the scattering length in the total-spin-1/2 channel, where the
three-body bound state, the triton, resides—was first demon-
strated by Phillips [16] and is known as “the Phillips line.”
This Phillips line still emerges for nucleon-nucleon (NN )
potentials that are fitted much more accurately to data than
were those originally examined by Phillips [17]. Efimov [18]
demonstrated that such a correlation is a consequence of the
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shallow binding of the two-body system, and it has been
computed at LO and next-to-leading order (NLO) in the EFT
that encodes universality in the three-nucleon system [9,19].

In this paper we show that a similar universal correla-
tion occurs between the three-body separation energy of 6Li
and the d-α S-wave scattering length adα . We do this by
modeling the d-α system as an effective three-body problem,
in which the neutron, proton, and α particle are viewed as
basic degrees of freedom that interact via pairwise forces. This
is justified because the first excited state of the α particle is
≈20 MeV above its ground state and the α particle is compact
with respect to 6Li. Our ansatz follows a large body of work
treating 6Li as a three-body problem; see e.g., [20–23].

We note that there is also a study of the implications of
universality for 6Li as a six-body system. In Ref. [24] Stetcu
et al. constructed an EFT for the no-core shell model and
determined the leading-order NN and three-nucleon forces
in the EFT by demanding that the experimental binding
energies of the deuteron, triton, and α particle are exactly
reproduced. Their six-body calculation then had 6Li unbound
with respect to the d-α threshold; adα could not be computed.
In contrast, our three-body model of 6Li avoids the need
to compute the emergent low-energy scales in 5He and 6Li
ab initio from NN and three-nucleon forces. Instead, it takes
those scales as input and elucidates their consequences for the
low-energy dynamics of the d-α system.

For the purpose of this work we ignore the Coulomb effects
between the α particle and the proton. The α interacts with the
nucleons predominantly in P waves, while the neutron and
proton interaction is mainly in the S wave. The resulting three-
body system thus has different dynamics to the three-nucleon
case described above, since it contains two P -wave attractive
interactions and only one S-wave one.

Framework. We take the neutron-proton (np) force in
the 3S1-3D1 channel, and the αN force in the P3/2, P1/2,
and S1/2 partial waves. The three-body separation energy of
6Li is obtained by solving bound-state Faddeev equations
with separable representations of these forces as outlined in
Ref. [25]. (The “three-body separation energy” of 6Li is the
amount by which it is bound compared to the n-p-α threshold,
and thus is equal to its d-α separation energy plus the n-p
separation energy of deuteron.) The work of Ref. [25] showed
that in this system the solution of the Faddeev equations
with separable forces is numerically indistinguishable from
the solution with nonseparable forces provided the separable
basis is appropriately chosen.

For d-α scattering, we solve the momentum space
Faddeev-AGS equations [26],

Uij (E) = δ̄ijG
−1
0 (E) +

3∑

k=1

δ̄iktk (E)G0(E)Ukj (E), (1)

with δ̄ij = 1 − δij , and G0(E) = (E + i0 − H0)−1 the free
resolvent at the available energy E. The free three-particle
Hamiltonian is denoted by H0, while tk = vk + vkG0(E)tk
is the two-body transition matrix. Here the index k stands
for the channel corresponding to the configuration where the
particle k is the spectator and the remaining two form the pair
(ij ). Since here we are working with three distinguishable

particles, cyclic permutations of (ijk) leads to the three re-
quired transition operators in Eq. (1). Since we are interested
only in very low-energy scattering, we do not have to treat
breakup singularities, and the numerical solution of Eq. (1)
is straightforward. As in the bound-state calculation [25] we
employ the separable representation of the interactions in the
two-body subsystems, which was shown to lead to numeri-
cally the same observables as a solution with nonseparable
forces for the continuum [27]. In addition, we employ the
same model space in the scattering calculation as is used
to calculate the three-body separation energy of 6Li; this is
sufficient when studying the low-energy parameters in the d-α
channel with Jπ = 1+ and total isospin T = 0.

In order to investigate if there is a correlation between
the three-body separation energy of 6Li and the d-α S-wave
scattering length, one needs to solve for these quantities using
different sets of potentials which describe the low-energy
behavior in the subsystems with the same quality, i.e., po-
tentials that are phase-shift equivalent. In the case of the np
interaction this is relatively easy to achieve, since all modern
NN interactions are fitted to describe the deuteron binding
energy, the np low-energy parameters (scattering length and
effective range), and phase shifts in the energy range we are
considering. The situation is quite different in the case of
effective αN interactions. There have been several efforts
to construct effective αN interactions of varying degrees
of sophistication (e.g., [28–31]). However, the condition of
phase-shift equivalence was imposed rather loosely compared
to the NN subsystem. Thus we need to consider a different
approach to construct phase-shift equivalent αN potentials.
Following the suggestion of Refs. [32,33] we employ a unitary
transformation (UT) of the αN Hamiltonian H2b = h0 + v
with h0 being the two-body kinetic energy operator and v the
effective two-body interaction. Following [32,33] we define a
transformed Hamiltonian

H̃2b = UH2bU
† = h0 + ṽ, (2)

where ṽ is the transformed potential keeping the phase shifts
unchanged. The operator for the UT is defined as

U = 1 − 2|h〉〈h|. (3)

Following Ref. [34] we choose for |h〉
〈
rYm

l

∣∣h
〉 = Nrle−cr (1 − br ), (4)

where N is evaluated through the normalization condition
〈h|h〉 = 1 for each partial wave. In our calculations, we only
consider the UT on P waves. We include the factor of rl in
accord with Ref. [34], and pick b = 1 fm−1 for simplicity.
We vary the parameter c, thereby changing the range of the
transformation. If the starting potential v is separable and of
rank 1, the transformed potential ṽ will be of rank 3 [32]. In
the case of an arbitrary local or nonlocal v, the transformed
potential will have to be numerically calculated, leading to a
nonlocal potential ṽ.

Results. To study a possible correlation between the three-
body separation energy of 6Li and the corresponding S-wave
scattering length in the d-α channel, we start by using very
simple, rank-1 separable interactions in the two-body sub-
systems. The form factors of the separable interactions are
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FIG. 1. Absolute value of the three-body separation energy of 6Li
as function of the inverse of the d-α S-wave scattering length adα for
phase-shift equivalent interactions obtained by unitarily transforming
the interactions in the nα P3/2 and P1/2 channels. The insert magnifies
the marked rectangle and indicates the value c of the exponent in the
transformation of Eq. (4). The dashed horizontal line indicates the
deuteron breakup threshold.

of Yukawa type, and the parameters are fitted to reproduce
the deuteron binding energy and np low-energy scattering
parameters in the case of the np interaction, and the αN S-
and P -wave phase shifts up to 10 MeV in the case of the αN
interaction. Specifically, for the αN interaction we employ
model A from Ref. [20] and for the np interaction we choose
the parameters from that work that lead to a deuteron D-state
probability of 4%.

We then apply the UT of Eqs. (3) and (4) to the P waves
of the αN interaction and reduce the parameter c in Eq. (4),
starting from a value c = 35 fm−1 until we reach values at
which 6Li is no longer bound. The result of these calculations
is summarized in Fig. 1, which shows the dependence of
the three-body separation energy of 6Li as a function of the
inverse S-wave scattering length adα . (Almost exactly the
same correlation of inverse scattering length and three-body
separation energy is obtained if the UT is only employed
in the P3/2 channel, and a very similar result is obtained
if only the P1/2 αN partial wave is unitarily transformed.
Including the S1/2 αN partial wave in the UT does not change
the results either.) The insert magnifies the regime when c
varies from 35 to 4 fm−1, and also shows the calculation
using the unmodified αN interaction as a solid circle (labeled
by ∞). First, a decrease in c from 35 to 10 fm−1 leads
to a decrease in the 6Li separation energy together with an
increase in the scattering length, forming a line along which
the loci of separation energy versus inverse scattering length
sit (red solid squares). When c is further decreased, this
trend reverses, with the loci now following the previous line,
but in the opposite direction—as indicated by the green dia-
monds in the inset of Fig. 1. This phenomenon of directional
reversal on the correlation line has also been observed in
Ref. [33], where the UT was applied to NN potentials in the
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FIG. 2. Absolute value of the three body separation energy of
6Li as a function of d-α S-wave scattering length adα calculated with
a variety of interactions, as described in the text and indicated by
the legend. The faint dotted line picks up points from Fig. 1 and is
intended to guide the eye.

three-nucleon problem. Once the value of c drops below
4 fm−1, the separation energy decreases uniformly as a
function of the inverse scattering length until the deuteron
breakup threshold is reached at c = 3.9 fm−1. At this point
6Li becomes unbound, and 1/adα → 0. Figure 1 shows that
all calculations determine a single parametric curve.

The large variation of the parameter c in the UT of the
αN interaction in the P wave may appear somewhat artificial.
Thus as the next step we consider “realistic” interactions in
the two-body subsystem. For the αN interaction we choose
the Bang interaction [30], where we set the strength parameter
of the central Woods-Saxon term to −44 MeV as in Ref. [25],
while for the np interaction we employ the CD-Bonn potential
[35]. This αN interaction generates a Pauli-forbidden S-wave
αN bound state, which we remove from the two-body spec-
trum using the methods described in Ref. [25]. Omitting the
Coulomb interaction we then obtain a 6Li three-body separa-
tion energy of 3.78 MeV and a scattering length of 5.29 fm,
indicated in Fig. 2 as a solid red upward triangle. As a guide
to the eye a subset of the points from Fig. 1 is also displayed
in Fig. 2 as a faint dotted line; we see that this calculation
based on “realistic” interactions falls almost on top of the line
determined previously by the rank-1 separable interactions.
This indicates that off-shell and high-momentum details of the
two-body forces do not influence the low-energy behavior of
the d-α system—except to the extent that a particular force’s
high-momentum behavior determines the particular point on
the correlation line at which it resides. To check if this is
indeed the case, we employ a series of np interactions which
have quite different off-shell and high-momentum behavior
but are all fitted to the deuteron binding energy and the
3S1-3D1 phase shift with high precision. The calculation based
on the Nijmegen-93 potential [36] is indicated by the blue
solid square, the Nijmegen-II potential [36] by the magenta
solid diamond, and the Idaho-N4LO potential [37] by the open
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cyan circle. Though the realistic NN interactions are located
very close to each other in Fig. 2, they all fall on the line
established by the previous calculations shown in Fig. 1. In
addition to the modern NN interactions we also include as
filled green circles the rank-1 np interaction from Ref. [20]
in which the deuteron D-state probability is varied for the np
interaction.

In order to further explore this behavior for more so-
phisticated potentials we also modify the strength of the
Woods-Saxon potential in the central part of the Bang αN
interaction from −42 to −45 MeV; this preserves the general
characteristics of the αN system, i.e., leaves it unbound, but
causes the agreement with the αN phase shifts to deteriorate
and the P3/2 resonance position to move. Keeping the np
interaction fixed while making this change yields results for
the three-body system that are represented in Fig. 2 by the
red open upward triangles. They are consistent with the line
established earlier. This is a non-phase-equivalent variation
of the Bang interaction, so it is somewhat surprising that
the E6Li-adα curve is unaffected. In contrast, changing the
strength of the NN interaction, so altering the deuteron bind-
ing energy, yields a E6Li-adα curve whose linear portion has a
different slope (not shown). The correlation seems to be more
sensitive to the on-shell NN input than it is to the on-shell αN
input.

Interpretation and implications. We compute the universal
correlation between adα and E6Li by evaluating both quantities
using several np potentials that have different off-shell and
high-momentum behavior, but almost the same np phase
shifts, together with a continuous family of αN potentials
that have different off-shell and high-momentum behavior
but exactly the same αN phase shifts. Arbitrary combina-
tions of these two-body potentials yield results for the three-
body observables that lie on a single curve in the adα- E6Li

plane.
The adα-E6Li correlation displayed here is certainly related

to the well-known Phillips line of the neutron-deuteron sys-
tem: it is not surprising that NN interactions with different
off-shell behavior produce points along a curve in the adα-E6Li

plane. The novel feature of the n-p-α system is that varying
the off-shell properties of the P -wave nucleon-α potential also
produces points on the same curve. This kind of correlation
is typical of weakly bound systems and is a consequence of
few-body universality. It is in accord with analyses of 6He that
show universal correlations are expected for weakly bound,
three-body systems where the same angular-momentum struc-
ture of two-body potentials occurs as in 6Li [38,39].

The existence of an adα-E6Li correlation thus suggests
that 6Li can be thought of as a “deuteron halo”. Indeed, the
experimental d-α separation energy of 6Li (1.47 MeV) [40] is
comparable to the deuteron binding energy (Bd = 2.22 MeV),
and certainly much smaller than the energy associated with α-
particle excitation. Recent work on infra-red extrapolations of
the 6Li binding energy in ab initio no-core shell model calcu-
lations using sophisticated NN and three-nucleon forces also
show a typical momentum that is much smaller than that of the
α particle, supporting its identification as a halo nucleus [41].

The portion of the curve at very large adα , i.e., very
small deuteron separation energy, is well described by an

effective-range expansion in the dα system. However, such
a two-body description is only valid when |E6Li| − Bd < Bd ,
i.e., the deuteron separation energy of 6Li is significantly less
than the deuteron binding energy. When 6Li is more bound
the adα-E6Li correlation is linear, with a slope that depends
on low-energy NN observables. In this domain changes of
the NN interaction that alter the NN phase shifts and the
deuteron binding energy yield a different relation between adα

and E6Li. We conclude that, at least for realistic 6Li binding,
the connection between adα and E6Li is a consequence of
universality in the three-body n-p-α system, and cannot be
understood using a low-order effective-range expansion for
the d-α system.

As is well known from three-nucleon systems [9], such a
strict correlation suggests that one three-body force can ab-
sorb the dependence on the unitary transformation at leading
order in the γR expansion. We caution that here we have
only examined the existence of such a correlation in the α-n-p
channel with total angular momentum J = 1, positive parity,
and total isospin T = 0. But following the example of the
three-nucleon case, we anticipate that other low-energy d-α
observables—not just adα—are correlated with the three-body
separation energy. If that is the case then d-α scattering
should be accurately predicted starting from α-nucleon and
np interactions as long as the three-body separation energy is
reproduced.

In Ref. [42] Ryberg et al. performed an EFT calculation of
the αnn system and argued that, for the 6He channel where
J = 0 and T = 1, there were at least two three-body force
structures if both the P3/2 and P1/2 channels were included in
the αN interaction. In contrast, we found that the adα-E6Li

correlation is very similar regardless of whether only P3/2,
only P1/2, or both αN channels are unitarily transformed.
Thus we have no indication that a second three-body force
structure contributes to low-energy αd observables at leading
order in the γR expansion, even if both P -wave αN channels
are included nonperturbatively in the three-body calculation.
The extent to which other observables are correlated with the
6Li binding energy is an interesting topic for future work, as is
the identification of the leading three-body force in all of the
6Li three-body channels [43].

As mentioned before, we have not included the Coulomb
repulsion between the α particle and the proton in this anal-
ysis. It seems reasonable to expect that the halo nature of the
6Li system unveiled in this study will still be present once
Coulomb effects are included (cf. Ref. [44] for a study of this
issue in a two-body model). In Ref. [25] a subset of the authors
computed the amount by which that force reduces the three-
body separation energy of 6Li, but those results were only
for the 6Li bound state. Once we have the ability to include
the Coulomb force when solving the scattering Faddeev-AGS
equations with separable interactions, it will be worthwhile
to revisit the calculations present here and assess the impact
of the repulsive αp electrostatic interaction on the universal
correlations in the 6Li system.
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