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The possibility of the appearance of �(1232) isobars in neutron star matter and the so-called � puzzle is
investigated in a relativistic quark model where the confining interaction for quarks inside a baryon is represented
by a phenomenological average potential in an equally mixed scalar-vector harmonic form. The hadron-hadron
interaction in nuclear matter is then realized by introducing additional quark couplings to σ , ω, and ρ mesons
through mean-field approximations. The hyperon couplings are fixed from the hyperon optical potentials at
saturation density. Effects of moderate variations in the �-ω and �-ρ coupling strengths on the critical density
of forming � resonances and on the mass-radius relation of neutron stars is studied. We have also made an
attempt to study the impact of in-medium mass variations of the � baryon on the structure of neutron stars. It is
observed that, within the constraints of the masses of the precisely measured massive pulsars PSR J0348+0432
and PSR J1614−2230, neutron stars with a composition of both � isobars and hyperons are possible in the
present model.
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I. INTRODUCTION

The formation of baryons heavier than nucleons at the core
of a neutron star, and the effects of such formation on the mass
and radius of the neutron star, are subjects of active research in
nuclear astrophysics. It is expected that high density neutron
star matter may consist not only of nucleons and leptons but
also several exotic components such as hyperons and mesons
as well as quark matter in different forms and phases. While
many studies have been conducted to address the appearance
of hyperons and on the so-called hyperon puzzle [1–18], little
work has been done to study the appearance of �(1232) iso-
bars in neutron stars. An earlier work [1] indicated the appear-
ance of � at much higher densities than the typical densities
of the core of a neutron star and hence was considered of little
significance to astrophysical studies. However, recent studies
[19–26] suggest the possibility of an early appearance of �

isobars. In fact, the critical density ρcrit
�− of appearance of �−

in these studies is around 2 to 3 times the nuclear saturation
density ρ0. Such an early appearance leads to the softening of
the equation of state (EOS) of dense matter, consequently re-
ducing the maximum mass of neutron stars below the current
observational limit of (2.01 ± 0.04)M� (PSR J0348+0432)
[27] and (1.928 ± 0.017)M� (PSR J1614−2230) [28,29].

In the present work, we would like to address the �-puzzle
in a relativistic quark model, alternatively called the modified
quark-meson coupling model (MQMC). The MQMC model is
based on a confining relativistic independent quark potential
model rather than a bag to describe the baryon structure
in vacuum. The baryon-baryon interactions are realized by
making additional quark couplings to σ , ω, and ρ mesons
through mean-field approximations. This relativistic quark
model has been successfully applied to various domains of

nuclear and high energy physics, including baryon spec-
troscopy [30], electromagnetic form factors of nucleons [31],
magnetic moments of the octet baryons [32], nucleon structure
functions in deep inelastic scattering [33], and symmetric
[34] and asymmetric [35] nuclear matter. More recently this
framework has been used to study the equation of state of
neutron star matter with hyperon degrees of freedom and the
properties of � and �0 hypernuclei [36,37]. Studies on the
effect of the nucleon charge radius on the mass and radius of
neutron stars [38] and developing an equation of state within
the constraints set by GW170817 observations [39] are some
other recent works undertaken using this model.

In the present work we include the delta isobars (�−, �0,
�+, �++) together with hyperons as new degrees of freedom
in dense hadronic matter relevant for neutron stars. The inter-
actions between nucleons, �’s, and hyperons in dense matter
is studied and the possibility of the existence of the � baryon
at densities relevant to a neutron star core as well as its effects
on the mass of the neutron star is analyzed. In free-space,
the two-body nucleon-nucleon (NN ) interaction is reasonably
well known below the pion production threshold. In-medium
NN interaction even at saturation density, especially the
isovector part, and spin-isospin and spin-orbit coupling are
not well known. The saturation properties of nuclear matter
at ρ0 and properties of finite nuclei have not fixed all these
properties of NN interaction yet. The extrapolation of such
interactions to densities beyond nuclear saturation density is
quite challenging. The hyperon-nucleon interaction are known
experimentally, but large uncertainties exist. Studies indicate
a repulsive � nuclear potential and a shallow attractive po-
tential for �. We use the hyperon optical potential values
of U� = −28 MeV [40,41], U� = 30 MeV [9,11,42–44], and
U� = −10 MeV at saturation respectively for the �, �, and
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� hyperons. We also study the effect of variation of the U�

from −10 to −18 MeV [9–11,42,43] on the star properties.
Due to lack of microscopic constraints on the coupling of

the � baryon with ω and ρ mesons, many workers take the
coupling strength of the mesons with � to be the same as
that of the nucleons. Studies [45] based on the quark counting
argument suggest universal couplings between nucleons, �

isobars, and mesons, giving the values of xω� = gω�/gωN =
1 and xσ� = gσ�/gσN = 1. Theoretical studies of Gamow-
Teller transitions and M1 giant resonance in nuclei by Bohr
and Mottelson [46] observed a 25–40% reduction in transition
strength due to the couplings to � isobars, indicating weaker
coupling of the isoscalar mesons to the � isobars. Further,
the difference between xσ� and xω� was found to be xσ� −
xω� = 0.2 in the Hartree approximation [47]. In the present
work we fix the �-ω coupling with the value of xω� = 0.7.
We also study the effect of moderate variations in the value
of xω� and xρ� on the critical density of appearance of �−
baryons as well as on the mass and radius of neutron stars.

The paper is organized as follows: In Sec. II, a brief outline
of the model describing the baryon structure in vacuum is
discussed. The baryon mass is then realized by appropriately
taking into account the center-of-mass correction, pionic cor-
rection, and gluonic correction. The EOS with the inclusion
of the � isobars and the hyperons is then developed in
Sec. III. The results and discussions are made in Sec. IV. We
summarize our findings in Sec. V.

II. MODIFIED QUARK MESON COUPLING MODEL

The modified quark-meson coupling model has been suc-
cessful in obtaining various bulk properties of symmetric
and asymmetric nuclear matter as well as hyperonic matter
within the accepted constraints [34–36]. We now extend this
model to include the � isobars (�−, �0, �+, �++) along
with nucleons and hyperons in neutron star matter under
conditions of β equilibrium and charge neutrality. We begin
by considering baryons as composed of three constituent
quarks confined inside the hadron core by a phenomenological
flavor-independent potential, U (r ). Such a potential may be
expressed as an admixture of equal scalar and vector parts in
harmonic form [34],

U (r ) = 1
2 (1 + γ 0)V (r ),

with

V (r ) = (ar2 + V0), a > 0. (1)

Here (a, V0) are the potential parameters. The confining
interaction provides the zeroth-order quark dynamics of the
hadron. In the medium, the quark field ψq (r) satisfies the
Dirac equation[

γ 0
(
εq − Vω − 1

2τ3qVρ

) − �γ · �p
− (mq − Vσ ) − U (r )]ψq (�r ) = 0, (2)

where Vσ = g
q
σ σ0, Vω = g

q
ωω0, and Vρ = g

q
ρb03. Here σ0, ω0,

and b03 are the classical meson fields, and g
q
σ , g

q
ω, and g

q
ρ are

the quark couplings to the σ , ω, and ρ mesons, respectively.
mq is the quark mass and τ3q is the third component of the

isospin matrix. We can now define

ε′
q = (ε∗

q − V0/2) and m′
q = (m∗

q + V0/2), (3)

where the effective quark energy ε∗
q = εq − Vω − 1

2τ3qVρ and
effective quark mass m∗

q = mq − Vσ . We now introduce λq

and r0q as

(ε′
q + m′

q ) = λq and r0q = (aλq )−
1
4 . (4)

The ground-state quark energy can be obtained from the
eigenvalue condition

(ε′
q − m′

q )

√
λq

a
= 3. (5)

The solution of (5) for the quark energy ε∗
q immediately leads

to the mass of baryon in the medium in zeroth order as

E∗0
B =

∑
q

ε∗
q . (6)

We next consider the spurious center-of-mass correction
εc.m., the pionic correction δMπ

B for restoration of chiral sym-
metry, and the short-distance one-gluon exchange contribu-
tion (�EB )g to the zeroth-order baryon mass in the medium.

We have used a fixed center potential to calculate the wave
functions of a quark in a baryon. To study the properties of
the baryon constructed from these quarks, we must extract
the contribution of the center-of-mass motion in order to
obtain physically relevant results. Here, we extract the center-
of-mass energy to first order in the difference between the
fixed center and relative quark coordinate, using the method
described by Guichon et al. [48,49]. The center-of-mass cor-
rection is given by

ec.m. = e(1)
c.m. + e(2)

c.m., (7)

where

e(1)
c.m. =

3∑
i=1

[
mqi∑3

k=1 mqk

6

r2
0qi

(3ε′
qi

+ m′
qi

)

]
, (8)

e(2)
c.m. = a

2

[
2∑

k mqk

∑
i

mi

〈
r2
i

〉 + 2∑
k mqk

∑
i

mi

〈
γ 0(i)r2

i

〉

− 3(∑
k mqk

)2

∑
i

m2
i

〈
r2
i

〉 − 1( ∑
k mqk

)2

×
∑

i

〈
γ 0(1)m2

i r
2
i

〉 − 1(∑
k mqk

)2

∑
i

〈
γ 0(2)m2

i r
2
i

〉

− 1( ∑
k mqk

)2

∑
i

〈
γ 0(3)m2

i r
2
i

〉]
. (9)

In the above, we have used i = (u, d, s) and k = (u, d, s), and
the various quantities are defined as

〈r2
i 〉 = (11ε′

qi + m′
qi )r

2
0qi

2(3ε′
qi + m′

qi )
, (10)

〈γ 0(i)r2
i 〉 = (ε′

qi + 11m′
qi )r

2
0qi

2(3ε′
qi + m′

qi )
, (11)
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〈
γ 0(i)r2

j

〉
i �=j

= (ε′
qi + 3m′

qi )
〈
r2
j

〉
3ε′

qi + m′
qi

. (12)

The pionic corrections in the model for the nucleons be-
come

δMπ
N = −171

25
Iπf 2

NNπ , (13)

where fNNπ is the pseudovector nucleon-pion coupling con-
stant. Taking wk = (k2 + m2

π )1/2, the Iπ becomes

Iπ = 1

πmπ
2

∫ ∞

0
dk

k4u2(k)

w2
k

, (14)

with the axial vector nucleon form factor given as

u(k) =
[

1 − 3

2

k2

λq (5ε′
q + 7m′

q )

]
e−k2r2

0 /4. (15)

The pionic correction for �0 and �0 become

δMπ
�0 = −12

5
f 2

NNπIπ , (16)

δMπ
�0 = −108

25
f 2

NNπIπ . (17)

Similarly the pionic correction for �− and �+ is

δMπ
�+,�− = −12

5
f 2

NNπIπ . (18)

The pionic correction for �0 and �− is

δMπ
�−,�0 = −27

25
f 2

NNπIπ . (19)

For � baryon, the pionic correction is given by

δMπ
� = −99

25
f 2

NNπIπ . (20)

The one-gluon exchange interaction is provided by the
interaction Lagrangian density

Lg
I =

∑
J

μa
i (x)Aa

μ(x), (21)

where Aa
μ(x) are the octet gluon vector-fields and J

μa
i (x) is

the ith quark color current. The gluonic correction can be
separated into two pieces, namely, one from the color electric
field (Ea

i ) and another from the magnetic field (Ba
i ) generated

by the ith quark color current density

J
μa
i (x) = gcψ̄q (x)γ μλa

i ψq (x), (22)

with λa
i being the usual Gell-Mann SU(3) matrices and αc =

g2
c /4π . The contribution to the mass can be written as a sum

of color-electric and color-magnetic parts as

(�EB )g = (�EB )Eg + (�EB )Mg . (23)

Finally, taking into account the specific quark flavor and
spin configurations in the ground state baryons and using the
relations 〈∑a (λa

i )2〉 = 16/3 and 〈∑a (λa
i λ

a
j )〉i �=j = −8/3 for

baryons, one can write the energy correction due to color
electric contribution as given in [36],

(�EB )Eg = αc

(
buuI

E
uu + busI

E
us + bssI

E
ss

)
, (24)

TABLE I. The coefficients aij and bij used in the calculation of
the color-electric and and color-magnetic energy contributions due to
one-gluon exchange.

Baryon auu aus ass buu bus bss

N −3 0 0 0 0 0
� 3 0 0 0 0 0
� −3 0 0 1 −2 1
� 1 −4 0 1 −2 1
� 0 −4 1 1 −2 1

and that due to color magnetic contributions as

(�EB )Mg = αc

(
auuI

M
uu + ausI

M
us + assI

M
ss

)
, (25)

where aij and bij are the numerical coefficients depending on
each baryon and are given in Table I. In the above, we have

IE
ij = 16

3
√

π

1

Rij

[
1 − αi + αj

R2
ij

+ 3αiαj

R4
ij

]
,

(26)

IM
ij = 256

9
√

π

1

R3
ij

1

(3ε
′
i + m

′
i )

1

(3ε
′
j + m

′
j )

,

where

R2
ij = 3

[
1(

ε
′
i

2 − m
′
i

2) + 1(
ε

′
j

2 − m
′
j

2)
]
,

αi = 1

(ε
′
i + m

′
i )(3ε

′
i + m

′
i )

. (27)

The color electric contributions to the bare mass for nucleon
and the � baryon are (�EN )Eg = 0 and (�E�)Eg = 0. There-
fore the one-gluon contribution for � becomes

(�E�)Mg = 256αc

3
√

π

[
1

(3ε′
u + m′

u)2R3
uu

]
. (28)

The details of the gluonic correction for the nucleons and
hyperons are given in [36].

Treating all energy corrections independently, the mass of
the baryon in the medium becomes

M∗
B = E∗0

B − εc.m. + δMπ
B + (�EB )Eg + (�EB )Mg . (29)

III. THE EQUATION OF STATE

The total energy density and pressure at a particular baryon
density, including all the members of the baryon octet and
the � isobars, for the nuclear matter in β equilibrium can be
found as

E = 1

2
m2

σ σ 2
0 + 1

2
m2

ωω2
0 + 1

2
m2

ρb
2
03

+ γ

2π2

∑
B

∫ kf,B [
k2 + M∗

B
2]1/2

k2dk

+
∑

l

1

π2

∫ kl

0

[
k2 + m2

l

]1/2
k2dk, (30)
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P = −1

2
m2

σ σ 2
0 + 1

2
m2

ωω2
0 + 1

2
m2

ρb
2
03

+ γ

6π2

∑
B

∫ kf,B k4dk[
k2 + M∗

B
2]1/2

+ 1

3

∑
l

1

π2

∫ kl

0

k4dk[
k2 + m2

l

]1/2 , (31)

where γ is the spin degeneracy factor for nuclear matter. For
the nucleons and hyperons γ = 2 and for the � baryons γ =
4. Here B = N , �, �, �±, �0, �−, �0, and l = e, μ.

The chemical potentials, necessary to define the β-
equilibrium conditions, are given by

μB =
√

k2
B + M∗

B
2 + gωω0 + gρτ3Bb03, (32)

where τ3B is the isospin projection of the baryon B.
The lepton Fermi momenta are the positive real solutions of

(k2
e + m2

e )1/2 = μe and (k2
μ + m2

μ)1/2 = μμ. The equilibrium
composition of the star is obtained by solving the equations of
motion of meson fields in conjunction with the charge neutral-
ity condition, given in (33), at a given total baryonic density
ρ = ∑

B γ k3
B/(6π2). The effective masses of the baryons are

obtained self-consistently in this model.
Since the neutron star timescale is quite long, we need

to consider the occurrence of weak processes in its matter.
Moreover, for stars in which the strongly interacting particles
are baryons, the composition is determined by the require-
ments of charge neutrality and β-equilibrium conditions under
the weak processes B1 → B2 + l + νl and B2 + l → B1 + νl .
After deleptonization, the charge neutrality condition yields

qtot =
∑
B

qB

γ k3
B

6π2
+

∑
l=e,μ

ql

k3
l

3π2
= 0, (33)

where qB corresponds to the electric charge of baryon species
B and ql corresponds to the electric charge of lepton species
l. Since the timescale of a star is effectively infinite compared
to the weak interaction timescale, weak interaction violates
strangeness conservation. The strangeness quantum number
is therefore not conserved in a star and the net strangeness
is determined by the condition of β equilibrium, which for
baryon B is then given by μB = bBμn − qBμe, where μB

is the chemical potential of baryon B and bB is its baryon
number. Thus the chemical potential of any baryon can be
obtained from the two independent chemical potentials μn and
μe of neutron and electron respectively.

In the present work, the baryon couplings are given by
gωB = xωBgωN and gρB = xρBgρN , where xωB and xρB are
equal to 1 for the nucleons and acquire different values in
different parametrizations for the other baryons. We mention
here that the s quark is unaffected by the σ and ω mesons,
i.e., gs

σ = gs
ω = 0. We also note here that, in the present work,

baryons are not considered as point particles. They have an
internal structure, the state of which is realized in SU(6). In
the present case we have considered SU(2) symmetry, taking
the interaction of u quarks and d quarks with the mesons as
identical. Here we fix g

q
σ (coupling constant for the quarks

with the σ meson) to the saturation properties of nuclear

TABLE II. The potential parameter V0 for different baryons ob-
tained for the quark masses mu = md = 150 MeV, ms = 230 MeV
with a = 0.722970 fm−3 and at quark masses mu = md = 200 MeV,
ms = 280 MeV with a = 0.795590 fm−3.

Baryon MB (MeV) V0 (MeV) V0 (MeV)
mu,d = 150 MeV mu,d = 200 MeV

N 939 36.76 5.44
� 1115.6 69.34 35.18
� 1193.1 86.10 50.78
� 1321.3 104.64 67.13
� 1232 91.26 61.59

matter self-consistently. It therefore does not give a direct
definition of gσB and hence of xσB for baryons.

The vector mean fields ω0 and b03 are determined through

ω0 = gω

mω
2

∑
B

xωBρB, b03 = gρ

2mρ
2

∑
B

xρBτ3BρB, (34)

where gω = 3g
q
ω and gρ = g

q
ρ . Finally, the scalar mean field

σ0 is fixed by

∂E
∂σ0

= 0. (35)

The isoscalar-scalar and isoscalar-vector couplings g
q
σ and gω

are fitted to the saturation density and binding energy for
nuclear matter. The isovector-vector coupling gρ is set by
fixing the symmetry energy at J = 32.0 MeV. For a given
baryon density, ω0, b03, and σ0 are calculated from (34) and
(35), respectively.

The relation between the mass and radius of a star with
its central energy density can be obtained by integrating the
Tolman-Oppenheimer-Volkoff (TOV) equations [50,51] given
by,

dP

dr
= −G

r

[E + P ][M + 4πr3P ]

(r − 2GM )
, (36)

dM

dr
= 4πr2E, (37)

with G as the gravitational constant and M (r ) as the enclosed
gravitational mass. We have used c = 1. Given an EOS, these
equations can be integrated from the origin as an initial value
problem for a given choice of the central energy density

TABLE III. Parameters for nuclear matter. They are determined
from the binding energy per nucleon, EB.E = B0 ≡ E/ρB − MN =
−15.7 MeV, and pressure, P = 0 at saturation density ρB = ρ0 =
0.15 fm−3. Also shown are the values of the nuclear matter incom-
pressibility K and the slope of the symmetry energy L for quark
masses mq = 150 MeV and mq = 200 MeV.

mq gq
σ gω gρ M∗

N/MN K L

(MeV) (MeV) (MeV)

150 4.57842 6.49093 8.82263 0.85 235.55 86.20
200 4.36839 7.40592 8.73323 0.83 242.41 86.98
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TABLE IV. xωB determined by fixing the potentials for the hyperons.

mq xω� xω� xω�

(MeV) U� = −28 MeV U� = 30 MeV U� = −10 MeV U� = −18 MeV

150 0.87659 1.69560 0.58729 0.48628
200 0.82541 1.45353 0.52541 0.44782

ε0. It may be noted here that we add the standard Baym-
Pethick-Sutherland (BPS) EOS [52] to the EOS of the MQMC
model to describe the crust of the star, where the density is
significantly smaller than nuclear matter saturation density.
Recent works detail the importance and technique of such
core-crust matching for nonunified equations of state [53] and
the dependence of the crust-core transition density on the sym-
metry energy [54]. Of particular importance is the maximum
mass obtained from the solution of the TOV equations. The
value of r (= R), where the pressure vanishes defines the
surface of the star. The surface gravitational redshift Zs is
defined as

Zs =
(

1 − 2GM

R

)−1/2

− 1. (38)

IV. RESULTS AND DISCUSSION

The MQMC model has two potential parameters, a and
V0, which are obtained by fitting the nucleon mass MN =
939 MeV and charge radius [55] of the proton 〈rN 〉 = 0.84
fm in free space. Keeping the value of the potential parameter
a the same as that for nucleons, we obtain V0 for the �,
�, �, and � baryons by fitting their respective masses to
M� = 1115.6 MeV, M� = 1232 MeV, M� = 1193.1 MeV,
and M� = 1321.3 MeV. The set of potential parameters for
the baryons at zero density for quark masses mq = 150 MeV
and mq = 200 MeV are given in Table II.

The quark meson couplings g
q
σ , gω = 3g

q
ω, and gρ =

g
q
ρ are fitted self-consistently for the nucleons to obtain

the correct saturation properties of nuclear matter binding
energy EB.E. ≡ B0 = E/ρB − MN = −15.7 MeV, pressure
P = 0, and symmetry energy J = 32.0 MeV at ρB = ρ0 =
0.15 fm−3.

We have taken the standard values for the meson
masses; namely, mσ = 550 MeV, mω = 783 MeV, and mρ =
763 MeV. The values of the quark meson couplings, g

q
σ ,

gω, and gρ at quark masses 150 and 200 MeV are given
in Table III. The nuclear matter incompressibility values
K at saturation density in the present set of parameters at
quark masses mq = 150 MeV and mq = 200 MeV are K =
235.55 MeV and K = 242.41 MeV respectively. Recent mea-
surements [56] extracted from doubly magic nuclei like 208Pb
constrain the value of K to be around 240 ± 20. Further,
the slopes of the symmetry energy, L = 86.20 MeV and
L = 86.98 MeV for quark masses mq = 150 MeV and mq =
200 MeV respectively in the present model, lie near the upper
limit of the presently accepted [57] range of 58.7 ± 28.1 MeV
obtained from an extensive survey of 53 analyses.

The couplings of the hyperons to the σ meson need not be
fixed since we determine the effective mass of the hyperons
self-consistently. The hyperon couplings to the ω meson are
fixed by determining xωB . The value of xωB is obtained
[58–60] from the hyperon potentials in nuclear matter, UB =
−(MB − M∗

B ) + xωBgωω0 for B = �, �, and � with U� =
−28 MeV, U� = 30 MeV and two values of U�, i.e., at U� =
−10 MeV and U� = −18 MeV. For the quark masses 150 and
200 MeV with fixed xρB = 1, the corresponding values for
xωB for the hyperons are given in Table IV.

The � hyperon potential has been chosen from the mea-
sured single-particle levels of � hypernuclei from mass num-
bers A = 3 to 209 [40,41] of the binding of � to symmetric
nuclear matter. Studies of � nuclear interaction [61,62] from
the analysis of �− atomic data indicate a repulsive isoscalar
potential in the interior of nuclei. The � potential has been
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FIG. 1. Effective baryon mass as a function of baryon density at
quark masses (a) mq = 150 MeV and (b) mq = 200 MeV.
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FIG. 2. Total pressure as a function of the energy density for
various composition of the stellar matter at quark masses (a) mq =
150 MeV and (b) mq = 200 MeV with xω� = 0.7 and xρ� = 1. The
shaded region shows the empirical EOS obtained by Steiner et al.
from a heterogeneous data set of six neutron stars.

fixed at 30 MeV, as suggested from recent developments
[9,11,42–44] in hypernuclear physics. Measurements of the
final state interaction of � hyperons produced in (K−,K+)
reaction on 12C in the E224 experiment at KEK [63] and
the E885 experiment at AGS [64] indicate shallow attractive
potentials U� ∼ −16 MeV and U� ∼ −14 or less, respec-
tively. In view of this we consider the � hyperon potential at
U� = −10 MeV. We also study the effect of the commonly
used [9–11,42,43] value of the � hyperon potential U� =
−18 MeV on the mass and radius of neutron stars.

The couplings of the � resonances are constrained poorly
due to their unstable nature. Earlier works [45] based on the
quark counting argument considered a simple universal choice
of couplings of the � with the mesons. Wehrberger et al.
[47] carried out studies of �-baryon excitation in finite nuclei
in the linear Walecka model and reproduced properties of
some finite nuclei. They constrained the scaling to 0 � xσ� −
xω� � 0.2. Furthermore, suggestions [20,25] on the range
of uncertainty for the � potential, −30 MeV + UN � U� �
UN , from the studies of electron-nucleus [47,65,66] and pion-
nucleus [67,68] scattering and photoabsorption, lead to a con-
straint −90 < U� < −50 MeV for UN � −(50–60) MeV.
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FIG. 3. Particle fraction as a function of the baryon density
indicating the onset of the � isobars at quark mass mq = 200 MeV
and xω� = 0.7.

As stated in Sec. III, for the present work there is no direct
definition for xσ�. We are therefore limited to the choice of
fixing xω� for obtaining � potential values. Moreover, our
choice of the xω� is also restricted by the neutron star mass
constraint. In this context we choose to fix xω� = 0.7, since
in the present model this gives the value of U� = −96 MeV
for quark mass 200 MeV and U� = −88 MeV for quark
mass 150 MeV, which lie close to the range obtained from
photoabsorption studies. The � coupling to the ρ meson is
fixed at xρ� = 1. However, variations in coupling strength
xω� and xρ� have been made to study their impact on the
critical density of forming � resonances and on the structure
of neutron stars.

Figures 1(a) and 1(b) show the effective mass of the nucle-
ons and � for the quarks masses mq = 150 MeV and mq =
200 MeV respectively. With increasing density the effective
mass decreases due to the attractive σ field for the baryons.
The EOS for different compositions of neutron star matter
at quark masses 150 and 200 MeV are shown in Fig. 2. It
is observed that, with the inclusion of �, the EOS becomes
softer than for matter containing only nucleons. For matter
containing nucleons, delta baryons, and hyperons, we observe
a significant decrease of stiffness.

In fact, for matter composed of nucleons + � + hyperon,
the stiffness of the EOS decreases with the early appear-
ance of the �− at a density of around ρB = 0.39 fm−3 for
mq = 200 MeV. The hyperons start appearing at a density of
ρB = 0.45 fm−3, further reducing the stiffness of the EOS. A
similiar trend is also observed for quark mass mq = 150 MeV.
The shaded region shows the empirical EOS obtained by
Steiner et al. from a heterogeneous data set of six neutron stars
with well determined distances [69].

The composition of the matter in terms of the particle
fractions for β-equilibrated matter is shown in Fig. 3. At
densities below the saturation value the β decay of neutrons
to muons is allowed, and thus muons start to populate. At
higher densities the lepton fraction begins to fall since charge
neutrality can now be maintained more economically with
the appearance of negative baryon species. Since the �− can
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FIG. 4. Effect of variation in �-ρ coupling strength xρ� on the
critical density of forming �− at xω� = 0.7 for quark masses 150
and 200 MeV.

replace the neutron and electron at the top of the Fermi sea, it
appears first at a density of ρB = 0.39 fm−3. This is followed
by the appearance of �. The sequence of appearance of the �

resonances is consistent with the notion of charge-favored or
unfavored species [1]. As such, the first � resonance to appear
is �−, followed by the �0, �+, and �++. The slope of the
symmetry energy L also plays a key role in the appearance
of � resonances. By constraining L in the range 40 < L <
62 MeV, Drago et al. [23] have observed the appearance of
� at close to twice the saturation density. At high densities
all baryons tend to saturate. It may be noted here that the �

hyperon is not present in the matter distribution for the given
set of potentials since we have chosen a repulsive potential
for it.

Since the vector coupling of the � are not constrained by
the properties of saturated nuclear matter, we study the effect
of moderate variations in the strength of the vector coupling
of the � on the critical density of forming �− baryons and
on the mass-radius relation of the neutron star. Figure 4 shows
the variation in the ρcrit

�− with increasing ρ-� coupling strength
xρ� and a fixed value xω� = 0.7 for quark masses mq = 150
and 200 MeV. It is observed that the value of ρcrit

�− increases
with an increase in the value of xρ�.

Considering only the nucleon and � composition of the
matter, we plot in Fig. 5 the gravitational mass as a function of
radius by changing the coupling strengths xω� and xρ� of the
� isobars. By decreasing the coupling strength from xω� = 1
to xω� = 0.6, we observe in Fig. 5(a) a gradual decrease in the
maximum mass of the star. A similar behavior is also observed
in Fig. 5(b) by decreasing the xρ� coupling strength. The re-
sults are tabulated in Table V. This follows from the fact that,
by decreasing the interaction strength of the � with respect
to the nucleons, the EOS becomes softer with a consequent
decrease in the maximum mass of the star [70]. We further
observe that an increase in the �-ω coupling strength tends
to reduce the radius while an increase in the �-ρ coupling
strength increases the radius corresponding to the maximum
mass of the neutron star. This appreciable change in the
radius at maximum mass indicates a strong dependence on
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FIG. 5. Gravitational mass as a function of radius for various
coupling strengths. In (a) the value of xω� is varied keeping xρ� = 1
while in (b) xρ� is varied keeping xω� = 0.7. Both are determined
for N + � composition at a quark mass of mq = 200 MeV.

the meson-baryon coupling constants. However, the radius of
canonical neutron stars of 1.4M� has almost no change.

To examine further the dependence of the � formation
on the meson-baryon couplings, we chose a stronger ω-�
coupling at xω� = 1.1, as suggested in [26], and varied the
xρ� strength at xρ� < 1.0. We observe that such a combina-
tion significantly changes the composition of the matter with

TABLE V. Mass-radius relation of neutron stars for different
coupling strength with N + � matter. (a) shows the effect variation
of xω� at mq = 200 MeV with xρ� = 1. (b) shows the effect of
variation of xρ� of at mq = 200 MeV at a fixed value of xω� = 0.7

(a) (b)

xω� Mmax R R1.4 xρ� Mmax R R1.4

(M�) (km) (km) (M�) (km) (km)

0.60 1.86 12.40 13.6 0.60 1.70 11.18 13.2
0.70 1.98 12.08 13.6 0.70 1.78 11.47 13.5
0.80 2.05 11.82 13.6 0.80 1.85 11.74 13.6
0.90 2.09 11.87 13.6 0.90 1.92 11.93 13.6
1.00 2.11 11.89 13.6 1.00 1.98 12.08 13.6
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the appearance of only a �− resonance and no other delta
resonant state, even within 7–8 times the saturation density,
as shown in Fig. 6. We find that with increasing strength of
xρ�, ρcrit

�− shifts to higher densities. Such a trend increases
the maximum mass of the neutron star, as given in Table VI.
For xρ� � 1 with xω� = 1.1 there is no delta formation in
the neutron star matter. This indicates that in the present
model stronger vector coupling strengths do not allow the the
possibility of � formation in neutron star matter.

Since the � mass distribution can be modified in the
nuclear medium [71,72], we plot in Fig. 7 the effect of change
in ρcrit

�− with variation of the � mass M�. The Breit-Wigner
mass distribution f (M�) shown by � resonances in free
space is also plotted. In free space, the Breit-Wigner mass
distribution for � resonances is

f (M�) = 1

4

�2(M�)(
M� − M0

�

)2 + �2(M�)/4
, (39)

where �(M�) is the mass-dependent width [73,74] given by

�(M�) = 0.47q3/
(
M2

π + 0.6q2
)

GeV. (40)

Here q = {([M2
� − M2

N + M2
π ]/2M�)2 − M2

π }1/2 is the pion
momentum in the � rest frame in the � → π + N decay
process. It is observed that low mass � resonances appear near
2ρ0, thus indicating that hyperons can appear after �’s in neu-
tron stars. We also show in Fig. 8 the mass-radius relation of
neutron stars, for quark masses 150 and 200 MeV, with change

TABLE VI. Mass-radius relation of neutron stars for fixed xω� =
1.1 and varying coupling strength of xρ� with N + � matter at mq =
200 MeV.

xρ� Mmax R R1.4

(M�) (km) (km)

0.60 2.08 11.85 13.6
0.70 2.10 11.89 13.6
0.80 2.11 11.90 13.6
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in the mass of � resonances for fixed xω� = 0.7 and xρ� = 1.
In both Figs. 8(a) and 8(b) we observe a smaller maximum
mass for low mass � resonances, indicating relatively more
abundance due to their lower production thresholds [22].
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TABLE VII. Stellar properties obtained at different compositions of star matter for quark masses mq = 150 MeV and mq = 200 MeV.

Composition mq = 150 MeV mq = 200 MeV

Mmax R ε0 R1.4 Mmax R ε0 R1.4

(M�) (km) (fm−4) (km) (M�) (km) (fm−4) (km)

N 1.97 11.41 6.34 13.4 2.11 11.89 5.45 13.6
N + � 1.89 11.67 6.06 13.4 1.98 12.08 5.56 13.6
N + � + hyperons 1.82 12.15 5.28 13.4 1.90 12.41 5.02 13.6

In Fig. 9 we plot the mass-radius relations for the three
compositions of neutron star matter at mq = 150 MeV and
mq = 200 MeV with xω� = 0.7 and xρ� = 1. A stiffer EOS
corresponding to matter with nucleons only gives the maxi-
mum star mass of Mstar = 2.11M� at mq = 200 MeV. With
the appearance of the � isobars, mass decreases by 0.13M�
to Mstar = 1.98M�. The inclusion of the hyperons further
softens the EOS, resulting in a corresponding decrease in
the maximum mass to Mstar = 1.90M�. For the lower quark
mass of mq = 150 MeV, we observe a similar trend with a
decrease in the maximum mass. The detailed results including
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FIG. 9. Gravitational mass as a function of radius for varying
composition of star matter at (a) quark mass mq = 150 MeV and (b)
quark mass mq = 200 MeV at fixed xω� = 0.7.

the maximum mass, radius, central density (ε0), and the radius
corresponding to the canonical star mass 1.4M� (R1.4), for the
two quark masses mq = 150 MeV and mq = 200 MeV, are
shown in Table VII. We note here that by changing the value
of the U� to −18 MeV from −10 MeV we obtain a smaller
maximum mass with a corresponding increase in radii. For
mq = 200 MeV the star mass decreases from 1.90M� to
1.86M�, and the corresponding radius increases from 12.41
to 12.61 km. For mq = 150 MeV the star mass decreases from
1.82M� to 1.77M� and the corresponding radius increases
from 12.15 to 12.36 km.

From our calculations we obtain a range of masses varying
from 2.11M� to 1.77M� depending on the composition of the
matter. We note here that, for an appropriate description of the
low-density crust region of the neutron star, we add to the core
EOS the Baym-Pethick-Sutherland (BPS) crust EOS [52].

The radii corresponding to the maximum mass for various
compositions, for the quark masses mq = 150 MeV and mq =
200 MeV, are shown in Table VII. We observe moderate
increase in the radii from R = 11.89 km for matter with
nucleons only to R = 12.41 km for matter composed of
nucleons, �, and hyperons. Further, we obtain a radius of
R1.4 = 13.6 km for a canonical neutron star of mass 1.40M�.
For the quark mass mq = 150 MeV the radius decreases
as compared to the radius for quark mass mq = 200 MeV.
The recent detection of the gravitational-wave signal from
merging neutron-star binaries, GW170817 [75], has provided
new insight on the range of radii of neutron stars. Various
studies [76,77] have put forth a stringent limit on the radius
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FIG. 10. Surface gravitational redshift as a function of star mass
at quark mass mq = 200 MeV and xω� = 0.7.
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corresponding to the 1.4M� mass neutron star, 9.9 < R1.4 <
13.6 km. In the present work we obtain R1.4 = 13.6 km.

Figure 10 shows the gravitational redshift versus the gravi-
tational mass of the neutron star at quark mass mq = 200 MeV
and xω� = 0.7. It also shows the maximum redshift (redshift
corresponding to the maximum mass) which, for the present
work comes out to be Zmax

s = 0.20. This is well below the
upper bound on the surface redshift for subluminal equations
of state, i.e., zCL

s = 0.8509 [78].

V. SUMMARY

In the present work we have studied the possibility of
forming � isobars and their impact in dense matter relevant to
neutron stars. We have developed the EOS using a relativistic
quark model, also called the modified quark-meson coupling
model, which considers the baryons to be composed of three
independent relativistic quarks confined by an equal admix-
ture of a scalar-vector harmonic potential in a background
of scalar and vector mean fields. Corrections to the center-
of-mass motion and pionic and gluonic exchanges within
the nucleon are calculated to obtain the effective mass of
the baryon. The baryon-baryon interactions are realized by the
quark coupling to the σ , ω, and ρ mesons through a mean-field
approximation.

By varying the composition of the matter we observe
the variation in the degree of stiffness of the EOS and the
corresponding effect on the maximum mass of the star. As
predicted theoretically, we observe that the inclusion of the �

and hyperon degrees of freedom softens the EOS and hence
lowers the maximum mass of the neutron star. The so called
� and hyperon puzzles state that the presence of the � isobars
and hyperons would decrease the maximum star mass below
the recently observed masses of the pulsars PSR J0348+0432
and PSR J1614−2230. In the present work, we are able to
achieve the observed mass and radius constraint and at the
same time satisfy the theoretical predictions of the possibility
of existence of higher mass baryons in highly dense matter.
Their existence, however, significantly depends on the yet
unconstrained �-ω and �-ρ couplings. Such dependence on
the vector couplings is studied through the effect of their
variations on the critical density of forming the resonances
and on the maximum mass of the star. Further, we also observe
that the formation of the � is sensitive to the in-medium �

mass.
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