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QED first-order radiative corrections to the differential cross section for elastic scattering of deuterons
on electrons at rest are calculated. Radiative corrections due to soft- and hard-photon bremsstrahlung from
the electron lines, the electron vertex correction, and the electron vacuum polarization are considered. The
model-dependent contributions due to the bremsstrahlung from the deuteron and the deuteron vertex correction,
depending on its internal structure, are not included. We consider an experimental setup where the final particles
are recorded in coincidence and their energies are determined within some uncertainties. Formulas for the
relevant kinematical variables, the cross section, and the radiative corrections are derived and numerical results
are presented.
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I. INTRODUCTION

Polarized and unpolarized scattering of electrons off pro-
tons and light nuclei has been widely studied since these
experiments give information on the internal structure of these
particles (for recent reviews, see Refs. [1,2] and references
therein).

The recent determination of the proton electromagnetic
form factors, using the polarization method [3], shows that
for transferred momenta Q2 = −q2 � 1 GeV2 the polarized
and unpolarized experiments result in inconsistent values of
the form factor ratio; see Ref. [4]. This puzzle has given
rise to many speculations and different interpretations, as,
for example, the two-photon exchange contribution [5–9],
suggesting further experiments. Recent experiments searched
for evidence of two-photon exchange; see Refs. [10–12]. It is
expected that such contribution becomes more important with
heavier targets and at small angles [13,14].

In the region of small Q2, one can determine the charge
radius of the proton and of the light nuclei (rc), which is
one of the fundamental quantities in physics. In this case,
the statistical precision on the elastic cross section is not the
limiting factor, but systematic effects related to the extrapola-
tion to Q2 → 0 of the cross-section derivative prevent higher
precision.
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Recently, the determination of the proton rc with muonic
atoms led to the so-called proton radius puzzle. Experiments
on muonic hydrogen by laser spectroscopy lead to the value
rc = 0.84087(39) [15,16], which is one order of magni-
tude more precise but smaller by seven standard deviations
compared to the average value recommended by the 2010-
CODATA review [17].

Different sources of possible systematic errors of the
muonic experiments have been discussed. However, no def-
inite explanation of this difference has been given yet (see
Refs. [18–20] and references therein).

The deuteron form factors have been also extensively in-
vestigated during recent years; see the reviews [21–23]. The
precise knowledge of the deuteron charge radius can give
additional information about the deuteron internal structure.
The authors of Ref. [24] check the contribution from the
different coordinate intervals of the deuteron wave function
to the radius and found that it was sizable in the large r
region. So, they concluded that extrapolation of the wave
function at large distances is of great interest. A new method
which allows us to fix the percentage of the elusive D-state
probability, PD , from experiments is suggested in Ref. [25]. It
uses the dependence of the deuteron charge radius, rd , on the
deuteron wave function. Therefore, the precise knowledge of
rd allows us to determine PD more accurately.

The CREMA Collaboration has just published a value of
the radius rd from laser spectroscopy of the muonic deuterium
(μd) [26],

r
μd
d = 2.1256(8) fm,

again more than 7σ smaller than the CODATA-2010 value of
rd [27]

rCODATA-2010
d = 2.1424(21) fm.
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As was noted in Ref. [28], the comparison of the new
r

μd
d value with the CODATA-2010 value may be considered

inadequate or redundant, because the CODATA values of rd

and rp are highly correlated. A pedagogical description of the
method to extract the charge radius and the Rydberg constant
from laser spectroscopy in regular hydrogen and deuterium
atoms is given in Ref. [28]. The principle of determining the
deuteron radius from deuterium spectroscopy is analogous
to the one described for hydrogen above. However, not all
measurements were done for deuterium [28].

In order to reach the smallest values of the transferred
momentum to constrain the extrapolation to Q2 → 0, the
use of deuteron elastic scattering on atomic electrons (in
inverse kinematics) was suggested [29]. Inverse kinematics
was proposed in a number of theoretical papers [30–32].

To our knowledge, no experiment was performed yet on
proton and deuteron scattering on atomic electrons. Such
experiment is in principle possible at the Nuclotron accel-
erator, in Dubna, where polarized deuteron beams up to 13
GeV energy can be accelerated [33]. Similar experiments
were performed with kaon beams at CERN SPS [34] and
with pion beams at Serpukov [35] to determine their radii.
Inverse kinematics was also proposed to measure neutron
capture cross section of unstable isotopes [36]. For proton
and α-induced reactions, employing a radioactive ion beam
hitting a proton or helium target at rest was suggested. The
experiment [37], proposed at CERN, will measure the running
of the fine-structure constant in the spacelike region by scat-
tering high-energy muons (with energy 150 GeV) on atomic
electrons, μe → μe. The proposed technique is similar to the
one described in Refs. [38,39].

In this paper, we extend to d e scattering the approach
of Ref. [32] dedicated to proton scattering on atomic elec-
trons. We consider an experimental setup where the scattered
deuteron and electron are recorded in coincidence and their
energies are determined within uncertainties. We calculate
the QED radiative corrections to the leptonic part of inter-
action. These radiative corrections arise from the soft- and
hard-photon bremsstrahlung by the electrons, the electron
vertex correction, and the electron vacuum polarization. The
contributions due to the bremsstrahlung from the deuteron
and the deuteron vertex correction as well the two-photon
exchange graph, depending on its internal structure, are not
considered. Concerning the hard photon calculation, we fol-
lowed Ref. [40] for the coordinate system and the angular
integration.

II. FORMALISM

Let us consider the reaction

d(p1) + e−(k1) → d(p2) + e−(k2), (1)

where the momenta of the particles are indicated in parenthe-
ses, and q = k1 − k2 = p2 − p1 is the four-momentum of the
virtual photon. The reference system is the laboratory (lab)
system, where the electron target is at rest.

A general characteristic of all reactions of elastic and
inelastic hadron scattering by atomic electrons (that can be
considered at rest) is the small value of the momentum transfer

square, even for relatively large energies of the colliding parti-
cles. The electron mass cannot be neglected in the kinematics
and dynamics of the reaction, even when the beam energy
is of the order of GeV. The details of the inverse kinematics
are given in Ref. [32]. We recall here an useful quantity, the
maximum value of the recoil electron energy ε2:

ε2 max = m
2E(E + m) + m2 − M2

M2 + 2mE + m2
, (2)

where m(M ) is the electron (deuteron) mass and E is the
deuteron beam energy.

In the one-photon exchange (Born) approximation, the
matrix element M(B ) of the reaction (1) can be written as

M(B ) = e2

q2
jμJμ, (3)

where jμ(Jμ) is the leptonic (hadronic) electromagnetic cur-
rent. The leptonic current is

jμ = ū(k2)γμu(k1), (4)

where u(k1,2) is the spinor of the incoming (outgoing) elec-
tron. Following the requirements of Lorentz invariance, cur-
rent conservation, parity, and time-reversal invariance of the
hadronic electromagnetic interaction, the general form of the
electromagnetic current for the deuteron (that is a spin-1
particle) is fully described by three form factors. The hadronic
electromagnetic current can be written as [41]

Jμ = (p1 + p2)μ

[
−G1(q2)U1 · U ∗

2 + 1

M2
G3(q2)

×
(

U1 · qU ∗
2 · q − q2

2
U1 · U ∗

2

)]
+G2(q2)(U1μU ∗

2 · q − U ∗
2μU1 · q ), (5)

where U1μ and U2μ are the polarization four vectors for
the initial and final deuteron states. The functions Gi (q2),
i = 1, 2, 3, are the deuteron electromagnetic form factors,
depending only on the virtual photon four-momentum squared
q2 = −Q2 = (k1 − k2)2 = 2m(m − ε2). Due to the current
Hermiticity, these form factors are the real functions in the
region of the spacelike momentum transfer.

These form factors are related to the standard deuteron
form factors: GC (charge monopole), GM (magnetic dipole),
and GQ (charge quadrupole) by the following relations:

GM (q2) = −G2(q2),

GQ(q2) = G1(q2) + G2(q2) + 2G3(q2),

GC (q2) = 2

3
τ [G2(q2) − G3(q2)] +

(
1 + 2

3
τ

)
G1(q2),

τ = − q2

4M2
. (6)

The standard form factors have the following normalization:

GC (0) = 1, GM (0) = M

mN

μd, GQ(0) = M2Qd , (7)
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FIG. 1. Feynman’s diagrams corresponding to the Born approximation, first-order vertex and photon self-energy corrections (top), initial
and final real photon bremsstrahlung, Ms (soft) and Mh (hard), from the lepton vertex (bottom).

where mN is the nucleon mass, μd/μN = 0.857 is the
deuteron magnetic moment in the units 1/2mN , and Qd =
0.2857 fm2 is the deuteron quadrupole moment.

The matrix element squared is written as

|M(B )|2 = 16π2 α2

q4
LμνWμν, (8)

where α = e2/(4π ) = 1/137 is the electromagnetic fine
structure constant. The leptonic Lμν and hadronic Hμν tensors
are defined as

Lμν = jμj ∗
ν , Hμν = JμJ ∗

ν . (9)

The leptonic tensor Lμν for unpolarized initial and final elec-
trons (averaging over the initial electron spin and summing
over polarizations of the final electron) has the form

Lμν = q2gμν + 2(k1μk2ν + k1νk2μ). (10)

The hadronic tensor Wμν for unpolarized initial and final
deuterons can be written in the standard form, in terms of two
unpolarized structure functions:

Wμν =
(

−gμν + qμqν

q2

)
W1(q2) + PμPνW2(q2), (11)

where Pμ = (p1 + p2)μ/(2 M ). Averaging over the spin of
the initial deuteron, the structure functions Wi (q2), i = 1, 2,
can be expressed in terms of the electromagnetic form factors
as

W1(q2) = − 2
3q2(1 + τ )G2

M (q2),
(12)

W2(q2) = 4 M2
[
G2

C (q2) + 2
3τG2

M (q2) + 8
9τ 2G2

Q(q2)
]
.

The expression of the differential cross section as a function
of the recoil-electron energy, ε2, for unpolarized deuteron-
electron scattering can be written as

dσ (B )

dε2
= πα2

m| �p|2
D
q4

, (13)

where �p is the deuteron beam momentum and

D = 1
2LμνWμν

= 2[M2q2 + 2mE(2mE + q2)]
[
G2

C (q2) + 8
9τ 2G2

Q(q2)
]

+ 4
3τ [4m2(E2 − M2) + q2(m2 − M2

− 2τM2 + 2mE)]G2
M (q2). (14)

This expression is valid in the one-photon exchange (Born)
approximation in the reference system where the target elec-
tron is at rest.

The differential cross section, as a function of the four-
momentum transfer squared, is

dσ (B )

dq2
= πα2

2m2| �p|2
D
q4

. (15)

Lastly, the differential cross section over the scattered-
electron solid angle has the following expression:

dσ (B )

d�e

= α2

8m4| �p|
(

1 − 4m2

q2

)3/2 D
E + m

. (16)

III. RADIATIVE CORRECTIONS

Let us consider the QED radiative corrections which arise
due to the soft- and hard-photon bremsstrahlung by the elec-
trons, the electron vertex correction, and the electron vacuum
polarization. The corresponding diagrams are shown in Fig. 1.

A. Virtual and soft corrections

In this section, we use the standard expressions for the UV
finite parts of the electron vertex and the vacuum polarization
as well soft-photon corrections written in the initial electron
rest frame. The electron mass is always taken explicitly into
account.

We use the Lorentz and gauge-invariant Pauli-Willars sub-
traction procedure [42] for the regularization of the ultraviolet
(UV) divergent parts of the electron and photon self-energies
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and the electron vertex function. For the regularization of
the infrared divergence, we introduce the auxiliary photon
mass λ.

The UV divergent part of the photon self-energy (vacuum
polarization) is included into the renormalization of the elec-
tric charge. The UV divergent part of the electron self-energy
(mass operator)

�(p̂) = �(m) + ∂�(p̂)

∂p̂

∣∣∣∣
p̂=m

(p̂ − m) + C(p̂),

(17)
�(m) = δm,

enters in the first two terms of its expansion by powers
(p̂ − m). For the electron mass, we choose its physical value.
It means that the first term δm in Eq. (17) is compensated by
the counterterm in the Lagrangian. As concerns the second
one, its contribution into the renormalization of the external

electron wave function is exactly canceled by a particular UV
regularization of the electron vertex correction:

�μ(p1, p2) = �μ(p1, p2) − �μ(p, p) + �μ(p, p)

= �μ(p1, p2) + �μ(p, p). (18)

The quantity �μ(p1, p2) is UV finite, and this cancellation
takes place due to the Ward identity

�μ(p, p) = −∂�(p̂)/∂pμ. (19)

As the UV finite part of the mass operator C(p̂) contains
a term that is proportional to (p̂ − m)2, the graphs corre-
sponding to the electron self-energy on external electron lines
do not contribute. This scheme of calculation is explained in
Ref. [43], and it is gauge invariant. The Lorentz gauge is used
here as well as in our previous paper [32].

The virtual and soft corrections are calculated by the
standard method (see Ref. [44]) and the corresponding effect
reads

dσ (RC) = (1 + δ0 + δ̄ + δ(vac))dσ (B ), (20)

with

δ0 = 2α

π
ln

ω̄

m

[
ε2

|�k2|
ln

(
ε2 + |�k2|

m

)
− 1

]
, (21)

δ̄ = α

π

(
−1 − 2 ln 2 + ε2

|�k2|

{
ln

(
ε2 + |�k2|

m

)[
1 + ln

(
ε2 + |�k2|

m

)
+ 2 ln

(
m

|�k2|

)
+ m + 3ε2

2ε2

− ln

(
ε2 + m

|�k2|

)
− 1

2
ln

(
Q2

m2

)]
+ 4m

M2q2

ε2D (1 + τ ) ln

(
ε2 + |�k2|

m

)(
G2

C − 4

3
τG2

M + 8

9
τ 2G2

Q

)

− π2

6
+ Li2

(
ε2 − |�k2|
ε2 + |�k2|

)
+ Li2

(
ε2 + |�k2| + m

2(ε2 + m)

)
− Li2

(
ε2 − |�k2| + m

2(ε2 + m)

)})
, (22)

where ω̄ is the maximal energy of the soft photon and we
assume ω̄ � m. Only the term containing the deuteron form
factors in Eq. (22) differs from the case of elastic proton-
electron scattering. It arises due to appearance of the addi-
tional structure σμν in the electron vertex.

We separate the contribution δ0 since it can be summed
at all orders of the perturbation theory (similarly to the
exponentiation of the infrared factors arising from the real
and virtual photons given in Ref. [45]) using the exponential
form of the electron structure functions [46]. To do this, it
is sufficient to keep only the exponential contributions in the
electron structure functions. The final result can be obtained
substituting the term (1 + δ0) by the following expression:

(
ω̄

m

)β
β

2

∫ 1

0
x

β
2 −1(1 − x)

β
2 dx, (23)

where, in accordance with our direct calculations,

β = 2α

π

[
ε2

|�k2|
ln

(
ε2 + |�k2|

m

)
− 1

]
, (24)

and (1 + δ0) is the first two terms of the expansion (23) in
powers of β.

The electron structure function method can be applied if
the condition Q2 � m2 is satisfied that is valid for the Q2 val-
ues more than 10−5 GeV2 (corresponding to ε2 > 10 MeV). It
is easy to verify that in this case

ε2

|�k2|
ln

(
ε2 + |�k2|

m

)
= ln

Q2

m2
+ O

(
m2

Q2

)
. (25)

B. Hard-photon contribution

In this section, we calculate the radiative correction due to
the hard-photon bremsstrahlung

d(p1) + e(k1) → d(p2) + e(k2) + γ (k) (26)

with the photon energy ω > ω̄ in the target electron rest frame.
In the experimental setup when only energies of the scat-

tered deuteron and electron are measured, we use formalism
developed in Ref. [40], where π − e− scattering has been
analyzed. We applied it to calculate the hard-photon correc-
tion in the elastic p e scattering [32] and performing similar
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FIG. 2. Coordinate system and definition of the angles used for
the integration over the variables of the final state.

calculations we derive for the cross section of the process
(26) the following expression (averaging over the initial
particle spins and summing over the polarizations of the final
particles)

dσ (h)

dε2
= α3

16 π

1

m | �p|2
∫

ω dω

∫
d y

∫ 2π

0

1

q4
1 | �p − �k|

×
[
−W1

(
q2

1

)
S1 + W2

(
q2

1

)
M2

S2

]
d ϕ. (27)

Here q1 = k1 − k2 − k and y = E − | �p| cos φ > 0. The
coordinate system and the orientations of the three-momenta
are shown in Fig. 2. The functions S1,2 are expressed via the
scalar products of the 4-momenta in the reaction (see Eqs. (40)
and (41) in Ref. [32]) and the scalar products, in turn, are
expressed via variables ω, y, ϕ1 and the initial deuteron
3-momentum | �p|. The deuteron structure functions W1 and
W2 are defined by relations (12) but now their argument is q2

1 .
Let us discuss the integration region in the right-hand

side of Eq. (27). The events corresponding to the scattered-
deuteron energy E2 ± �E2 and the recoil-electron energy
ε2 ± �ε2 (they satisfy the condition E + m = E2 + ε2) are
considered as true elastic events. Here, �E2 and �ε2 are the
uncertainties of the measurement of the final deuteron and
recoil electron energies. The plot of the variable E2 versus
the variable ε2 is shown in Fig. 3. The shaded area in this
figure represents the region where events are allowed by the
experimental limitations. The relation between the energies
E2 and ε2, as shown in Fig. 3, has to be transformed into a
limit on the possible photon momentum �k.

1There is a misprint in our paper [32]. The expression for cos θ in
the denominator of Eq. (49) has to be multiplied by the additional
factor |�k2|.

FIG. 3. The shaded area represents the kinematically allowed
region within the experimental setup in the plane of the variables
E2 and ε2.

Usually the uncertainties �E2 and �ε2 are proportional
to E2 and ε2, respectively. For deuteron beam energies up
to 500 GeV, the recoil-electron energy is about two orders of
magnitude smaller than the scattered deuteron one. Therefore,
the following condition �E2 � �ε2 is satisfied and the effect
due to the nonzero value of �ε2 is negligible. Therefore, the
numerical calculations are performed for �ε2 = 0.

We consider the experimental setup where no angles are
measured and therefore the orientation of the photon momen-
tum �k is not limited and we investigate both cases: (i) ε2 <
ε2 max − �E and (ii) ε2 > ε2 max − �E, where �E = �E2

and where ε2 max is defined by Eq. (2).

FIG. 4. Maximum energy of the photon, ωmax, in the case
ε2 > ε2 max − �E as given by Eq. (29).
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(a) (b)

FIG. 5. (a) Integration region over the variables ω and y in the case ε2 < ε2 max − �E. Here y± = E ± p. (b) ωs , defined as the positive
solution of the equation ȳ = y+ and given by Eq. (45) in Ref. [32], as a function of the recoil-electron energy for the different deuteron
energies.

In the first case, we get, as experimental limit, the isotropic condition ω � �E (only this case was considered in our early
paper [32]), whereas in the second case the upper limit of ω depends on the recoil-electron energy, ω � ωmax, as shown in
Fig. 4. The quantity ωmax is the root of the equation y− = ȳ, y± = E ± | �p| and ȳ is, in turn, the positive solution of the equation
| cos θ | = 1 and reads

ȳ =
(m − ε2)(E − ε2 − ω) +

√
ε2

2 − m2
√

(E + m − ε2 − ω)2 − M2

ω
. (28)

The quantity ωmax has the following form:

ωmax = β A

B2 − C2
, β = 2mE + m2 + M2,

A = |�k2|{M2[| �p|(E0 + | �p|) + ε−(E − m − 2ε2)] + 2mε−(2EE0 − mε−)}
− ε−{(E0 + | �p|)[4mEE0 − 2m2ε− + M2(E − ε2)] − M2E0ε+},

(29)
B = E(4m2 + M2) + m(2E2 + 2m2 + M2) − 2β ε2,

C = | �p|(2mE + M2), ε± = ε2 ± m,E0 = E + m − ε2.

The integration region over the variables ω and y for the
case ω � �E is shown in Fig. 5(a), and the maximal photon
energy ωs , when the photon can be emitted in the whole
angular phase space (it means that y− < y < y+), is shown
Fig. 5(b) (as a function of the recoil electron energy). The
analytic form of ωs is given by Eq. (45) of Ref. [32].

So, the integration region in (27) is divided in two parts, in
the same way as for proton-electron scattering (see Eqs. (46)
and (47) in Ref. [32]). However, as we take �ε2 = 0, the
weight function is always equal to 1. In the limit ω → 0, the
integrand in (27) has infrared behavior. The infrared contribu-
tion is combined with the corrections due to the soft-photon
bremsstrahlung and the electron vertex. This results in the sub-
stitution ω̄ → ωs in the expression for δ0; see Eq. (21). In the
chosen experimental setup, the parameter ω̄ is nonphysical,
and therefore it has to disappear in all the physical results.
If the cancellation of this parameter is realized in the same
way in all orders, we can include part of the hard-photon

corrections which contains [β ln(ωs/m)]n, n = 1, 2, ... in
the exponential factor (23) by changing ω̄ → ωs . This can be
verified by performing the direct calculations at least at the
second order.

IV. NUMERICAL ESTIMATIONS AND DISCUSSION

In this section, the conditions for the experimental uncer-
tainties are set to �E = 0.02(E − ε2) and the t20 parametriza-
tion of the deuteron form factors is taken as below, unless
otherwise specified.

In our calculation, we use four different parametrizations
of the deuteron form factors, and since the four-momentum
transfer squared is rather small in this reaction, we can ap-
proximate these form factors by a Taylor series expansion
with a good accuracy. On the Born level and when calculating
the soft-photon bremsstrahlung, electron vertex, and vac-
uum polarization contributions, we can use also unexpanded

045212-6



LEPTONIC RADIATIVE CORRECTIONS TO ELASTIC … PHYSICAL REVIEW C 98, 045212 (2018)

expressions, but, in order to perform the analytical integra-
tions in Eqs. (27), we have to expand the differential cross
section, keeping terms up to q4

1 in W1(q2
1 ) and W2(q2

1 ).
Therefore, we use the expansion over the variable q2 of the

following four form factor parametrizations.

A. By means of the radii (labeled as “rad ”)

In this approach, we expand the quantity D, which is
defined by Eq. (14), including the terms up to q4, and we use
the expansion of the form factors, taking into account only the
mean square charge and magnetic radii from Ref. [21]:

GC,M (q2)

GC,M (0)
= 1 + 1

6
q2r2

C,M + O(q4), GQ(q2) = GQ(0),

rC = 2.130 fm, rM = 2.072 fm. (30)

B. Two-component model for the deuteron electromagnetic
structure [47] (labeled as “m”)

In this approach, the deuteron form factors are saturated
from the contribution of the isoscalar vector mesons, ω and φ.
In this case, one can write

Gi (Q
2) = Nigi (Q

2)Fi (Q
2), i = C, M, Q (31)

with

Fi (Q
2) = 1 − αi − βi + αi

m2
ω

m2
ω + Q2

+ βi

m2
φ

m2
φ + Q2

, (32)

where mω (mφ) is the mass of the ω (φ) meson. Note that the
Q2 dependence of Fi (Q2) is parameterized in such form that
Fi (0) = 1, for any values of the free parameters αi and βi ,
which are real numbers.

The terms gi (Q2) are written as functions of two real
parameters, γi and δi ,

gi (Q
2) = 1/[1 + γi Q

2]δi , (33)

and Ni is the normalization of the ith form factor at Q2 = 0:

NC = GC (0) = 1, NQ = GQ(0) = M2Qd = 25.83,

NM = GM (0) = M

mN

μd = 1.714,

where Qd is expressed in [GeV]−2 units and μD is in nuclear
magneton units.

The experimental data for GC and GM show the existence
of a zero, for Q2

0C � 0.7 GeV2 and Q2
0M � 2 GeV2. The

requirement of a node gives the following relation between
the parameters αi and βi , i = C and M:

αi = m2
ω + Q2

0i

Q2
0i

− βi

m2
ω + Q2

0i

m2
φ + Q2

0i

. (34)

The expression (31) contains four parameters, αi , βi , γi ,
δi , generally different for different form factors. It turns
out that common values of the parameters δ = 1.04 ± 0.03,
γ = 12.1 ± 0.5 GeV−2 allow a good fit for all form factors,
corresponding to χ2/ndf = 1.1. The values of the best-fit
parameters are reported in Table I. In our calculations, we used
the central values of these parameters.

TABLE I. Values of the parameters α and β for the three deuteron
electromagnetic form factors, from the global fit. The parameters δ

and γ are common to all form factors. In the case of GC and GM , α

is derived from Eq. (34).

α β χ 2/ndf

GC 5.75 ± 0.07 −5.11 ± 0.09 0.9
GQ 4.21 ± 0.05 −3.41 ± 0.07 0.9
GM 3.77 ± 0.04 −2.86 ± 0.05 1.6

C. Deuteron electromagnetic form factors in the transition
region between nucleon-meson and quark-gluon pictures [48]

(labeled as “k”)

In this approach, the deuteron form factors are consistent
with the results from popular NN potentials at low energies
(Q2 � 1 GeV2), but, at the same time, they provide the right
asymptotic behavior following from the quark counting rules,
at high energies (Q2 � 1 GeV2). The explicit expressions of
the deuteron form factors are

GC = G2(Q2)

(2τ + 1)

[(
1 − 2

3
τ

)
A+ 8

3

√
2τB + 2

3
(2τ − 1)C

]
,

G(Q2) =
(

1 + Q2

4 δ2

)−2

,

(35)

GM = G2(Q2)

(2τ + 1)

[
2A + 2(2τ − 1)√

2τ
B − 2C

]
,

GQ = G2(Q2)

(2τ + 1)

[
−A +

√
2

τ
B − τ + 1

τ
C

]
,

where δ is some parameter of the order of the nucleon mass.
The functions A, B, and C have the following parametriza-
tions,

A =
n∑
i

ai

α2
i + Q2

, B = Q

n∑
i

bi

β2
i + Q2

,

(36)

C = Q2
n∑
i

ci

γ 2
i + Q2

,

where (ai, αi ), (bi, βi ), (ci, γi ) are the fitting parameters.
From the quark counting rules, it follows that the fall-off
behavior of these amplitudes at high Q2 is

A ∼ Q−2, B ∼ Q−3, C ∼ Q−4,

which, together with the requirement of a correct static
normalization, imposes the set of the constraints on
(ai ), (bi ), (ci ):

n∑
i

ai

α2
i

= 1,

n∑
i

bi = 0,

n∑
i

bi

β2
i

= 2 − μd

2
√

2M
,

n∑
i

ci = 0,

n∑
i

ciγ
2
i = 0,

n∑
i

ci

γ 2
i

= 1 − μd − M2Qd

4M2
.

(37)
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TABLE II. Parameters in Eq. (37) for n = 4, see also Eq. (42) in
Ref. [48].

i 1 2 3 4

ai fm−2 2.4818 −10.850 6.4416 Eq. (42) [48]
bi fm−1 −1.7654 6.7874 Eq. (42) [48] Eq. (42) [48]
ci −0.053830 Eq. (42) [48] Eq. (42) [48] Eq. (42) [48]

α2
1 = 1.8591 fm−2 μ(α) = 0.58327 GeV

β2
1 = 19.586 fm−2 μ(β ) = 0.1 GeV

γ 2
1 = 1.0203 fm−2 μ(γ ) = 0.17338 GeV

δ = 0.89852 GeV

In our calculations, we used the following sequence for each
group of these parameters:

α2
n = 2Mμ(α),

(38)

α2
i = α2

1 + α2
n − α2

1

n − 1
(i − 1), i = 1, . . . , n

(similarly, for βi and γi), where μ(α), μ(β ), and μ(γ ) have the
dimension of energy. The parameters are listed in Table II for
n = 4.

D. Jefferson t20 Collaboration (labeled as t20)

The three deuteron electromagnetic form factors have been
determined by fitting directly the all existing measured differ-
ential cross section and polarization observables, according to
the following expressions [49]:

Gi (Q
2) = Gi (0) Di (Q

2) Ii (Q
2), Di (Q

2) = 1 − Q2

Q2
i

,

Ii (Q
2) = 1

1 + Si (Q2)
, i = C, M, Q, (39)

TABLE III. Parameters corresponding to Eq. (39) in fm2 units.

k 1 2 3 4 5

aC 0.674 0.02246 0.009806 −0.0002709 0.000003793
aM 0.5804 0.08701 −0.003624 0.0003448 −0.000002818
aQ 0.8796 −0.5656 0.01933 −0.0006734 0.000009438

where

Si (Q
2) =

5∑
k=1

ak
i Q2k, Q2

C = 17.72 fm−2,

(40)
Q2

M = 54.32 fm−2, Q2
Q = 65.61 fm−2.

The parameters ak
i have dimensions of inverse Q2 powers

so that the quantities Si (Q2) are dimensionless. The values
of these parameters are shown in Table III with Q2 in units
of fm−2.

In our calculations, we restrict ourselves to values of Q2

below 0.015 GeV2. The most important contribution in this
region is given by the deuteron charge form factor GC (Q2).
Its behavior is shown in Fig. 6(a) for the t20 parametrization.
Figure 6(b) shows a comparison among the parametrization in
terms of the quantities �Gi

C defined as

�Gi
C = 100

[
1 − Gi

C (Q2)

G20
C (Q2)

]
, i = m, k, rad. (41)

To illustrate the dependence of the recoil-electron distri-
bution on the deuteron beam energy, the Born cross section is
shown in Fig. 7 for the standard t20 parametrization at E = 20,
100, and 500 GeV. Here and below, for the beam energy
500 GeV, we limit the recoil-electron energy to 10 GeV,
because for the largest values the expansions for the form
factors are incorrect.

(a) (b)

FIG. 6. (a) Q2 dependence of the deuteron charge form factor for the t20 parametrization and (b) of the quantities �Gi
C,, i = m, k, rad, as

defined in the text.
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FIG. 7. Born differential cross section, defined by Eq. (13), cal-
culated with the t20 parametrization of the form factors, at different
beam energies.

The sensitivity (in percent) of this cross section to different
form factor parametrizations is shown in Fig. 8, in terms of
the quantities

Rk = 1 − d σ k

d σ t20
, Rm = 1 − d σm

d σ t20
, Rrad = 1 − d σ rad

d σ t20
,

(42)

where d σ i is the differential cross section (13), and i =
k, m, rad, t20 correspond to the above-mentioned deuteron
form factors. As one can see, the sensitivity has a very similar
behavior for the expanded and unexpanded cross sections and
increases when both the deuteron and recoil-electron energies
increase. However, the differential cross section decreases
very quickly when the recoil-electron energy increases (see
Fig. 7).

The hard-photon correction depends on the parameter �E
due to the contribution of the region indicated 1 in Fig. 5(a).
To illustrate this dependence, we show in Fig. 9 the quantity
(in which the contribution of the region 2 is removed)

�h = d σ (h)[�E = 0.05(E2 − ε2)] − d σ (h)[�E = ci (E2 − ε2)]

d σ (B )
, c1 = 0.005, c2 = 0.01, c3 = 0.02 (43)

as a function of the recoil-electron energy for the t20

parametrization. The effect is rather small: of the order of
1% (0.1%) for E = 500 (100) GeV. For deuteron energy

equal to 500 GeV [Figs. 9(d)–9(f)], this dependence exhibits
a monotonic increase with the recoil-electron energy, whereas
at the energy 100 GeV [Figs. 9(a)–9(c)], it has maximum and

(f)

(a) (b) (c)

(d) (e)

FIG. 8. Difference of the recoil-electron distributions, Eq. (42), in percent, normalized to d σ t20 , for various parametrizations of the form
factors, at deuteron energies 20 GeV [(a), (d)], 100 GeV [(b), (e)], and 500 GeV [(c), (f)]. The upper set (a), (b), and (c) corresponds to the
unexpanded form factors and the lower one (d), (e), and (f) corresponds to the expanded form factors, keeping the terms up to q4.
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(e)

(b)(a)

(d)

(c)

(f)

FIG. 9. The quantity �h (in percent) calculated according to Eq. (43), is shown as a function of the recoil-electron energy, at the deuteron
energy of 100 GeV [(a), (b), (c)] and 500 GeV [(d), (e), (f)]. The left panels, (a) and (d), correspond to c = 0.005, the middle ones, (b) and (e),
correspond to c = 0.01, and the right ones, (c) and (f), correspond to c = 0.02.

then decreases down to zero. At this zero point, the value of
the recoil-electron energy is the root of the equation ci (E2 −
ε2) = ωmax(ε2), provided that the line �E in Fig. 4 lies above
the curve ωmax(ε2). For the deuteron energy 100 GeV and
�E = 0.05(E − ε2), this last condition is satisfied for all
possible values of the recoil-electron energy, whereas for the
energy 500 GeV it is not fulfilled.

The bell form of the curves in Figs. 9(a)–9(c) is the inter-
play of two factors that give opposite effects when the recoil-
electron energy grows. The first factor is �E independent and
increases the ratio dσ (h)/dσ (B ) from its zero value at low ε2.
However, the energy phase space of the photon becomes �E
independent at large values of ε2 (see Fig. 4). As, for every
value of ε2, the first term in the numerator of the Eq. (43) is
greater than or equal to the second one, the quantity �h must
have a maximum.

Figure 10 shows the quantities δ(h) and δ̃, defined as

δ(h) = d σ (h)

d σ (B )
− 2 α

π
ln

ωs

ω̄

[
ε2

|�k2|
ln

(
ε2 + |�k2|

m

)
− 1

]
,

δ̃ = δ̄ + δ(vac) + 2 α

π
ln

ωs

m

[
ε2

|�k2|
ln

(
ε2 + |�k2|

m

)
− 1

]
,

(44)

and called, respectively, modified hard and soft and virtual
corrections, as well as their sum δtot = δ(h) + δ̃. This is the
total first-order leptonic radiative correction, i.e. (the last term

in δ̃ is δ0(ω̄ → ωs )),

δtot = δ(h) + δ̃ = δ0 + δ̄ + δ(vac) + dσ (h)

dσ (B )
. (45)

Note that both modified corrections in Eq. (44) are indepen-
dent on the auxiliary parameter ω̄ but depend on the physical
parameter ωs and therefore have a physical meaning.

To calculate δtot, we can write the quantity [1 + δ0(ω̄ →
ωs )] using the expressions (21) and (22) or its exponential
form defined by (23) (with the substitution ω̄ → ωs). But
numerical estimations show that they differ very little, by a
few tenths of the percent, and therefore further we do not use
the exponential form.

At small values of the squared momentum transfer (small
recoil electron energy ε2), the total radiative correction is
positive and decreases with increase of ε2, reaching zero
and becoming negative. The absolute value of the radiative
correction does not exceed 6%, although a strong compen-
sation of the large (up to 30%) positive modified hard and
negative modified soft and virtual corrections takes place.
Such behavior of the pure QED correction is similar to one
derived in Ref. [40].

If the deuteron form factors are determined independently
with high accuracy from other experiments, the measurement
of the cross section d σ/d ε2 can be used, in principle, to
measure the hadronic part of the radiative correction in the
considered conditions. This possibility is similar to the one de-
scribed in Ref. [50], where the authors proposed to determine
the hadronic (model-dependent) contribution to the running
electromagnetic coupling α(q2) by a precise measurement
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(d)

(b)

(f)

(c)(a)

(e)

FIG. 10. Top: modified soft and virtual (̃δ) (dashed line) and hard (δ(h) ) (solid line) corrections in percent as defined in Eq. (44) at incident
deuteron energies E = 20 GeV (a), 100 GeV (b), and 500 GeV (c). Bottom: total radiative correction (in percent) calculated for the standard
t20 fit for �E = 0.02 (E − ε2), and E = 20 GeV (d), 100 GeV (e), and 500 GeV (f).

of the μ− e− differential cross section, assuming that QED
model-independent radiative corrections are under control.

In Fig. 11, we illustrate the sensitivity of the total radiative
correction to the parametrization of the form factors in terms
of the ratios

P i = 1 + δi
tot

1 + δtot
− 1, i = k, m, rad, (46)

where δtot is the total correction for the standard t20 fit. We
see that, in the considered conditions, the deviation of these
quantities from unity is very small. We conclude that the
influence of the parametrizations of the form factors on the
radiative corrections is much smaller than on the Born cross
section.

V. CONCLUSION

In this paper, we studied deuteron elastic scattering on elec-
tron at rest. We derived the differential cross section including
QED radiative corrections to the leptonic part of the inter-
action, in the case of a coincidence experimental setup. The
recoil-electron energy distribution in elastic deuteron-electron
scattering is illustrated. The detection of the recoil electron, in
the energy range from a few MeV up to 10 GeV, allows us
to collect small-Q2 data, at 10−5 GeV2 � Q2 � 10−2 GeV2.
Such data, combined with the existing and future experiments
with electron beams, will bring new information on the small-
Q2 behavior of the deuteron electromagnetic form factors.
This allows us to further constrain the extrapolation to the
static point for the extraction of the deuteron charge radius.

(a) (b) (c)

FIG. 11. Sensitivity of the total radiative corrections in percent to the choice of the form factor parametrization, Eq. (46), for different
deuteron energies: E = 20 GeV (a), 100 GeV (b), and 500 GeV (c).
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The measurements in the region of small-Q2 values require
high-energy deuteron beams, of the order of a few hundreds
GeV. The sensitivity of the differential cross section to the
form factors parametrizations, labeled as k, m, and t20, is
small (does not exceed 2%), but the rad parametrization gives
a value of the cross section about 10% smaller as com-
pared with the t20 parametrization at Q2 ≈ 10−2 GeV2 (see
Fig. 8).

The nontrivial part of the radiative corrections is the hard-
photon bremsstrahlung contribution which takes place due to
the uncertainty in the measurement of the deuteron (electron)
energy, �E2 (�ε2). In our calculations, we follow Ref. [40]
for the choice of the coordinate system and the angular
integration method. To obtain the recoil-electron energy dis-
tribution, the integration in Eq. (27) over variables ϕ and y
is performed analytically and the remaining ω integration is
done numerically.

We assumed that uncertainties in the final particle energies
are proportional to their energies and we showed that the
effect due to the nonzero quantity �ε2 is negligible.

The total correction |δtot| does not exceed 6% at E =
20 GeV and 100 GeV and 3.5% at E = 500 GeV for the
value �E2 = 0.02 (E − ε2) and the t20 parametrization used
in these calculations. The total correction shows a weak

dependence on the form factor parametrization in the con-
sidered region (see. Fig. 11). At the lower values of Q2,
which correspond to the lower values of the recoil electron
energy ε2, the total correction δtot is positive and changes sign
when Q2 increases. Such behavior of δtot is similar to that
found in Ref. [40] and confirmed in Ref. [51] for the case of
pion-electron scattering.

In our paper, we do not consider the radiative correc-
tions involving deuteron as well as the background due to
the Coulomb and strong interactions between deuteron and
atomic nuclei. These questions require additional detailed
investigations due to the particular kinematical conditions and
will be object of a different work.
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