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G-parity-violating amplitudes in the J/ψ → π+π− decay
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The decays of the negative G-parity meson G-parity into even numbers of pions violate G-parity. Such decays,
as well as other G-parity decays into hadrons, can be parametrized in terms of three main intermediate virtual
states: one photon, one photon plus two gluons, and three gluons. Since the electromagnetic interaction does
not conserve G-parity, G-parity decays into positive G-parity final states should be dominantly electromagnetic.
Nevertheless, the one-photon contribution to J/ψ → π+π−, that can be estimated by exploiting the cross section
σ (e+e− → π+π−), differs from the observed decay probability for more than 4.5 standard deviations. We
present a computation of the ggγ amplitude based on a phenomenological description of the decay mechanism
in terms of dominant intermediate states ηγ , η′γ , and f1(1285)γ . The obtained value is of the order of the
electromagnetic contribution.
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I. INTRODUCTION

The J/ψ meson, having negative C-parity, CJ/ψ = −1,
and isospin IJ/ψ = 0, has negative G-parity GJ/ψ , be-
ing GJ/ψ = CJ/ψ (−1)IJ/ψ = −1. G-parity is a multiplicative
quantum number so that a set of n pions has Gnπ = (−1)n.
Therefore, the decays J/ψ → 2nπ , with n = 1, 2, . . ., do not
conserve G-parity.

Strong interaction preserves G-parity as a consequence of
its charge conjugation and isospin conservation. Electromag-
netic and weak interactions can violate G-parity, being not
invariant under G transformations.

In general the decay J/ψ → nπ is parametrized in terms
of three main intermediate states [1]: three gluons, ggg
(purely strong); two gluons plus one photon, ggγ (mixed);
and one photon, γ (purely electromagnetic). The correspond-
ing Feynman diagrams are shown in Fig. 1.

The contribution of the intermediate state with three pho-
tons, which has the same structure as the three-gluon one, is
neglected being of order α2 with respect to that with a single
photon.

The total decay amplitude can be written as the sum of the
three contributions, Aggg , Aggγ , and Aγ , corresponding to the
three mechanisms represented in Fig. 1, that, as a consequence
of strengthen of the underlying interactions, follow the hierar-
chy |Aggg| � |Aggγ | � |Aγ |.
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In light of that, the branching ratio (BR) of J/ψ decay into
a hadronic final state, h, is decomposed as

B(h) = Bggg (h) + Bggγ (h) + Bγ (h) + I (h), (1)

where BX(h) ∝ |AX(h)|2, with X = ggg, ggγ, γ , while
I (h) accounts for the interference terms. In the case of purely
pionic final states, h = nπ , being G-parity preserved by the
strong interaction, one expects

B(nπ ) �
{Bγ (nπ ), n even
Bggg (nπ ), n odd.

In fact when a decay violates isospin the purely strong am-
plitude Aggg is suppressed by the small dimensionless factor
|mu − md |/

√
q2, where q2 is the typical square momentum

in the process, and mu and md are the masses of u and d
quarks. In these cases the decay proceeds through the purely
electromagnetic channel. On the contrary, the three-gluon
mechanism dominates in those decays that preserve G-parity.

The contribution Bγ (h), i.e., the BR corresponding to the
third Feynman diagram of Fig. 1, can be computed in terms
of the dressed e+e− → h and bare e+e− → μ+μ− cross
sections, evaluated at the J/ψ mass, as [2,3]

Bγ (h) = B(μ+μ−)
σ (e+e− → h)

σ 0(e+e− → μ+μ−)

∣∣∣∣
q2=M2

J/ψ

, (2)

where B(μ+μ−) is the BR of the decay J/ψ → μ+μ− and
σ 0 stands for the bare cross section, i.e., the cross section cor-
rected for the vacuum-polarization contributions. A detailed
derivation of the formula of Eq. (2) is reported in Appendix A.
In the following, if not differently specified, the adjective
“dressed” should be understood, so that by “cross section” we
mean “dressed cross section.”
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FIG. 1. The three intermediate states: ggg, ggγ , and γ .

The validity of the hypothesis of Bγ (h) dominance in the
J/ψ decays that violate G-parity can be verified for all the
hadronic final states h, for which data are also available on
the total cross section σ (e+e− → h) at the J/ψ mass.

Final states with even numbers of pions represent valu-
able examples, data for which are available on the cross
sections σ (e+e− → 2(π+π−)) [4], σ (e+e− → 2(π+π−π0)),
and σ (e+e− → 3(π+π−)) [5] around the J/ψ mass.

The corresponding BRs Bγ (h), extracted from those data
using Eq. (2), agree with the total BRs from the Particle Data
Group (PDG) [6], i.e.,

Bγ (h) � BPDG(h), h = 2(π+π−), 2(π+π−π0), 3(π+π−).

All these decays are examined and discussed in Ref. [3].
For the two-pion decay J/ψ → π+π−, using the value of
the cross section σ (e+e− → π+π−) at the J/ψ mass, ex-
trapolated from the BaBar data [7] with a fit based on the
Gounaris-Sakurai formula [8], data and fit are shown in Fig. 2.
The BR due to the one-photon exchange mechanism is

Bγ (π+π−) = (4.7 ± 1.7) × 10−5, (3)

to be compared with [6]

BPDG(π+π−) = (14.7 ± 1.4) × 10−5. (4)

(See, for instance, Refs. [9,10] and references therein for other
parametrizations of pion form factors the neighborhood of the
J/ψ resonance.) In the case of the π+π− final state the purely
electromagnetic BR, Eq. (3), differs from the PDG value,
Eq. (4), by 4.3 standard deviations. More in detail, the BR
of Eq. (3) was obtained by using the pion form factor at the
J/ψ mass: ∣∣Fπ

(
M2

J/ψ

)∣∣
BaBar = 0.057 ± 0.010.

This value has been extrapolated from the BaBar data, which
cover the interval 0.305 �

√
q2 � 2.950 GeV, with the fit

FIG. 2. BABAR data on the e+e− → π+π− cross section and
the fit (red line) from Ref. [7]. The vertical dashed line shows the
J/ψ mass.

function and the parameters of Ref. [7]. The error was
computed by propagating in quadrature the errors of the fit
parameters with the standard procedure.

The obtained value of Bγ (π+π−) unavoidably means that
there must be a further contribution. Since the purely strong
three-gluon amplitude, Aggg , is suppressed by G-parity con-
servation, the remaining amplitude that, contrary to what is
commonly expected, could play an important role is the one
related to the second diagram of Fig. 1, i.e., Aggγ . Moreover,
having two sizable amplitudes, there could also be a con-
structive interference term that would help in reconciling the
prediction and the measured value for the J/ψ → π+π− BR.

The amplitude to be considered is then

A(π+π−) = Aγ (π+π−) + Aggγ (π+π−),

so that, following Eq. (1), the prediction for the BR is

B(π+π−) = Bγ (π+π−) + Bggγ (π+π−) + I (π+π−). (5)

The calculation of the amplitude Aggγ (π+π−) in the frame-
work of QCD is quite difficult because the hadronization of
the two-gluon plus one-photon intermediate state into π+π−
occurs at the few-GeV energy regime where QCD is still not
perturbative.

In this paper we calculate the imaginary part of the am-
plitude Aggγ (π+π−) due to the dominant intermediate states
by means of a phenomenological procedure based on the
Cutkosky rule [11] and experimental rates of the involved
J/ψ decays. Using such an amplitude we obtain a lower limit
for Bggγ (π+π−) and show that, within the errors, it is of the
same order of Bγ (π+π−).

II. THE DECAY CHANNEL J/ψ → π+π−

As already pointed out, the total BR for the G-parity-
violating decay J/ψ → π+π− can be parametrized as given
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in Eq. (5), where, besides the dominant one-photon contribu-
tion Bγ (π+π−), also Bggγ (π+π−) is taken into account.

In terms of amplitudes we can write

|A|2 = |Aγ |2 + |Aggγ |2 + 2|Aγ ||Aggγ | cos(ϕ), (6)

where

ϕ = arg(Aggγ ) − arg(Aγ ) = φggγ − φγ (7)

is the relative phase between the two amplitudes, and φX is
the absolute phase of the amplitude AX. In Eq. (6) and in the
following the symbol (π+π−) is omitted, it being understood
that all amplitudes and BRs refer to the π+π− channel.

The BR is obtained as

B = 1

2MJ/ψ�J/ψ

∫
dρ2 |A|2 =

√
M2

J/ψ − 4M2
π

64π2M2
J/ψ�J/ψ

∫
d� |A|2

= Bggγ + Bγ +
cos(ϕ)

√
M2

J/ψ − 4M2
π

32π2M2
J/ψ�J/ψ

∫
d� |Aggγ ||Aγ |︸ ︷︷ ︸

interference term I

,

where dρ2 is the element of the two-body phase space, Mπ is
the charged pion mass, and MJ/ψ and �J/ψ are the mass and
width of J/ψ .

Moreover, to highlight the contribution due to the real part
and that to the imaginary part of Aggγ , which is computed in
the next section, the BR Bggγ can be decomposed as

Bggγ = BRe
ggγ + BIm

ggγ = 1

2MJ/ψ�J/ψ

×
(∫

dρ2 (Re(Aggγ ))2 +
∫

dρ2 (Im(Aggγ ))2

)
.

(8)

III. THE CONTRIBUTION Im(Aggγ )

To use the Cutkosky rule [11] to calculate the imaginary
part of the amplitude Aggγ , it needs to consider all possible
on-shell intermediate states that can contribute to the decay
chain J/ψ → (ggγ )∗ → π+π−. We consider the mechanism
where the two gluons hadronize into a set P of C = +1
mesons hj , so that the decay proceeds as

J/ψ →
∑
hj ∈P

(hjγ )∗ → π+π−.

(See Ref. [12] for a detailed analysis of radiative decays
J/ψ → γ + hadrons.) The elements hj of the set P are
only light unflavored mesons, which then couple strongly
(OZI1-allowed process) with the π+π− final state. Indeed,
only in these cases is the underlying mechanism, sketched
in Fig. 3, the one we want to evaluate. More in detail, such
a process consists in the sequence of two conversions: the
OZI-suppressed coupling of the J/ψ to hj , via two gluons,
and the OZI-allowed π+π− production mediated by hj and

1by S. Okubo, G. Zweig, and J. Iizuka.

J/ψ
hjg , g

γ

π+

π−

FIG. 3. Two-gluon plus one-photon mechanism of the decay
J/ψ → π+π− with light unflavored mesons hj in the intermediate
states. The light blue and the yellow areas indicate the domains of
the charm and light quarks, respectively.

the “spectator” photon. Intermediate states with charmonia
are excluded because they proceed through a different mecha-
nism. For instance, the case with hj = ηc, shown in Fig. 4, is
characterized by a first radiative conversion of the J/ψ into
ηc, followed by the OZI-suppressed coupling to the π+π−
final state. This means that we are evaluating the ggγ coupling
of the ηcγ to the π+π−, rather than that of the J/ψγ .
Another possible class of decay mechanisms, passing through
the “wanted” contribution, is the one sketched in Fig. 5. Apart
from the computational difficulty, this contribution is double
OZI suppressed so it is negligible with respect to that of Fig. 3.
Following the same argument, nonradiative, light-quark in-
termediate states, e.g., f0(980)ω, that subsequently scatters
into f0(980)γ , via ω → γ conversion, cannot be used because
they proceed dominantly through the three-gluon channel, as
sketched in Fig. 6. Using the Cutkosky rule [11] the imaginary
part of Aggγ is given in terms of a series on the intermediate
states hjγ , i.e.,

Im(Aggγ )

= 1

2

∑
j

∑∫
dρA∗(J/ψ → hjγ )A(π+π− → hjγ ), (9)

where the internal sum runs over the photon polarizations and
the integration is on the phase space

dρ = p0

4πMJ/ψ

d�

4π
, (10)

where pμ is the four-momentum of the photon.

A. Selection of intermediate mesons

The selection of all the possible intermediate channels,
i.e., of all possible mesons hj with C = +1, is experimen-
tally driven. Table I reports all the branching ratios listed in
Ref. [6]. While there are ten candidates on the J/ψ side,
only three sets of data are available on the π+π− side. As

J/ψ
hc g , g

γ

π+

π−

FIG. 4. Decay mechanism of the J/ψ into π+π− mediated by
strongly coupled charmonia hc. The color scheme is the same as in
Fig. 3.
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J/ψ
hcg , g g , g

γ

π+

π−

FIG. 5. OZI double-suppressed J/ψ decay mechanism with
charmonia hc in the intermediate states. The color scheme is the same
as in Fig. 3.

a first estimate of the contribution that each channel can give,
one could consider the product of the BRs, i.e., B(J/ψ →
hjγ )B(π+π− → hjγ ). In Fig. 7 all mesons hj are mapped in
the B(J/ψ → hjγ )-B(π+π− → hjγ ) plane. Mesons bring-
ing higher contribution lie on the upper right corner and are
represented by solid black circles.

The most prominent contribution, well above the hyperbola
at 10−3 (see Fig. 7), is the one due to the η′ meson, which
couples strongly to both J/ψ and π+π−. The η meson con-
tribution lies well below, around the hyperbola at 5 × 10−5,
having B(J/ψ → ηγ )B(π+π− → ηγ ) � 4.66 × 10−5.

A further contribution that could be considered is the
one due to the axial vector meson f1(1285), for which the
combined strength is compatible with that of the η meson;
indeed, B(J/ψ → f1)B(π+π− → f1γ ) � 3.23 × 10−5.

In light of that, the imaginary part of the amplitude Aggγ

has three main contributions, i.e.,

Im(Aggγ ) � 1

2

∑∫
dρ A∗(J/ψ → ηγ )A(π+π− → ηγ )

+1

2

∑∫
dρ A∗(J/ψ → η′γ )A(π+π− → η′γ )

+1

2

∑∫
dρ A∗(J/ψ → f1γ )A(π+π− → f1γ )

� Im(Aη′γ ) + Im(Aηγ ) + Im(Af1γ ), (11)

where f1 here and in the following stands for the f1(1285)
meson and the approximate identity is due to the truncation of
the series.

B. A phenomenological calculation based on the Cutkosky rule

The first amplitude on the right-hand side of Eq. (9) is that
of the decay

J/ψ (P ) → hj (k) + γ (p),

J/ψ

g

g

g

f0

γ

ω

π+

π−

FIG. 6. Decay mechanism for J/ψ → f0(980)ω →
f0(980)γ → π+π−. The light blue and the yellow areas highlight
the domains of the charm and light quarks, respectively. The double
vertical lines indicate the cut that separates the full decay into the
two subprocesses used to apply the Cutkosky rule.

TABLE I. Branching ratios of a selection of intermediate
decays [6].

Meson M J PC 103 B(J/ψ → hjγ ) 103 B(hj → π+π−γ )

η 0−+ 1.104 ± 0.034 42.2 ± 0.8
η′(958) 0++ 5.13 ± 0.17 289 ± 50
f2(1270) 2++ 1.64 ± 0.12 no data
f1(1285) 1++ 0.61 ± 0.08 (ρ0) 53 ± 12
f0(1500) 0++ 0.109 ± 0.024 no data
f ′

2(1525) 2++ 0.57+0.08
−0.05 no data

f0(1710) 0++ 0.38 ± 0.05 no data
f4(2050) 4++ 2.7 ± 0.7 no data
f0(2100) 0++ 0.62 ± 0.10 no data
η(2225) 0−+ 0.314+0.050

−0.019 no data

where, in parentheses are reported the four-momenta, and hj

can be either a pseudoscalar, η and η′, or the axial vector
meson, f1. By invoking gauge and Lorentz invariance, the
amplitudes of the radiative decays of a vector meson into a
pseudoscalar, η, and into an axial vector meson, f1, can be
written as [13,14]

A(J/ψ → ηγ ) = gJ/ψ
ηγ pτPλεδ (J/ψ )εσ (γ )ετλδσ ,

(12)
A(J/ψ → f1γ ) = g

J/ψ
f1γ

pτ ελ(f1)εδ (J/ψ )εσ (γ )ετλδσ ,

where g
J/ψ
ηγ and g

J/ψ
f1γ

are the coupling constants, εδ (J/ψ ),
εσ (γ ), and ελ(f1) are the J/ψ , photon, and axial vector
polarization vectors, and ετλδσ is the Levi-Civita symbol. The

FIG. 7. Combined BRs of most probable intermediate states. The
black points represent the three mesons for which data on both
branching fractions are available. Points for all the other mesons
are aligned along the line B(π+π− → hjγ ) = 10−3 in order to
make them visible in logarithmic scale. Oblique lines are hyperbola,
i.e., geometric loci of all points having the product B(J/ψ →
hjγ )B(π+π− → hjγ ) constantly equal to the value reported on the
right-hand side.
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π+

π−

ρ0

γ

η, f1

FIG. 8. Feynman diagram for π+π− → ηγ and π+π− → f1γ

mediated by the ρ0 meson.

second amplitude on the right-hand side of Eq. (9) concerns
the π+π− annihilation process

π+(k1) + π−(k2) → hj (k) + γ (p). (13)

The amplitude for this process can be computed in terms of
effective meson fields, as described by the Feynman diagram
of Fig. 8. Here the coupling between the π+π− initial state
and the hjγ final state is assumed to be mediated by the ρ0

vector meson. Such an assumption is supported by the strong
affinity of the two-pion system with quantum numbers JPC =
1−− and the ρ0, experimentally confirmed by the BR B(ρ0 →
π+π−) = 1 [6]. It follows that the amplitudes read [13,14]

A(ππ → ηγ ) = gππ
ηγ

dαpβεμ(γ )kνε
αβμν

M2
ρ − q2 − iMρ�ρ

,

A(ππ → f1γ ) = gππ
f1γ

dαpβεμ(γ )εν (f1)εαβμν

M2
ρ − q2 − iMρ�ρ

, (14)

where gπ+π−
η(f1 )γ is the π+π−-η(f1)γ coupling constant, d =

k1 − k2, while q = k1 + k2, Mρ , and �ρ are the four-
momentum, the mass, and the width of the ρ0 meson. In the
following the imaginary term in the denominator, iMρ�ρ , is
omitted, because its contribution to the resulting BR is of
the order of 0.01% and then negligible with respect to the
experimental uncertainty, ∼6% [see Eq. (20)]. Moreover, the
negligibility of this term allows one to recover the reality of
Im(Aggγ ) by also validating the truncation of the Cutkosky
series.

Using the amplitudes of Eqs. (12) and (14), we compute
the polarization sum of the Cutkosky formula of Eq. (9),

Z (hj ) ≡
∑
pol

A(π+π− → hj )A∗(J/ψ → hj ),

in the J/ψ and π+π− center of mass frame, i.e., with the
four-momenta

P = q = (MJ/ψ, 0, 0, 0),

p = (p0, �p) = p0(1, sin(θ ), 0, cos(θ )),

k = (k0,− �p) = (k0, p0 sin(θ ), 0, p0 cos(θ )),

k1,2 = (MJ/ψ/2, 0, 0,±ω),

where θ is the scattering angle of the photon and ω is the
modulus of the pion three-momenta.

The results for Z (η) and Z (f1) are

Z (η) = gππ
ηγ gJ/ψ

ηγ

M2
J/ψ − M2

η

M2
J/ψ − M2

ρ

×
[
ω MJ/ψ cos(θ ) pμ − M2

J/ψ − M2
η

4
dμ

]
εμ(J/ψ ),

Z (f1) = gππ
f1γ

g
J/ψ
f1γ

M2
J/ψ − M2

f1

M2
J/ψ − M2

ρ

[
ω cos(θ )

MJ/ψ

(
M2

J/ψ

M2
f1

− 2

)
pμ

− 1

4

(
M2

J/ψ

M2
f1

− 1

)
dμ

]
εμ(J/ψ ),

which, using Eqs. (10) and (11), give the imaginary parts

Im(Aηγ ) = 1

2

∫
dρ Z (η) = p0

4πMJ/ψ

∫
d�

4π
Z (η)

=
√

M2
J/ψ

4
− M2

π

gππ
ηγ g

J/ψ
ηγ M4

J/ψε3(J/ψ )

48π
(
M2

J/ψ − M2
ρ

)
×
(

1 − M2
η

M2
J/ψ

)3

,

Im(Af1γ ) = 1

2

∫
dρ Z (f1) = p0

4πMJ/ψ

∫
d�

4π
Z (f1)

=
√

M2
J/ψ

4
− M2

π

gππ
f1γ

g
J/ψ
f1γ

M4
J/ψε3(J/ψ )

48πM2
f1

(
M2

J/ψ − M2
ρ

)
×
(

1 − M2
f1

M2
J/ψ

)3(
1 + M2

f1

M2
J/ψ

)
, (15)

where ε3(J/ψ ) = ε
(σ )
3 (J/ψ ) is the numerical third compo-

nent (μ = 3) of the generic σ th polarization four-vector of
the J/ψ meson. The imaginary parts of Eq. (15) and that due
to the η′γ intermediate state, which has the same structure of
Im(Aηγ ), have to be summed up to obtain the complete imag-
inary of Aggγ [see Eq. (11)]. The corresponding contribution
to the BR, BIm

ggγ , as given in Eq. (8), is

BIm
ggγ =

√
M2

J/ψ − 4M2
π

16πM2
J/ψ�J/ψ

|Im(Aggγ )|2

=
(
M2

J/ψ − 4M2
π

)3/2

4(48π )3M6
J/ψ�J/ψ

∣∣∑
h=η,η′,f1

gππ
hγ g

J/ψ
hγ Kh

∣∣2(
M2

J/ψ − M2
ρ

)2 ,

where the average over the polarization states of the J/ψ
meson was performed and Kh is the kinematical quantity

Kh =
⎧⎨
⎩
(
M2

J/ψ − M2
h

)3
, h = η, η′(

M2
J/ψ−M2

h

)3

M2
h

(
1 + M2

h

M2
J/ψ

)
, h = f1.

(16)

The quantity of Eq. (16) represents a lower limit for Bggγ ,
because the contribution due to the real part of the amplitude,
BRe

ggγ , as shown in Eq. (8), is positive.
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TABLE II. Decay widths [6] of the processes that have been used
in our computation.

Decay processes Decay widths � (GeV)

J/ψ → ηγ (1.026 ± 0.044) × 10−7

J/ψ → η′γ (4.78 ± 0.14) × 10−7

J/ψ → f1γ (5.67 ± 0.76) × 10−8

η → π+π−γ (5.53 ± 0.32) × 10−8

η′ → π+π−γ (5.76 ± 0.10) × 10−5

f1 → π+π−γ (1.20 ± 0.28) × 10−4

To obtain the numerical value of BIm
ggγ , apart from the J/ψ

width and the masses of all mesons involved that are well
known, the values of the six coupling constants gππ

hγ and g
J/ψ
hγ

(h = η, η′, f1) have to be estimated experimentally.

C. The g J/ψ
ηγ , g J/ψ

η′γ , and g J/ψ

f1γ coupling constants

The experimental value of the modulus of the coupling
constant g

J/ψ
hγ , with h = η, η′, f1, can be extracted from the

rate of the corresponding radiative decay J/ψ → hγ . Using
the amplitudes of Eq. (12), the radiative decay width is

�(J/ψ → hγ ) = Kh

96πM3
J/ψ

∣∣gJ/ψ
hγ

∣∣2,
where Kh is the kinematical quantity defined in Eq. (16). The
modulus of the coupling constant can be extracted as

∣∣gJ/ψ
hγ

∣∣ =
√

96πM3
J/ψ�(J/ψ → hγ )

Kh

.

Finally, by using the experimental values of radiative decay
widths �(J/ψ → ηγ ), �(J/ψ → η′γ ), and �(J/ψ → f1γ )
[6], which are also reported in the first two rows of Table II,
the coupling constants are

∣∣gJ/ψ
hγ

∣∣ =
⎧⎨
⎩

(1.070 ± 0.023) × 10−3 GeV−1, h = η

(2.563 ± 0.055) × 10−3 GeV−1, h = η′

(1.191 ± 0.080) × 10−3, h = f1.

(17)

Here and in the following we consider an error with two
significant figures in light of further manipulations. It is
interesting to notice that while the coupling constant of the
axial vector is adimensional, those of the pseudoscalar mesons
have the dimension of inverse energy. This is a consequence
of the structure of the corresponding amplitudes, given in
Eq. (12). Indeed, they differ only by the interchange of the
J/ψ four-momentum Pλ with the adimensional polarization
vector of f1.

D. The gππ
ηγ , gππ

η′γ , and gππ
f1γ coupling constants

The coupling constant gππ
hγ , with h = η, η′, and f1, can-

not be directly measured, because there are no data on the
cross section of the annihilation process π+π− → hγ , whose
pseudoscalar and axial vector amplitudes, defined in Eq. (14),
have been parametrized in terms of such coupling constants.
Nevertheless, as a consequence of the crossing symmetry, the

same coupling constants must appear in the amplitudes of the
decay:

h(k) → π+(k1) + π−(k2) + γ (p̃), h = η, η′, f1.

This decay is obtained by moving the photon from the final
to the initial state of the original reaction of Eq. (13), with
the Feynman diagram of Fig. 8, and then by making a time-
reversal transformation.

Therefore, by using the amplitudes of Eq. (14), the decay
width is

�(h → π+π−γ )

=
∫

|A(h → π+π−γ )|2 dρ3

= 1

(2π )3

∣∣gππ
hγ

∣∣2
128M3

h

∫ q2
max

q2
min

dq2
∫ q2

1 max(q2 )

q2
1 min (q2 )

dq2
1 Ih

(
q2, q2

1

)
,

(18)

where dρ3 is the three-body phase space, and the integration
variables and corresponding limits are q2 ≡ (k − p̃)2 = (k1 +
k2)2, q2

1 ≡ (k1 + p̃)2 = (k − k2)2,

q2
min = 4M2

π , q2
max = M2

h,

q2
1 min,max(q2) = M4

h

4q2
−
(√

q2

4
− M2

π ± M2
h − q2

2
√

q2

)2

,

with h = η, η′, f1. The functions Ih(q2, q2
1 ) have two differ-

ent forms, in the case of pseudoscalar mesons,

Ih

(
q2, q2

1

) =
(
q2 − 4M2

π

)(
q2 − M2

h

)2(
q2 − M2

ρ

)2 + �2
ρM

2
ρ

−q2
(
q2 + 2q2

1 − 2M2
π − M2

h

)2(
q2 − M2

ρ

)2 + �2
ρM

2
ρ

, h = η, η′,

while for the axial vector meson it reads

If1 (q2, q2
1 ) = 1

3M2
f1

[(
q2 − 4M2

π

)(
q2 − M2

f1

)2(
q2 − M2

ρ

)2 + �2
ρM

2
ρ

−
(
q2 − 2M2

f1

)(
q2 + 2q2

1 − 2M2
π − M2

f1

)2(
q2 − M2

ρ

)2 + �2
ρM

2
ρ

]
.

The phase-space integrals are

Ĩh =
∫ q2

max

q2
min

dq2
∫ q2

1 max(q2 )

q2
1 min (q2 )

dq2
1 Ih

(
q2, q2

1

)

=
⎧⎨
⎩

(5.840 ± 0.011) × 10−5 GeV6, h = η

(2.719 ± 0.019) × 10−1 GeV6, h = η′

(6.403 ± 0.052) GeV4, h = f1,

and also in this case the contribution due to the axial vector
meson has a different dimension, E4 instead of E6, as a
consequence of the different structure of the amplitude [see
Eq. (14)]. Finally, the corresponding coupling constants can

045210-6



G-PARITY-VIOLATING AMPLITUDES IN THE … PHYSICAL REVIEW C 98, 045210 (2018)

be extracted by means of

∣∣gππ
hγ

∣∣ = (2πMh)3/2

√
128 × �(h → π+π−γ )

Ĩh

=
⎧⎨
⎩

(2.223 ± 0.047) GeV−1, h = η

(2.431 ± 0.060) GeV−1, h = η′
3.55 ± 0.41, h = f1.

(19)

E. Calculation of BIm
ggγ (π+π−)

To compute BIm
ggγ we use the expression of Eq. (16)

which contains the sum of the three amplitudes due to the
intermediate mesons η, η′, and f1. In principle the coupling
constants and hence the amplitudes are complex; then they
can interfere. The relative phase of the amplitudes of the
two pseudoscalar contributions, being due to the η meson
and to its first excitation η′, is assumed to be zero; i.e., they
add up with constructive interference. However, the relative
phase between the axial vector amplitude and those of the
pseudoscalar mesons cannot be inferred by phenomenological
arguments.

The single contributions can be obtained from Eq. (16) and
are

BIm
ggγ (η) = (1.176 ± 0.080) × 10−6,

BIm
ggγ (η′) = (5.34 ± 0.38) × 10−6,

BIm
ggγ (f1) = (0.74 ± 0.20) × 10−6.

They follow a hierarchy that reproduces the distribution based
on BRs shown in Fig. 7. The total pseudoscalar contribution,
assuming constructive interference, is

BIm
ggγ (η + η′) = (√BIm

ggγ (η) +
√
BIm

ggγ (η′)
)2

= (1.152 ± 0.066) × 10−5. (20)

Concerning the f1 contribution, the extreme cases of destruc-
tive and constructive interference give

BIm
ggγ (η + η′ − f1) = (0.643 ± 0.074) × 10−5,

BIm
ggγ (η + η′ + f1) = (1.81 ± 0.12) × 10−5. (21)

The fact that these values, which represent a lower limit
for Bggγ , lie between the 13% and the 37% of Bγ (π+π−) =
(4.7 ± 1.7) × 10−5 [see Eq. (3)] leaves open the possibility
that the total Bggγ contribution would be of the same order
of Bγ .

Ultimately, using in Eq. (5) the Bggγ decomposition of
Eq. (8), the value of Eq. (20) for BIm

ggγ , as an average of the
two possibilities of Eq. (21), and the experimental datum for
Bγ , as given in Eq. (3), we get

B(π+π−) = Bγ (π+π−) + Bggγ (π+π−) + I (π+π−)

= (5.9 ± 1.7) × 10−5 +BRe
ggγ (π+π−) + I (π+π−),

(22)

to be compared with the PDG datum [6], given in Eq. (4), i.e.,

BPDG(π+π−) = (14.7 ± 1.4) × 10−5.

F. The real part

The procedure outlined in Sec. III, based on the Cutkosky
rule given in Eq. (11) and on a suitable selection of the
dominant intermediate states, allows one to compute only
the imaginary part of the amplitude Aggγ . By defining the
q2-dependent form of the imaginary part of this ampli-
tude, Im[Aggγ (q2)], so that the obtained value Im(Aggγ ) ≡
Im[Aggγ (M2

J/ψ )], and assuming analyticity, one can exploit
dispersion relations (DRs) to compute the real part starting
from the imaginary part. However, since the definition of
Im[Aggγ (q2)] is model dependent, the value of Re(Aggγ ) ≡
Re[Aggγ (M2

J/ψ )], computed by means of DRs, will be af-
fected by a large systematic error.

A possible calculation of Re(Aggγ ) due to the pseudoscalar
contribution is reported in Appendix B.

IV. CONCLUSIONS

The G-parity-violating J/ψ decay into π+π− represents a
useful testbed for what we called the Bγ -dominance hypoth-
esis, which is summarized by the BR formula B(π+π−) �
Bγ (π+π−), with [see Eq. (2)]

Bγ (π+π−) = B(μ+μ−)
σ (e+e− → π+π−)

σ 0(e+e− → μ+μ−)

∣∣∣∣
q2=M2

J/ψ

.

(23)

This follows from the assumption that the main contribution
to the decay amplitude is due to the one-photon exchange
mechanism, the corresponding Feynman diagram is shown in
the lower panel of Fig. 1. The other amplitudes contain gluons
and hence are suppressed by G-parity conservation.

The Bγ dominance is verified for other G-parity-violating
J/ψ decays, as those into four and six pions [3]. Indeed the
BRs for these decays, computed by means of the formula of
Eq. (2) using only cross section data, are in good agreement
with the experimental rates [3].

However, for the simplest even-multipion final state, the
π+π− one, a discrepancy of 4.5 standard deviations is ob-
tained between the PDG BR, given in Eq. (4), and the
Bγ (π+π−) of Eq. (3).

We considered the possibility that in this particular case the
amplitude Aggγ (π+π−), due to the presence of the photon,
would not suffer the G-parity suppression, being compati-
ble with Aγ (π+π−), as expected in the case of G-parity-
conserving decays.

We defined a phenomenological procedure, based on the
Cutkosky rule, to compute the imaginary part of the amplitude
Aggγ . By considering the only ηγ , η′γ , and f1γ interme-
diate states that are phenomenologically the most probable
ones (see Fig. 7), the contribution to the BR due to the
Im(Aggγ (π+π−)) can vary between the values of Eq. (21).
They are on average 20% of

Bγ (π+π−) = (4.7 ± 1.7) × 10−5,

so that they could generate an interference effect of the same
order of Bγ (π+π−), i.e.,

2
√
Bγ (π+π−)BIm

ggγ (η + η′) = (4.6 ± 0.8) × 10−5.
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By considering also the f1 contribution in the two extreme
cases of Eq. (21), the interference terms are

2
√
Bγ (π+π−)BIm

ggγ (η + η′ − f1) = (3.5 ± 0.7) × 10−5,

2
√
Bγ (π+π−)BIm

ggγ (η + η′ + f1) = (5.8 ± 1.1) × 10−5.

These are large effects; indeed the BRs that can be obtained
by composing with constructive interference Bγ (π+π−) and
the only imaginary contribution BIm

ggγ (η + η′ ± f1) are

BIm
± =

⎧⎨
⎩
(√Bγ (π+π−) +

√
BIm

ggγ (η + η′ − f1)
)2(√Bγ (π+π−) +

√
BIm

ggγ (η + η′ + f1)
)2

=
{

(8.8 ± 2.3) × 10−5

(12.3 ± 2.8) × 10−5,

which are compatible with the PDG datum of Eq. (4),

BPDG(π+π−) = (14.7 ± 1.4) × 10−5,

even though the real contribution BRe
ggγ (η + η′ ± f1) has been

not included.
In Appendix B we proposed a procedure, based on DRs,

to compute the real part of the amplitude Aggγ in the case
of pseudoscalar intermediate mesons, i.e., by considering the
functional form of the first expression of Eq. (15). However,
the result of such a computation depends on the q2 functional
form of the couplings, which has been defined on the basis
of phenomenological arguments. Since this definition does
not rely on first principles, the obtained result has a large
systematic error that does not allow one to draw any solid
conclusion.

In summary, our main result is the definition of the proce-
dure to compute the imaginary part of the amplitude Aggγ .
It relies on the possibility of relating the J/ψ → h decay
rate, where h stands for a hadronic state, to the rates of
the “intermediate” radiative decays J/ψ → hjγ and hj →
hγ , where hj (h1, h2, . . .) are C = +1 light mesons. In
such a way, using as input the experimental BRs of the
intermediate processes, the procedure automatically provides
a phenomenological explanation for the validity of the Bγ -
dominance hypothesis. If, for a particular G-parity-violating
decay J/ψ → h, there exists a set {hj }nj=1 of C = +1 mesons
with sizable rates �(J/ψ → hjγ ) and �(hj → hγ ), then the
amplitude Aggγ (h) will be of the same order as Aγ (h); i.e.,
there will be a violation of the Bγ (h)-dominance rule.

In the studied case with h = π+π−, we considered three
mesons, h1 = η, h2 = η′, and h3 = f1, because the interme-
diate processes have large couplings, as indeed can be verified

J/ψ
Gψ γ∗ Fπ

π−

π+

FIG. 9. Feynman diagram of the one-photon decay J/ψ →
π+π−. The solid disk and the grey hexagon represent the J/ψ − γ ∗

coupling and the pion form factor.

J/ψ
Gψ γ∗

μ−

μ+

FIG. 10. Feynman diagram of the purely electromagnetic decay
J/ψ → μ+μ−. The solid disk represents the J/ψ − γ ∗ coupling.

by considering the products of the corresponding BRs [6] (see
Fig. 7 and Table I):

B(J/ψ → ηγ )B(η → π+π−γ ) � 5 × 10−5,

B(J/ψ → η′γ )B(η′ → π+π−γ ) � 1.5 × 10−3, (24)

B(J/ψ → f1γ )B(f1 → π+π−γ ) � 3 × 10−5.

On the contrary, in other cases, for instance, the one with
h = 2(π+π−), it appears quite evident that the contribution
BIm

ggγ (2(π+π−)) will be suppressed, having2

B(J/ψ → η′γ )B(η′ → 2(π+π−)γ ) < 5 × 10−5,
(25)

B(J/ψ → f1γ )B(f1 → 2(π+π−)γ ) � 10−5.

Even though there are no data on B(η → 2(π+π−)γ ), and
indeed the radiative decay η → 2(π+π−)γ is kinematically
forbidden, in the light of the two-pion results for the coupling
constants reported in Table II, we expect that |g4π

ηγ | < |g4π
η′γ |. It

follows that Aggγ (2(π+π−)) is suppressed with respect to the
corresponding two-pion amplitude Aggγ (π+π−).

In principle the proposed procedure could be used to
compute the amplitude Aggγ of all quarkonium decays in
which G-parity is violated. However, at higher masses, as
those of bottomonia, the contribution Bggγ becomes almost
negligible. Indeed Bggγ � Bγ ∝ σ (e+e− → π+π−), and the
cross section at the bottomonium masses is very tiny because,
as the mass M diverges, it vanishes like 1/M6.

APPENDIX A: THE ONE-PHOTON DECAY RATE

The formula reported in Eq. (2) gives exactly the one-
photon decay rate of the J/ψ into a hadronic final state h. It
has been used also elsewhere, e.g., in Eq. (1) of Ref. [2]. The
simple expression can be explicitly obtained by considering,
for instance, the π+π− hadronic final state. The one-photon
mediated decay J/ψ → π+π−, described by the Feynman
diagram of Fig. 9, has rate

�γ (π+π−) = α|Gψ |2
12M3

J/ψ

(
1 − 4M2

π

M2
J/ψ

)3/2∣∣Fπ

(
M2

J/ψ

)∣∣2, (A1)

where Gψ is the J/ψ − γ ∗ coupling and Fπ the pion form
factor, symbolically represented, in Fig. 9, by a solid disk and

2Since there are no data on these decay widths, we used the upper
limit B(η′ → 2(π+π−) neutrals)<1%, in the first case, and B(f1 →
2(π+π−)γ ) = B(f1 → ηπ+π−)B(η → π+π−γ ) [6], in the second
case.
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e−

e+

γ∗ Fπ

π−

π+

FIG. 11. Feynman diagram of the annihilation e+e− → π+π−,
in Born approximation. The grey hexagon represents the pion form
factor.

a grey hexagon, respectively. The same coupling Gψ describes
the decay J/ψ → μ+μ−, which is purely electromagnetic.
The Feynman diagram is shown in Fig. 10 and the rate,
neglecting the muon mass (mμ � MJ/ψ ), is

�(μ+μ−) = α|Gψ |2
3M3

J/ψ

.

It depends on the value of the pion form factor at the J/ψ
mass. Such a value, as well as all values of the pion form
factor, have to be extracted from the Born dressed cross
section of the annihilation process e+e− → π+π−, whose
Feynman diagram is shown in Fig. 11. The expression of the
annihilation cross section is

σπ+π− (q2) = πα2

3q2

(
1 − 4M2

π

q2

)3/2

|Fπ (q2)|2 (A2)

and it can be also written in terms of the e+e− → μ+μ− bare
cross section

σ 0
μ+μ− (q2) = 4πα2

3q2
,

as

σπ+π− (q2) = σ 0
μ+μ− (q2)

4

(
1 − 4M2

π

q2

)3/2

|Fπ (q2)|2, (A3)

where the electron mass has been neglected (me � mμ)
and, for economy of symbols, σ

(0)
f ≡ σ (0)(e+e− → f ), with

f = π+π−, μ+μ−. It is important to stress that the pion
form factor is extracted from the dressed cross section (e.g.,
Eq. (24) of Ref. [7]); hence, Eq. (A2) represents the e+e− →
π+π− cross section not corrected for the vacuum polarization
contributions, called, indeed, the dressed cross section.

Finally, we use the cross section of Eq. (A3) and the
rate of Eq. (A2) to substitute the pion form factor times the
velocity cubed and modulus squared of the coupling divided
by the J/ψ mass cubed, respectively, in the J/ψ decay rate
of Eq. (A1). The obtained expression reads

�γ (π+π−) = α|Gψ |2
12M3

J/ψ︸ ︷︷ ︸
�(μ+μ− )

4

(
1 − 4M2

π

M2
J/ψ

)3/2∣∣Fπ

(
M2

J/ψ

)∣∣2
︸ ︷︷ ︸

4σ
π+π− (M2

J/ψ
)

σ0
μ+μ− (M2

J/ψ
)

,

which, divided by the J/ψ total width, represents the formula
of Eq. (2) in the case h = π+π−, i.e.,

Bγ (π+π−) = B(μ+μ−)
σπ+π−

(
M2

J/ψ

)
σ 0

μ+μ−
(
M2

J/ψ

) .
APPENDIX B: A POSSIBLE STRATEGY TO CALCULATE

BRe
ggγ (π+π−) IN THE PSEUDOSCALAR CASE

The Cutkosky procedure, defined in Eq. (11) starting from
the general form of Eq. (9), allows one to compute only the
imaginary part of the amplitude Aggγ .

However, assuming analyticity for the amplitudes, DRs
could be exploited to compute the real part of Aggγ , using
as input its imaginary part as a function of q2, i.e., the squared
virtual mass of the J/ψ meson.

Dispersion relations represent an analytic continuation pro-
cedure which is based on an integral representation. In more
detail: Given a function f (z), analytic in the z complex plane
with the discontinuity cut (x0,∞) over the positive real axis
(x0 > 0) and having the properties

f (x) ∈ R ∀x ∈ (−∞, x0),

f (z) ∝
z→x0

(z − x0)β with Re(β ) > −1,

f (z) = o(1/ ln(z)) as: z → ∞, (B1)

∀x ∈ (x0,∞),

Re[f (x)] = 1

π
Pr
∫ ∞

x0

Im[f (x ′)]
x ′ − x

dx ′, (B2)

where the symbol Pr
∫

indicates the principal value integral,
while Re[f (x)] and Im[f (x)] are real and imaginary values
of the function on the upper edge of the cut.

Assuming that the amplitude Aggγ (q2), as a function of
q2, fulfills the conditions of Eq. (B1), and using as a lower
threshold of the cut the value q2 = 4M2

π , the real part can be
computed using Eq. (B2), i.e.,

Re
[Aggγ

(
M2

J/ψ

)] = 1

π
Pr
∫ ∞

4M2
π

Im[Aggγ (q2)]

q2 − M2
J/ψ

dq2. (B3)

The imaginary part of Aggγ can be written using the decom-
position of Eq. (11) and the terms defined for ηγ and η′γ
channels following the first expression of Eq. (15), with some
change to account for the required q2 dependence:

Im
(Aη+η′

ggγ

) =
ε

J/ψ
3

√
M2

J/ψ − 4M2
π

96πM2
J/ψ

×
∑

h=η,η′ gππ
hγ g

J/ψ
hγ

(
M2

J/ψ − M2
h

)3
M2

J/ψ − M2
ρ

. (B4)

The procedure to determine the q2-dependent form of
Im(Aη+η′

ggγ ) consists not only in making the substitution
M2

J/ψ → q2, but also in introducing q2-dependent couplings.
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J/ψ
η, ηg , g

γ

FIG. 12. Feynman diagram of the radiative decay J/ψ → η(′)γ .
The color scheme is the same as in Fig. 3.

Concerning gππ
ηγ and gππ

η′γ , the dependence on q2 is given
by the ρ0 propagator, so that the substitutions are

gππ
hγ → gππ

hγ

∣∣Dρ

(
M2

J/ψ

)∣∣
|Dρ (q2)| , h = η, η′, (B5)

where Dρ (q2) is the inverse Flatté propagator [15] of the ρ0,
defined as

Dρ (q2) = q2 − M2
ρ + iMρ�ρ

(
q2 − 4M2

π

M2
ρ − 4M2

π

)3/2

, (B6)

where the q2-dependent width has the structure of the π+π−
decay rate.

However, the q2 dependence for the couplings g
J/ψ
ηγ and

g
J/ψ
η′γ can be inferred by the QCD structure of the J/ψ radia-

tive decay. Indeed, since the main contribution to this decay
is due to the two-gluon intermediate states, whose Feynman
diagram is shown in Fig. 12, the coupling should scale as
(αs (k2)/k2)2, i.e., as the product of two gluon propagators,
being k the gluon four-momentum.

As a consequence, following the same procedure of
Eq. (B5), the couplings g

J/ψ
ηγ and g

J/ψ
η′γ have to be substi-

tuted as

g
J/ψ
hγ → g

J/ψ
hγ

(
M2

J/ψ

q2

)2

, h = η, η′. (B7)

Using the definitions of Eqs. (B5) and (B7), the q2-dependent
imaginary part of Aη+η′

ggγ reads

Im
[Aη+η′

ggγ (q2)
] = ε

J/ψ
3

√
q2 − 4M2

π

96π q2

M4
J/ψ

(q2)2

∣∣Dρ

(
M2

J/ψ

)∣∣
M2

J/ψ − M2
ρ

×
∑

h=η,η′ gππ
hγ g

J/ψ
hγ

(
q2 − M2

h

)3√(
q2 − M2

ρ

)2 + �2
ρM

2
ρ

( q2−4M2
π

M2
ρ−4M2

π

)3 .

(B8)

The real part is obtained using the DR of Eq. (B3).
To account for systematic effects related to the form of the

ρ0 propagator, besides that of Eq. (B6), also the propagator
with constant width is considered. Hence, in terms of the
inverse propagator, the two cases are

Dj
ρ (q2) = q2 − M2

ρ + iMρ

{
�ρ, j = 0

�ρ

( q2−4M2
π

M2
ρ−4M2

π

)3/2
, j = 1,

(B9)

with the corresponding real parts

Re
[Aj

ggγ

(
M2

J/ψ

)] = ε
J/ψ
3 M4

J/ψ

96π2

∣∣Dj
ρ

(
M2

J/ψ

)∣∣
M2

J/ψ − M2
ρ

∑
h=η,η′

gππ
hγ g

J/ψ
hγ

× Pr
∫ ∞

4M2
π

(
q2 − M2

h

)3√
q2 − 4M2

π dq2(
q2 − M2

J/ψ

)
(q2)3

∣∣Dj
ρ (q2)

∣∣ .

The ratios between real and imaginary part in the two cases
j = 0, 1 are

Re
[A0

ggγ

(
M2

J/ψ

)]
Im
[Aggγ

(
M2

J/ψ

)] = 1.910 ± 0.076,

(B10)
Re
[A1

ggγ

(
M2

J/ψ

)]
Im
[Aggγ

(
M2

J/ψ

)] = 2.096 ± 0.087.

The errors have been propagated by means of a Monte Carlo
procedure.3 Combining the results of Eq. (B10) we obtain

Re
[Aη+η′

ggγ

(
M2

J/ψ

)]
Im
[Aη+η′

ggγ

(
M2

J/ψ

)] = 2.00 ± 0.07stat ± 0.09sys. (B11)

The statistical error results from the propagation of the two er-
rors obtained by means of the Monte Carlo procedure applied
in the two cases j = 0 and j = 1, while the systematic error
is the half difference of the values given in Eq. (B10).

In light of this result and using Eq. (8) to sum up the
contributions and Eq. (16), where BIm

ggγ and, hence, BRe
ggγ

are proportional to the mean squared value of Im(Aggγ ) and
Re(Aggγ ), respectively, the total Bggγ (η + η′) BR due to the
pseudoscalar contributions is

Bη+η′
ggγ (π+π−) =

⎛
⎝1 +

(
Re
[Aη+η′

ggγ

(
M2

J/ψ

)])2
(
Im
[Aη+η′

ggγ

(
M2

J/ψ

)])2
⎞
⎠BIm

ggγ (η + η′)

= (5.78 ± 0.45stat ± 0.43sys) × 10−5, (B12)

where we used the value of Eq. (20) for BIm
ggγ (η + η′). Finally,

by considering the electromagnetic contribution of Eq. (3),
the total BR from Eq. (5), still considering only pseudoscalar
contributions, is

Bη+η′
(π+π−) = (11.4 ± 2.0stat ± 0.4sys) × 10−5

+Iη+η′
(π+π−).

The interference term can be written as

Iη+η′
(π+π−) = 2

√
Bγ (π+π−)Bη+η′

ggγ (π+π−) cos(ϕ),

3The quantity to be computed, V , in our case V = Re(Aggγ ),
depends on a set of n measured parameters {pj ± δpj }n

j=1, i.e., V =
V (p1, p2, . . . , pn). Starting from such a set, N sets, {p(k)

j ± δpj }n
j=1,

with k = 1, 2, . . . , N , are generated by Gaussian fluctuations, so that
we have the set {Vk = V (p(k)

1 , p
(k)
2 , . . . , p(k)

n )}N
k=1 of the correspond-

ing values for V . The final result is

V = V ± δV, V =∑N
k=1

Vk

N
, (δV )2 =∑N

k=1
(V −Vk )2

N−1 .
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where, as defined in Eq. (7), ϕ is the relative phase between
the amplitudes Aγ and Aη+η′

ggγ . Since the two BRs have sim-

ilar values, i.e., |Aγ | � |Aη+η′
ggγ |, the interference can play an

important role, indeed, having

2
√
Bγ (π+π−)Bη+η′

ggγ (π+π−) = (11.4 ± 2.0) × 10−5 (B13)

(statistical and systematic errors have been summed in quadra-
ture). In the case of constructive interference, ϕ = 0, it can

even double the effect due to the sum of the single contri-
butions, Bγ + Bη+η′

ggγ ; however, it can also cancel out such
contributions, in the case of destructive interference, ϕ = π .

From the knowledge of the real and imaginary parts of
Aη+η′

ggγ [their ratio is given in Eq. (B11)], we may compute the

absolute phase of Aη+η′
ggγ as

φggγ = arctan

(
Im
(Aη+η′

ggγ

)
Re
(Aη+η′

ggγ

)
)

= 0.46 ± 0.03 = 13◦ ± 1◦.
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