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It was recently proved that the invariance of observables with respect to angle-dependent phase rotations of
reaction amplitudes mixes multipoles, changing also their relative strength [A. Svarc ef al., Phys. Rev. C 97,

054611 (2018)]. Modern partial wave analyses (PWAs) in 1 photoproduction on protons in the center-of-mass
energy range 1.5 < W < 2.0 GeV, either energy-dependent (ED) or single-energy (SE) ones, do not take this
effect into consideration. It is commonly accepted that all PWAs give very similar results for the £04 multipole,
but notable differences in this and all other partial waves still remain. In this paper we demonstrate that once these

phase rotations are properly taken into account, all ED and SE partial wave analysis in  photoproduction become
almost identical for the dominant E0+ multipole, and the agreement among all other multipoles becomes
much better. We also show that measured observables are almost equally well reproduced in all PWAs, and the
remaining differences among multipoles can be attributed solely to the difference in predictions for unmeasured

observables. So, new measurements are needed.
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I. INTRODUCTION

In recent years, a wealth of new high-precision experi-
mental data dominantly on photo- and electroproduction has
been measured at various facilities including JLab, MAMI,
LEPS, SLAC, and GRAAL for a number of observables with
the goal of better understanding the spectrum of N* and A*
resonances. Several coupled-channel models for photo- and
electroproduction have been developed (BG [1], KSU [2],
JuBo [3], Mainz-MAID [4], and SAID [5]), with the aim of
including the plethora of new data into one, unified overall
scheme. The number of channels varied from more than seven
in most models to only two (n-N and n’-N) in Ref. [4]. A
single-energy (SE), single-channel method for 1 photopro-
duction based on achieving the continuity of the solution by
imposing fixed-t analyticity was recently added to these theo-
retical efforts [6]. As a result, a number of equivalent sets of
highest partial waves for 1 photoproduction were generated.
Now, after decades of research, it is commonly accepted that
all partial wave analyses (PWAs) give very similar results for
the E04 multipole, but notable differences in this and all
other partial waves still remain. These differences were mostly
attributed to the difference in model assumptions (number
of resonances, dynamics, background treatment, etc.) and in
databases used to constrain the free model parameters (data
selection, weighting, interpolations, data binning, etc.), and no
one suspected that there might be another, fundamental reason
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why all these calculations disagree at least for the dominant
multipoles. Hereafter we show that such a reason exists, and
that it lies in the inadequate treatment of continuum-ambiguity
effects which manifest themselves as angle-dependent phase
rotations of reaction amplitudes [7].

II. FORMALISM

Since all observables in meson production processes are
given in term of bilinears of one reaction amplitude with the
complex conjugate of another one, they are invariant with
respect to the energy- and angle-dependent phase rotation.
This invariance is called continuum ambiguity [8—10]. We
formalize it in the following way: The observables in single-
channel reactions are given as a sum of products involving
one amplitude (helicity, transversity, etc.) with the complex
conjugate of another one, so that the general form of any
observable is given as O = f(H - H"), where f is a known,
well-defined real function. The direct consequence is that
any observable is invariant with respect to the following
simultaneous phase transformation of all

amplitudes:

H(W.0) — H (W, 0) = e "M Hy(W, )
forallk =1,...,n, N
where k is the index of the amplitude, n is the number of spin
degrees of freedom (n = 1 for the one-dimensional model,

n = 2 for m-N elastic scattering, and n = 4 for pseudoscalar
meson photoproduction), ¢(W, 6) is an arbitrary real function
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which is the same for all contributing amplitudes, and W and
0 are the center-of-mass energy and scattering angle, respec-
tively. Without any further physics constraints like unitarity,
this real function ¢(W, 0) is free, and there exist an infinite
number of equivalent solutions which give exactly the same
set of observables. The invariance with respect to energy-
dependent (ED) phase rotation has been investigated a lot, and
synchronizing phases were introduced and analyzed on the
level of partial waves [11-14]. These rotations can be handled
without any problem. However, almost no attention has been
paid to the situation when the arbitrary phase function is angle
dependent. This possibility was mentioned in [15-18] where
the effect was established, but the discussion was not followed
through. The whole deduction chain for understanding the
full role of angle-dependent phase rotations in continuum
ambiguity was finally presented in [7].

Starting with Eq. (1), we focus on resonance properties
of amplitudes H; (W, 6). Since resonances are identified with
poles of the partial-wave (or multipole) amplitudes, we must
analyze the influence of the continuum ambiguity not upon
helicity or transversity amplitudes, but upon their partial-wave
decompositions. To streamline the study we introduce partial
waves in a version simplified with respect to the form found
in, for instance, Ref. [12]:

AW,0) = Z(ZZ + 1)A,(W)P(cosB), 2)
=0

where A(W,0) is a generic notation for any ampli-
tude Hy(W,0), k =1,...,n. The complete set of observ-

J

ables remains unchanged when we make the following
transformation:

AW,0)— AW, 0) = e"¢<W-9>Z(2e +1)A (W) Py(cos ),
=0

o0
AW.0) =Y 2L+ 1A (W)Py(cos).  (3)
£=0
_ We are interested in the rotated partial wave amplitudes
A¢(W), defined by Eq. (3), and are free to introduce the
Legendre decomposition of an exponential function as

[e.¢]
el OW.0) _ ZLZ(W)PZ(COSG). “
=0

After some manipulation of the product Py(x)P(x) (see

Refs. [19,20] for details of the summation rearrangement) we

obtain

00 U+e

AWy =) "Le(W) Y (£,0:€,0lm,0)* Ay(W), (5)
=0 m=|¢'—¢|

where (¢, 0; £, 0|m, 0) is a standard Clebsch-Gordan coeffi-
cient. A similar relation was also derived in Ref. [16].

III. RESULTS AND DISCUSSION

To get a better insight into the mechanism of multipole
mixing, let us expand Eq. (5) in terms of phase-rotation
Legendre coefficients L, (W), and demonstrate that angle-
dependent phase invariance mixes multipoles:

Ag(W) = Lo(W)Ag(W) + Li(W)A (W) + Ly(W)Ay(W) + - -+,
A(W) = Lo(W)A{(W) + Li(W)[A0o(W) + 3A(W)] + La(W)[ZA1(W) + 2A3(W)] + - -+,
Ay(W) = Lo(W)Ay(W) + Li(W)[3A, (W) 4+ 2A3(W)] + Lo(W)[3Ao(W) + 3 A2 (W) 4+ EA,(W)] +---.

We cite here the conclusion given in Ref. [7], in which the
message essential for this paper is explicitly given:

The consequence of Egs. (5) and (6) is that angular-dependent
phase rotations mix multipoles. Without fixing the free con-
tinuum ambiguity phase ¢(W, 6), the partial-wave decompo-
sition A;(W) defined in Eq. (2) is non-unique. Partial waves
get mixed, and identification of resonance quantum numbers
might be changed. To compare different partial-wave analy-
ses, it is essential to match continuum ambiguity phase; oth-
erwise the mixing of multipoles is yet another, uncontrolled,
source of systematic errors. Observe that this phase rotation
does not create new pole positions, but just reshuffles the
existing ones among several partial waves.

This is a starting point of our further analysis. We also
observe that continuum-ambiguity invariance is discussed at
the level of amplitudes, and can be applied to any choice of
reaction amplitudes; in the following we apply our analysis to
one such possible choice: helicity amplitudes.

(6)

We begin by comparing the dominant £0+ multipole for 5
photoproduction for the EtaMAID2018 solution of the Mainz
EtaMAID model [4], the Bonn-Gatchina model [1,21], the
Kent State University model [2,22], the Jiilich-Bonn model
[3,23], and three solutions! from the only SE analysis based
on a fixed-f constraint [6]; see Fig. 1. We take the results of
those models directly as we get them from original publica-
tions, and without paying any attention to the reaction ampli-
tude phase. The shape is fairly similar, and the sign difference
between coupled-channel models on one side and EtaMAID
and SE solutions on the other can be attributed to the initial
assumptions of the model. However, the discrepancies are

!Solutions I and II are Solutions IT and III of Ref. [6] respectively,
and the new yet unpublished solution which is obtained using the
same formalism, but in which multipoles from Ref. [4] are used for
the initial and first constraining solution, is denoted as Solution III.
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FIG. 1. Comparison of EO+ n photoproduction multipoles for
the Mainz EtaMAID model [4] (red, full line), Bonn-Gatchina
calculation [21] (black, short-dashed line), Kent State University
calculation [22] (cyan, long-dashed line), Jiilich-Bonn model [23]
(blue, dash-dotted line), and three solutions from SE fixed-¢ analysis
[6] (discrete symbols).

notable, and important. These figures are well known, and
very recently shown in Fig. 4 of Ref. [2].?

As a second step, we perform the synchronization of
phases among all models at the level of helicity amplitudes
by introducing the following phase rotation:

I:I,E/ID(W, ) = H[g\/ID(W’ g)ei GIJ‘},?(W.G)—M%P(W,@)’
k=1,...,4, @)

where MD is the generic notation for Mainz-MAID, Bonn-
Gatchina, Kent State University, Jiilich-Bonn, and three fixed-
t SE solutions, and dDE,lG(W, 0) is the phase of helicity am-
plitude H;(W, 8) of the Bonn-Gatchina model. In this way
we have practically replaced different phases of H;(W,0)
amplitude of all models with only one phase, and this phase
is arbitrarily (our convention) chosen to be the one from the
Bonn-Gatchina model. Then we multiplied remaining three
helicity amplitudes in all models with the same phase factor
leaving the set of observables unchanged, and finally com-
pared the rotated multipoles. So, the Bonn-Gatchina model
results stay untouched, as the rotating phase for this model is
1, and the overall energy and angle-dependent phases of all
other models are changed.
So, let us summarize the procedure:

(1) We reconstructed all four helicity amplitudes for all
seven models from obtained multipoles.

(2) We applied the phase rotation defined by Eq. (7) to all
four helicity amplitudes of all seven models

(3) We made a partial wave decomposition of rotated sets
of amplitudes

(4) We show the final result for the rotated £E0+ multipole
in Fig. 2.

We stress that we could have taken the phase from any
other model, and we could have decided to replace the
phase of any out of three remaining helicity amplitudes

2Some small differences can be seen when one compares Fig. 1 of
this publication and Fig. 4 of Ref. [2], but this is due to the different
version of solutions used.

15 16 17 18 19 2 15 16 17 18 19 2
W [MeV] W [MeV]

FIG. 2. Comparison of E0+ 1 photoproduction multipoles after
the phase rotation defined with Eq. (7) for the Mainz EtaMAID
model [4], Bonn-Gatchina calculation [21], Kent State University
calculation [22], Jiilich-Bonn model [23], and three solutions from
SE fixed-r analysis [6]. The notation is the same as in Fig. 1.

H,(W,0)-Hy(W, 0). The conclusion would be the same, but
the figure would just have the different phase. As we claimed,
the disagreement among all solutions for the £0+ multipole
practically disappeared for energies Wey, < 1650 MeV, and it
is significantly improved at higher energies.

We should also discuss whether it is allowed to touch
the phase of reaction amplitudes obtained in coupled-channel
calculations. Namely, continuum ambiguity (invariance with
respect to the phase rotation) is the consequence of the loss of
unitarity. Once the unitarity is restored, continuum ambiguity
should disappear. However, the main aim of coupled-channel
(CC) models is to restore the unitarity, so the phase ambiguity
should be automatically eliminated. Or, a direct consequence
should be that all phases of CC ED calculations should be
the same, and the phase rotation defined in Eq. (7) should
be equal to 1. On the other hand, in Fig. 2 we do see
that disturbing differences for the £0+ multipole among all
models have disappeared after we applied our phase-rotation
synchronization. This means that the differences seen in Fig. 1
were the consequence of the mismatch of phases of reaction
amplitudes, and that they were not generated by differences
either in model assumptions or in databases chosen. After the
phase rotation, the dominant £0+ multipoles shown in Fig. 2
are up to ~1650 MeV practically identical for all models
and all three SE solutions. This shows that all models have

15 16 17 18 19 2 15 16 17 18 19 2
W [MeV] W [MeV]

FIG. 3. Comparison of EO+ n photoproduction multipoles of the
Kent State University calculation [22], Bonn-Gatchina calculation
[21], Jiilich-Bonn model [23], Mainz EtaMAID model [4], and three
solutions from SE fixed-¢ analysis [6] after the latter four were
multiplied with —1. The notation is the same as in Fig. 1.
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FIG. 4. Comparison of all  photoproduction multipoles for the Kent State University model [22], Bonn-Gatchina model [21], Jiilich-Bonn
model [23], Mainz EtaMAID model [4], and three solutions from SE fixed-r analysis [6]. The notation is the same as in Fig. 1.

included a sufficient amount of physics to get the unique
S-wave result, but this also automatically confirms that the
unitarity in CC calculations is not perfect, and that it can only
be achieved up to a certain approximation. It is understandable
that since all channels can never be included in a realistic
calculation, the treatment of unitarity can vary from one
calculation to another. So, unitarity is only approximately
restored, and the phase is only approximately obtained. This
explains the fairly good agreement between ED calculations
with many channels (Bonn-Gatchina, Jiilich-Bonn, and Kent
State University) in Fig. 1, while the discrepancy with the
calculation where only two channels are included (n and ') is
significant.

30therwise, the phases would be identical, and the phase rotation
would have no effect.

It is important to stress that it might seem that Mainz
EtaMAID and all three SE solutions only differ up to an
overall sign from the remaining three ED calculations.* It
is not so. We show in Fig. 3 that multiplying by —1 does
not give any major improvement at all. On the other hand,
synchronizing the phase on the level of helicity amplitudes,
shown in Fig. 2, solves the problem.

“This sign is an isospin convention, and is —1 for MAID/SAID
and +1 for BnGa/JuBo/KSU. The phase of three SE solutions is
similar to the Mainz EtaMAID solution. The reason for that lies
in the mechanism of fixed-¢ constraining. The fixed-# method is
a sophisticated way of fixing the free phase, and it is done by
constraining it to the “MAID type” models. So all three solutions
also notably deviate from CC ED calculations, and resemble Mainz
EtaMAID type models very much.
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FIG. 5. Comparison of all n photoproduction multipoles after the phase rotation defined with Eq. (7) for the Kent State University model
[22], Bonn-Gatchina model [21], Jiillich-Bonn model [23], Mainz EtaMAID model [4], and three solutions from SE fixed-¢ analysis [6]. The

notation is the same as in Fig. 1.

Comparison of other multipoles is shown in Figs. 4 and 5.
In Fig. 4 we show the comparison of nonrotated multipoles,
exactly as they are given in original publications, and in Fig. 5
we display their comparison after the phase rotation defined
by Eq. (7). We see that the grouping of solutions after the
phase rotation is for some multipoles improved, but no definite
consensus can yet be made. So, it seems that we have seven so-

lutions with very similar S-wave results, and which are rather
different elsewhere. Consequently, the difference should be
visible when we show the prediction for all observables from
all seven analyzed solutions. The agreement of all solutions
with measured observables should be very similar, and for
the unmeasured ones it can be very different. So, in Fig. 6
we show the predictions for 12 measured and unmeasured

TABLE I. Experimental data from A2@MAMI and GRAAL used in our PWA.

Obs. N E, (MeV) Ng Ocm (deg) Ny Reference

00 2400 710-1395 120 18-162 20 A2@MAMI (2010, 2017) [27,28]
z 150 724-1472 15 40-160 10 GRAAL (2007) [29]

T 144 725-1350 12 24-156 12 A2@MAMI (2014) [30]

F 144 725-1350 12 24-156 12 A2@MAMI (2014) [30]
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FIG. 6. Panels (a)—(d) show predictions for all seven solutions for 12 measured and unmeasured observables at W¢y, = 1554, 1602, 1765,

and 1840 MeV respectively. Experimental data are shown with grey symbols with error bars, and the notation of all seven model is given in
Fig. 1.
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FIG. 7. Energy distribution of xZ,, for all seven solutions. Blue dashed lines indicate the xZ,; average over all energies.

observables at four typical energies of W¢y = 1554, 1602,
1765, and 1840 MeV for the database of Ref. [6]. We used
recent A2@MAMI data for the unpolarized differential cross
section oy, single target polarization asymmetry 7', and double
beam-target polarization with circular polarized photons F.
In addition we used the GRAAL data for single beam polar-
ization X. For details, see Table I. There are additional data
from CLAS [24,25] and from CBELSA [26], which we do
not use in our analysis. Our center-of-mass energy limit is
1.85 GeV for SE PWA, and 2.0 GeV for ED PWA. At low
energy the cross section data from MAMI have much better
statistics. At the higher energies we did not analyze, as our
fixed-r method becomes more difficult at higher energies. We
see that the agreement of all seven solutions with measured
observables is good, so the reason why L # 0 partial waves
in all seven solutions shown in Fig. 5 differ has to be found in
other, nonmeasured observables which significantly disagree
for all model predictions. To quantify this discussion we in
Fig. 7 show the energy distribution of xf,; for all seven
solutions for the database described by Table I. One has to be
very careful not to confuse our numbers with numbers quoted
in original publications, because they are produced with a
different database, but the overall trend must be similar. In this
analysis, systematic errors are also not explicitly included.
The best agreement with the data is achieved for the all
three SE solutions obtained by the fixed-¢ analysis. This is
normal as this is a model-independent, single-channel and
single-energy analysis which is made continuous by fixing
the phase by imposing fixed-¢ analyticity. The second best
agreement is shown by the Mainz EtaMAID analysis which

is a two-channel analysis (n-N and n’-N channels) with more
free parameters per analyzed datum than the remaining three
ED analyses, so this is not a surprise too. The apparently
worst result is shown by BG, JuBo, and KSU ED analyses,
but this was to be expected as they fit many more channels
at the same time, and some compromise among channels has
to be made. Due to the coupling with other channels such as
w-N,o-N, p-N,n-A, K-A, K-X, w-N, the BnGa, JuBo, and
KSU analysis have significantly larger X%OT values in some
energy regions. What is surprising is the energy dependence
of X%OT in all three ED coupled-channel models, which still
awaits some explanation.

IV. CONCLUSIONS

As a summary, we state that matching angular dependent
phases of all solutions on the level of helicity amplitudes
brings all £0+ multipoles from all seven analyzed PWA into
complete agreement. The differences in other partial waves
remain. New measurements are needed to fix higher partial
waves.
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