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Phenomenological bound on the viscosity of the hadron resonance gas
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We explore some phenomenological issues during calculations of transport coefficients for hadronic matter,
produced in the experiments of heavy ion collisions. Here, we use an ideal hadron resonance gas model to
demonstrate the issues. On the basis of dissipation mechanism, the hadronic zoo is classified into resonance and
nonresonance members who participate in dissipation via strong decay and scattering channels, respectively.
Imposing our phenomenological restriction, we are able to provide a rough upper and lower bound estimations
of transport coefficients. Interestingly, we find that our proposed lower limit estimation for shear viscosity to
entropy density ratio is a little larger than its quantum lower bound. By taking a simple example, we demonstrate
how our proposed restriction helps to tune any estimation of transport coefficients within its numerical band,
proposed by us.
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I. INTRODUCTION

The shear viscosity (η) to entropy density (s) ratio is the
measure of the fluidity of the medium. Being roughly propor-
tional to the ratio of the mean-free path to the de Broglie wave-
length of medium constituent, the η/s of any fluid can never
be vanished because the mean-free path of any constituent can
never be lower than its de Broglie wavelength. It indicates that
quantum fluctuations prevent the existence of a perfect fluid in
nature and the η/s of any fluid should have some lower bound,
which is also claimed from the string theory calculation [1].
Interestingly, a small value of η/s, close to this quantum lower
bound, is observed in a superhot medium, produced in the
relativistic heavy ion collision experiment as well as in some
other many-body systems like cold atoms [2], graphene [3],
and in low-energy nuclear matter [4]. This nearly perfect
fluid behavior, at extreme conditions, has drawn immense
attention from scientific communities working on the field of
condensed matter physics to nuclear physics to string theory.

In our present work, we emphasize some phenomeno-
logical issues of η/s for hadronic matter. We have a long
list of Refs. [5–25], which addressed different microscopic
calculations of this η/s, based on different hadronic mod-
els [5–14], different effective QCD models [15–21], and bulk
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simulations [22–26]. The predicted values of η/s from earlier
estimations reside within a broad numerical band. The same
is observed for bulk viscosity ζ [5,8,13–20,27–44].

Here we find a possibility of comparatively narrower band
for the η/s of hadronic matter when we put a restriction in the
calculations of η/s based on an ideal hadron resonance gas
(HRG) model. The restriction is to consider the dissipation of
hadrons within a finite size of matter produced at the BNL
Relativistic Heavy Ion Collider (RHIC) (similar for CERN
Large Hadron Collider) or Large Hadron Collider (LHC).
When we follow the expressions of different transport coef-
ficients in the framework of relaxation time approximation
(RTA), we assume that the relaxation length (time) should
be lower than the size (life time) of the system or medium.
Owing to this fact, when we consider the hadronic matter,
the resonances, whose mean life time are larger than the
life time of the system, will not take part in the dissipation
process. So we have to eliminate them during the calculation
of transport coefficients for finite-size hadronic matter. On
the other hand, the hadrons like pion, kaon, and nucleon can
have a momentum-dependent relaxation length, whose high
momentum component may become larger than the system
size. Therefore, we have to eliminate the high-momentum part
by imposing an upper momentum cutoff in the calculation.
This fact of finite-size dissipation is pointed out in the present
work with the help of the ideal HRG model. A generic quali-
tative message of the present study is that the theoretical tools
should have to take care of this fact of finite-size dissipation
when we try to give the estimation of transport coefficients for
RHIC or LHC matter.

The article is organized as follows. Next, in the formal-
ism part (Sec. II), first (Sec. II A) we address the standard
expression of different transport coefficients and then
(Sec. II B) we provide a brief description of ideal HRG model,
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whose detail expressions are given in the Appendix. After
getting the expression of transport coefficients and thermody-
namical quantity like entropy density, they are folded by the
spectral function of hadrons. Its generic equation is written in
the subsection (Sec. II C) of the formalism part. Next we will
come to the results section (Sec. III), where we explore the
issues of finite-size dissipation, which can give us a rough nu-
merical band in the values of different transport coefficients.
Then, we provide an example of microscopic calculation of
transport coefficients, whose values do not remain within our
proposed band but after utilizing the appropriate restriction
of finite-size dissipation, we get their modified values, which
ultimately remain within our proposed band. At last, we
summarize our studies in Sec. IV.

II. FORMALISM

A. Transport coefficients in Kubo formalism

Our aim of this work is to calculate these transport coef-
ficients with the help of HRG model, so we have to add the
contributions of all mesons (M) and baryons (B) to obtain
total transport coefficients of hadronic matter. We know that
the mathematical structure of transport coefficients, obtained
from the one-loop diagram in the quasiparticle Kubo approach
and relaxation time approximation (RTA) in the kinetic theory
approach, are exactly same. Without going into those back-
ground formalism parts of transport coefficients like shear
viscosity η [8,9,44,45] and bulk viscosity ζ [8,18], let us start
with their standard expressions

η =
∑

h∈{hadrons}

gh

15T

∫
d3�k

(2π )3
τh

( �k2

ωh

)2

fh(1 − ahfh) , (1)

ζ =
∑

h∈{hadrons}

gh

T

∫
d3�k

(2π )3ω2
h

τh

{(
1

3
− c2

s

)
�k2 − c2

s m
2
h

}2

× fh(1 − ahfh), (2)

where gh, ωh =
√

�k2 + m2
h, and fh = [eωh/T + ah]

−1
are, re-

spectively, the degeneracy factor, energy, and thermal distri-
bution function (Fermi-Dirac or Bose-Einstein) of hadron h;
ah = +1 if h is a fermion and ah = −1 if h is a boson. In the
above equation, τh is the relaxation time of h, which propor-
tionally controls the numerical strength of the transport coef-
ficients. Obviously, the thermal phase-space factors, depend
on the thermal distribution functions of different hadrons, are
another controlling component for transport coefficients.

B. Thermodynamics from ideal HRG

As we are interested in the (nearly) perfect fluid nature of
the medium, produced in HIC experiments, so we focus on the
quantity-fluidity, which is quantified by the η/s, where S is
the entropy density. To calculate the s of hadronic matter, we
follow the standard procedure of the ideal HRG model [46],
where all thermodynamic quantities like energy density (ε),
pressure (P ), entropy density (s), speed of sound (cs), and
so on are calculated from the partition function. The Grand

Canonical partition function is given by

lnZ (T , V, {μ})

= V

∫
d3p

(2π )3

∑
h∈{hadrons}

ghah

ln

⎡
⎣ 1 + ah exp

⎧⎨
⎩−β

⎛
⎝ωh −

∑
μk∈{μ}

qk
hμk

⎞
⎠
⎫⎬
⎭
⎤
⎦, (3)

where {μ} = {μB,μQ,μS, . . . , } is the set of chemical po-
tentials corresponding to the conserved quantities [like net
baryon (nB), net charge (nQ), net strangeness (nS) etc.] and
qk

h is the corresponding quantum number of the hth hadron.
From the partition function, all the thermodynamic quantities
can be calculated as follows:

P =
(

T

V

)
lnZ, (4)

ε =
(

T 2

V

)
∂

∂T
(lnZ ), (5)

nk =
(

T

V

)
∂

∂μk

(lnZ ) ; k = B,Q, S, . . . , (6)

c2
s =
(

∂p

∂ε

)
=
(

∂p

∂T

)/( ∂ε

∂T

)
+
∑

μk∈{μ}

(
∂p

∂μk

)/( ∂ε

∂μk

)
.

(7)

The entropy density s can be obtained from

s =
(

ε + P

T

)
− 1

T

∑
μk∈{μ}

nkμk . (8)

The momentum integration in Eq. (3) can be analytically
performed in terms of modified Bessel function details of
which are provided in Appendix. In this work we take μB =
μQ = μS = · · · = 0, which implies that {μ} is a null set.

C. Spectral folding

The transport coefficients as well as the thermodynamic
quantities as given in Eqs. (1)–(2), (4)–(8), depend on the
masses of all the hadrons {mh}. To take into account the finite
widths of the unstable hadrons, the transport coefficients and
the thermodynamic quantities are folded with the correspond-
ing hadronic spectral functions ρ

m,b
h (M ). Let � denotes any

of the transport coefficients (such as η, ζ ) or thermodynamic
quantities (such as ε, P, s, etc.). In this work, the spectral
foldings are done through

�folded =
∑

h∈{mesons}

1

Nm
h

∫ (mh+2�h )2

(mh−2�h )2
dM2ρm

h (M )�(mh = M )

+
∑

h∈{baryons}

1

Nb
h

∫ mh+2�h

mh−2�h

dMρb
h(M )�(mh = M ) ,

(9)
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FIG. 1. (a) Energy density, (b) pressure, and (c) trace anomaly scaled with fourth power of inverse temperature as a function of temperature
compared among results from ideal HRG and two lattice QCD data from Refs. [47] and [48] abbreviated as Lattice I and Lattice II, respectively.
Set-1 and Set-3 (see Table II) correspond to results from ideal HRG without and with spectral folding.

with Nm
h = ∫ (mh+2�h )2

(mh−2�h )2 dM2ρm(M ) and Nb
h = ∫ mh+2�h

mh−2�h

dMρb(M ). In the above equation, the mesonic and baryonic
spectral functions are, respectively,

ρm
h (M ) = 1

π
Im

[
1

M2 − m2
h + iM�h

]
, (10)

ρb
h(M ) = 1

π
Im

[
1

M − mh + i
2�h

]
. (11)

III. NUMERICAL RESULTS

Let us begin this section by showing numerical results
for the thermodynamic quantities obtained from ideal HRG
model in Figs. 1 and 2.

From Eqs. (5) and (4), one can obtain ε and P , which
are shown by the blue dashed line in Figs. 1(a) and 1(b).
Using the folding technique, as given in Eq. (9), the values
of ε and P are a little bit enhanced as shown by the red
line in Figs. 1(a) and 1(b). Similar kinds of results for trace
anomaly (ε − 3P )/T 4 are shown in Fig. 1(c). One of the
success of HRG model is that its estimated values of different
thermodynamical quantities are quite close to the results,
obtained by lattice quantum chromo dynamics (LQCD). We
added two sets of lattice QCD data from Refs. [47] (cyan
band) and [48] (green dashed dot line), which are in good
agreement with the HRG results of the present work. In the

same pattern, the results of C2
S and entropy density s are also

plotted in Figs. 2(a) and 2(b).
Now let us come to the results of transport coefficients.

In the expression of η, ζ , given in Eqs. (1) and (2), we
see that the thermodynamical phase space parts of different
hadrons are known components from the HRG model but
their relaxation times are unknown components, which we
should have to include in the model from outside, based on our
phenomenological understanding. Owing to this phenomeno-
logical picture of relaxation of different hadrons, we classified
them into two categories—nonresonance (NR) and resonance
(R) components. Let us call the pseudoscalar meson nonet
and baryon octet as NR members as these long-lived particles
cannot decay inside the fireball, produced in HIC experiments.
Among them, the pion, kaon, and nucleon are the most
abundant constituents in the medium, hence we consider only
them as NR members for simplicity. Their strong interaction
elastic scattering will provide their relaxation times, which
are expected to be important in dissipation within the life
time of the fireball. The hadrons, other than the pseudoscalar
meson nonet and baryon octet, are considered as R members
as the maximum of them follow strong decays. Their mean
life times, which are the inverse of their strong decay widths,
are comparable to the life time of the fireball. So these hadrons
also live in the fireball along with the NR members but they
exist in resonance states. The maximum of them decays within
the medium during its life time and therefore their strong
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FIG. 2. (a) Speed of sound and (b) entropy density scaled with third power of inverse temperature as a function of temperature compared
among results from ideal HRG and two lattice QCD data from Refs. [47] and [48] abbreviated as Lattice I and Lattice II, respectively. Set-1
and Set-3 (see Table II) correspond to results from ideal HRG without and with spectral folding.
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FIG. 3. The values of mean life times (red points) for different
hadron resonances up to 2.5 GeV masses. The horizontal line indi-
cates an approximated life time of the hadronic medium, produced in
heavy ion experiments. Blue, pink, and green bars denote the ranges
of collisional time or relaxation time for nonresonance members
π, K , and N , respectively.

decays contribute to the total dissipation of the medium.
So, by ignoring other interactions (weak and electromagnetic
decays and scattering channels) [15], the strong interaction
scale is our matter of interest for calculating dissipation in the
medium, which survives in that scale. So we see that R and
NR members participate in dissipation by their strong decay
and scattering processes, respectively.

To explore our phenomenological studies on the dissipa-
tion process, we plotted the mean life times (red circles)
of different hadrons up to M = 2.5 GeV in Fig. 3, which
is basically covering the strong interaction spectra of the
hadronic zoo at a glance. The horizontal blue dashed line
indicates the life time of the fireball, which is approximately
taken as 10 fm. Hence, the hadrons, whose mean life times
are less than the life time of the medium, decay inside the
medium and they will only participate in the dissipation.
Considering only those hadrons and using their mean life
times as the relaxation times τ in Eq. (1), we will get the
shear viscosity of R component. One has to always consider
this amount of shear viscosity for hadronic matter, which

may be considered as a lower estimation of η in HRG even
when we do not take any NR contribution. Now, we focus on
the NR component, whose in-medium scattering contribution
will not be a fixed value like the R component. In differ-
ent hadronic model calculations [5–11], we notice different
numerical strengths of η from this NR component, although
some Refs. [7–10] are concentrated only in pion medium.
Let us take the Compton lengths (1/mπ,K,N ) of NR particles
(π, K, N ) as their minimum scattering lengths in Eq. (1) and
then add this contribution with the R component to get an
approximate lowest estimation of total η. On the other hand,
the life time (maximum size) of the fireball can be considered
as the upper limit of relaxation times (relaxation lengths) of
NR particles and after adding this contribution with the R
part contribution, we get an upper limit estimation of η. These
ranges of relaxation times for π , K , and N are shown by the
blue, pink, and green bars in Fig. 3 and using these ranges, we
get a numerical band of η, which is shown by cayan color in
Fig. 4(a).

Normalizing this η by that entropy density s, we get a sim-
ilar numerical band for the η/s ratio, as shown in Fig. 4(b). In
Fig. 4(b), we show that the lowest possible value of η/s is a lit-
tle greater than its quantum lower bound ( η

s
= 1

4π
≈ 0.08). At

T = 0.160 GeV, our proposed band provides an approximate
inequality 0.3 < η

s
< 0.85. Now, analyzing the earlier esti-

mations of η/s for hadronic matter [6,8,9,11–14,22,25], we
see that η/s(T = 0.160 GeV) ≈ 0.8 [6], 0.45 [12], 0.32 [9],
0.3 [8,14] remain within the inequality, except η/s(T =
0.160 GeV) ≈ 1 [22,25], 0.2 [13], and 0.13 [11]. Whereas
at freeze-out temperature T = 0.100 GeV (say), their η/s

(≈2 [12], 1.2 [6], 1 [13,22,25], 0.9 [8,9], 0.45 [11], 0.4 [14])
are not at all located within our proposed inequality 0.007 <

η/s < 0.4. The absence of R members in some formal-
ism [6,8,9,11] and the absence of considering dissipation of
hadrons within the finite-size hadronic matter in Refs. [12–
14,22,25] may be a possible reason for being outside of our
proposed band.

A similar kind of numerical band can be obtained from
standard RTA expressions of bulk viscosity (ζ ) as given in
Eq. (2). These bands are shown by the cyan color in Fig. 5.

After getting an approximate numerical band of transport
coefficients of hadronic matter, now let us focus on absolute

 0

 0.005

 0.01

 0.015

 0.02

 0.1  0.12  0.14  0.16

η 
(G

eV
3 )

T (GeV)

Band
Set-1
Set-2
Set-3

 0

 0.005

 0.01

 0.015

 0.02

 0.1  0.12  0.14  0.16

(a)
 0

 0.4

 0.8

 1.2

 1.6

 0.1  0.12  0.14  0.16

η/
s

T (GeV)

Band
Set-1
Set-2
Set-3

KSS Limit

 0

 0.4

 0.8

 1.2

 1.6

 0.1  0.12  0.14  0.16

(b)

FIG. 4. (a) Shear viscosity (η) and (b) shear viscosity to entropy density ratio (η/s) as a function of temperature for Set-1, Set-2, and Set-3,
as given in Table II. Approximate numerical bands of both are shown by cyan color and the dash-dot-dot line indicates the KSS limit for η/s.
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FIG. 5. The temperature dependence of (a) bulk viscosity (ζ ) and (b) bulk viscosity to entropy density ratio (ζ/s) as a function of
temperature for Set-1, Set-2, and Set-3 as given in Table II. Their approximate numerical band is also shown.

estimation. If we collect estimated values of transport coeffi-
cients for hadronic matter by earlier studies, then we will get
a broad numerical band within which those estimations are lo-
cated. In this regard, the present investigation provides a little
narrow band and we are expecting that the values of transport
coefficients for hadronic matter should be located within our
proposed band, when one properly takes care about the finite-
size dissipation phenomena. By taking an example, let us
demonstrate how to consider the dissipation of hadrons within
the finite-size hadronic matter and how it will help to reshape
the values of transport coefficients within our proposed band.
Let us calculate the relaxation times of NR particles from the
experimentally available data of their scattering lengths. Here,
we are consider scattering lengths RI

ab for different isospin (I )
states of ππ, πN, NN, KN interactions from Refs. [50,51]
and πK interaction from Refs. [53]. These input details are
displayed in Table I. The reader can also find these values
of scattering lengths collectively in Table 1 of Ref. [49] and
Table 4 of Ref. [52]. Now using these values, we calculated
isospin-average cross sections

σab =
∑

I

(2I + 1)4π
∣∣RI

ab

∣∣2/∑
I

(2I + 1) , (12)

TABLE I. Experimental values of scattering lengths of two-body
elastic scattering of π, N , and K , taken from Refs. [50,51,53].

HH aI
HH σHH =

∑
(2I+1)4π|aI

HH |2∑
(2I+1)

aI=0
ππ = +0.37 fm

ππ σππ = 17.3 mb
aI=0

ππ = −0.04 fm

a
I=1/2
πN = +0.24 fm

πN σπN = 16.1 mb
a

I=3/2
πN = −0.14 fm

aI=0
NN = +20.1 fm

NN σNN = 53.4 b
aI=1

NN = −5.4 fm

aI=0
KN = −0.007 fm

KN σKN = 4.7 mb
aI=1

KN = −0.225 fm

a
I=1/2
Kπ = −0.22 fm

Kπ σKN = 12.2 mb
a

I=3/2
Kπ = −0.04 fm

and then, we can calculated the relaxation time τa (a = π, K
and N ) from the the relation

1

τa (�ka )
=
∑

b∈{π,K,N}

∫
d3�kb

(2π )3
[σabvab nb] , (13)

where nb is the BE/FD distribution function of a me-
son/baryon;

vab =
(

1

2ωaωb

)√
{ s − (ma + mb )2}{ s − (ma − mb )2}

(14)

is the relative velocity with ωa,b =
√

�k2
a,b + m2

a,b; and s =
(ωa + ωb ). With the help of the relaxation time τa of
π, K , and N , one can calculate their relaxation length λa =
�kaτa/ωa , as shown in Fig. 6. Here we see that relaxation
lengths for π and K exceed the dimension of the fireball in
the high momentum domain; although the nucleon relaxation
length always remains lower than the dimension of the fireball
in the entire momentum range. Now, let us use these entire
momentum distributions of π, K , and N in Eqs. (1) and (2)
to get the NR contribution of η and ζ . Then after adding
the contribution of the R component, we will get the total as
shown by the green dashed dotted line in Figs. 4(a) and 5(a).
Their dimensionless, normalized values, quantified as η/s and
ζ/s, respectively, are shown by the green dashed dotted line
in Figs. 4(b) and 5(b). All curves are going beyond the upper
bound of our proposed numerical band. The reason is that we
are considering high momentum π and K , which are not at
all participants in the dissipation process as their relaxation
lengths exceed the system size. This can be well visualized
from Fig. 6.

To resolve it, we first track numerically the upper momen-
tum threshold or cutoff at different temperatures for π and
K , within which their relaxation lengths do not exceed the
fireball dimension (10 fm). From Fig. 6, one can visualize this
fact graphically and then we plotted the the upper momentum
thresholds �kth for π and K as a function of temperature, which
is shown in Fig. 7. Now when we put those T -dependent
momentum thresholds as the upper limit in the integration
of Eq. (1) and use the modified results of π and K , the
total values of η, η/s, ζ , and ζ/s will politely remain within
the numerical band. It is shown by the blue dashed lines in
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FIG. 6. Momentum distribution of relaxation lengths for (a) π , (b) K , and (c) N at different temperatures.

Figs. 4 and 5. Hence, our investigation states that the values
of transport coefficients for hadronic matter will be within our
proposed numerical band, when one will properly impose the
finite-size dissipation of the NR and R components during
the calculation. We address this realistic or phenomenological
issue, which should be considered for transport coefficients’
calculations of hadronic matter, which is not infinite in size.

We may further extend our estimations by adopting the
folding technique, described by Eq. (9). Putting η, ζ from
Eqs. (1) and (2) in �, we will get their modified results, as
shown by the red solid lines in Figs. 4(a) and 5(a). We notice
that the values of η and ζ becomes lower due to the folding
effect. For the convenience of the reader, Table II shows our
different set of input choices, which we considered.

IV. SUMMARY AND DISCUSSION

In summary, we pointed out a phenomenological issue of
hadron resonance gas model, which should be seriously con-
sidered during the calculation of shear viscosity for RHIC or
LHC matter and the facts are as follows. At first, on the basis
of the dissipation process, we classified our HRG members
into two categories—nonresonance members (π, K , and N )
and resonance members (hadrons other than pseudoscalar me-
son nonet and baryon octet). Former members participate in
dissipation via strong interaction scattering processes, where
as the contribution from latter members is coming from their

 0
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 0.6
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k t
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(G
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FIG. 7. Temperature dependence of upper momentum threshold
�kth for π , K . Beyond the threshold, their relaxation lengths exceed
the fireball dimension.

strong decay processes. We consider only strong interac-
tion processes as other interaction (weak or electromagnetic)
processes are meaningless for this scale of the (hadronic)
system [15]. Beyond this normal filtering, we chose only those
strong decays, whose mean life times are not exceeding the
life time of the hadronic medium, which is roughly chosen
as 10 fm. Now selecting those resonances and using their
mean life times as relaxation times in the expression of shear
viscosity, we get some nonzero value of η, which always has
to be considered as a background value due to resonances
in the HRG model. Taking Compton lengths (1/mπ,K,N ) as
minimum scattering lengths of NR particles (π, K, N ), we
get a lower limit estimation for the NR component, which has
to be added with the resonance component. We notice that
the lower limit of total η, normalized by entropy density s is
greater than its quantum lower bound at the high-temperature
range. Owing to this fact, we may conclude that η/s in the
HRG model never reaches its quantum lower bound near the
transition temperature Tc because of an unavoidable resonance
contribution.

Similar to the lower limit, the upper limit of shear viscosity
can be tuned by equating the relaxation length of NR particles
to the dimension of the medium, produced in heavy ion
experiments. The contribution from the resonance component
is very definite or known since it is determined from the
experimental values of mean life time of their strong decays,
documented in PDG [54]. Hence, only adjustable quantities
are relaxation lengths of NR particles, whose lower and upper
possible values basically give a narrow numerical band in

TABLE II. Different set of inputs for transport coefficients (η, ζ )
and entropy density (or other thermodynamical quantities like pres-
sure, speed of sound).

Transport Entropy
coefficients density

Lower bound NR (τlow) -
+ R (τ < 10 fm)

Upper bound NR (τ = 10 fm) -
+ R (τ < 10 fm)

Set-1 NR + R (τ < 10 fm) NR + R
Set-2 NR (τ (�k) < 10 fm) -

+ R (τ < 10 fm)
Set-3 Set-2 with folding Set-1 with folding
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shear viscosity and other transport coefficients of hadronic
matter.

Next, we take a particular example, where the absolute
values of transport coefficients are obtained. Here, we esti-
mate absolute values of relaxation lengths for nonresonance
particles from their scattering length data. From the momen-
tum distribution of their relaxation lengths, we find that the
pion and kaon relaxation lengths exceed the fireball dimension
beyond some upper values of momentum, which is again
different for different temperature. Now when we take this
temperature-dependent momentum cutoff as an upper limit of
integration, then the values of the transport coefficients remain
within our proposed numerical band. However, when we take
the entire momentum distribution, those values do not remain
within the band. Through this example, we want to emphasize
the point—the values of transport coefficients for hadronic
matter will remain within our proposed numerical band if we
impose the idea of finite-size dissipation.
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APPENDIX: HRG

The momentum integral in Eq. (3) can be performed
analytically and be expressed in terms of modified Bessel
functions Kn(x). Bellow we summarize the final forms of all
the thermodynamic quantities:

lnZ = V T 3

2π2

∑
h∈{hadrons}

∞∑
n=1

gh

(ah)n+1

n2

(mh

T

)2
K2

(nmh

T

)
exp
(nμh

T

)
, (A1)

P = T 4

2π2

∑
h∈{hadrons}

∞∑
n=1

gh

(ah)n+1

n2

(mh

T

)2
K2

(nmh

T

)
exp
(nμh

T

)
, (A2)

ε = T 4

2π2

∑
h∈{hadrons}

∞∑
n=1

gh

(ah)n+1

n2

(mh

T

)2
exp
(nμh
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1 −
(nμh

T

)}
K2

(nmh

T

)

+ 1

2

(nmh

T

){
K1

(nmh

T

)
+ K3

(nmh

T

)}]
, (A3)

nk = T 3

2π2

∑
h∈{hadrons}

∞∑
n=1

ghq
k
h

(ah)n+1

n

(mh

T

)2
K2

(nmh

T

)
exp
(nμh

T

)
; k = B,Q, S, . . . , (A4)

(
∂P

∂T

)
= T 3

2π2

∑
h∈{hadrons}

∞∑
n=1
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(ah)n+1

n2
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T

)2
exp
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T

)[{
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(
∂ε

∂T

)
= T 3

2π2

∑
h∈{hadrons}

∞∑
n=1

gh

(ah)n+1

n2

(mh

T

)2
exp
(nμh

T

)[1

4

(nmh

T

)2{
K0

(nmh

T

)
+ K4

(nmh

T

)}

+1

2

(nmh

T

){
3 −
(nμh

T

)}{
K1

(nmh

T

)
+ K3

(nmh

T

)}

+
{

2 − 2
(nμh

T

)
+
(nμh

T

)2
+ 1

2

(nmh

T

)2
}
K2

(nmh

T

)]
, (A6)

(
∂P
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)
= nk ; k = B,Q, S, . . . , (A7)
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