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Centrality fluctuations in heavy-ion collisions
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Volume or centrality fluctuations (CF) are one of the main uncertainties for interpreting the centrality
dependence of many experimental observables. The CF is constrained by centrality selection based on particle
multiplicity in a reference subevent and contributes to observables measured in another subevent. Using a
Glauber-based independent source model, we study the influence of CF on several distributions of multiplicity
N and eccentricities εn: p(N ), p(εn), p(εn, εm), and p(N, εn), where the effects of CF are quantified using
multiparticle cumulants of these distributions. In midcentral collisions, a general relation is established between
the multiplicity fluctuation and resulting CF in the reference subevent. In ultracentral collisions, where
distribution of particle production sources is strongly distorted, we find these cumulants exhibit rich sign-change
patterns, due to observable-dependent non-Gaussianity in the underlying distributions. The details of sign-change
pattern change with the size of the collision systems. Simultaneous comparison of these different types of
cumulants between model prediction and experimental data can be used to constrain the CF and particle
production mechanism in heavy-ion collisions. Since the concepts of centrality and CF are expected to fluctuate
in the longitudinal direction within a single event, we propose to use the pseudorapidity-separated subevent
cumulant method to explore the nature of intraevent fluctuations of centrality and collective dynamics. The
subevent method can be applied for any bulk observable that is sensitive to centrality and has the potential
to separate different mechanisms for multiplicity and flow fluctuations happening at different timescales. The
forward detector upgrades at the Relativistic Heavy Ion Collider and the Large Hadron Collider will greatly
enhance such studies in the future.
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I. INTRODUCTION

Centrality is an important concept for heavy-ion collisions,
which characterizes the amount of overlap or size of the
fireball in the collision region. Conceptually, the definition
of centrality is not unique; people often use [1–3] (1) the
number of nucleons Nw in the overlap region, also known
as participants or wounded nucleons, (2) the two-component
model where the event activity is theorized to be proportional
to a linear combination of Nw and number of binary nucleon-
nucleon collisions Nbin: Nan ≡ (1 − x)Nw/2 + xNbin, with x
being a tunable constant, and (3) the number of constituent-
quark participants Nqp in the overlap region. Since these
quantities, generally referred to as the number of sources Ns,
are not directly measurable, a Glauber model that includes
nuclear geometry and particle production is often used to
connect the Ns with the experimentally measured event ac-
tivity centobs, such as the number of charge particles Nch or
the total transverse energy �ET in a given rapidity range.
The Glauber model also provides estimates for many other
parameters that describe the initial collision geometry, such
as eccentricities εn, which describe the azimuthal asymmetry
in the distribution of the sources in the transverse plane.
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In data analysis, the centrality estimator is usually de-
fined as the reference particle multiplicity NA in a forward
pseudorapidity window A, centobs ≡ NA, and the observables
of interest are measured using particles in a different pseu-
dorapidity window B, usually around midrapidity. Because
of fluctuations in particle production, events with the same
Ns may have different values of centobs. Conversely, events
selected with the same centobs can have different values of Ns.
If a physics observable measured in the subevent B changes
with Ns, its fluctuation would be affected by Ns fluctuation
associated with centrality selection defined on NA. The fluc-
tuation of Ns for fixed centobs value is commonly referred
to as “volume fluctuation” [4–6], which is an irreducible
“centrality fluctuation” (CF). The CF is large in peripheral
collisions or small collision systems where it often dominates
the uncertainties in Ns estimation. The CF is expected to
be strongly distorted in ultracentral collisions (UCC) due to
the steeply falling distribution of p(Ns) [5,7,8]. The CF also
contributes to the measurement of event-by-event fluctuations
of conserved quantities and is one of the main source of
model uncertainty for extraction of the final-state dynamical
fluctuations [9–11] associated with the critical endpoint in
the QCD phase diagram [12,13]. Experimental measurement
of the CF helps us to clarify the meaning of centrality and
provide insights on the sources for particle production in
heavy-ion collisions.
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Any observable that is sensitive to p(Ns) fluctuation can be
used to study the CF through the multiparticle cumulants of
this observable. Besides the multiplicity fluctuation p(N ), we
also use the fluctuation of harmonic flow vn to probe the CF
effects. The basic idea is the following: Hydrodynamical sim-
ulations show that vn are driven by the eccentricity εn of the
initial collision geometry, vn ∝ εn for n = 2 and 3 [14–16].
Since the sources determining the event centrality also control
εn of the event, the fluctuation of Ns from CF gives rise to ad-
ditional fluctuations in εn, which in turn generates additional
fluctuations in vn.

This paper presents a detailed study of the centrality fluc-
tuations and their influences on multiplicity and eccentricity
fluctuations. Several types of cumulants are constructed for
various fluctuation observables, including p(N ), p(εn), cor-
relation between eccentricities of different orders p(εn, εm),
as well as correlation between multiplicity and eccentricity
p(N, εn). An independent source model based on standard
Glauber model is used to generate reference multiplicity used
for centrality selection, as well as particles used to calculate
physics observables. The CF is induced by placing a nar-
row selection on reference multiplicity, and its influences on
multiparticle cumulants in another subevent are calculated.
Special focus is given to UCC collisions, where the CF and
subsequently p(εn) are expected to be non-Gaussian due
to the boundary effects imposed by steeply falling p(Ns)
distribution.

There have been extensive studies of CF using multiplicity
cumulants (see Refs. [12,17] for a review). Skokov et al. [5]
first pointed out the importance of CF for multiplicity fluc-
tuation measurement and derived a general formula relating
multiplicity cumulants to the CF within an independent source
model framework. Most studies focused on the impact of CF
on cumulants for conserved charge, e.g., net proton, for the
search of CEP in the Relativisitic Heavy Ion Collider (RHIC)
beam energy scan program [6,18,19]. Extending the earlier
work of Refs. [7,20], we derive a general relation between
multiplicity cumulants and CF in subevent A and discuss how
this CF contributes to the cumulants in subevent B. We find
that the second-order cumulant or scaled variance of the CF is
not sensitive to the particle distribution for each source p(n)
and is mainly determined by p(Ns). In contrast, the higher
order cumulants of CF are also affected by p(n), except in
UCC collisions, where they are mostly controlled by p(Ns).

Recently, the ATLAS Collaboration observed a character-
istic sign change of four-particle cumulant for v2, c2{4}, in
ultracentral Pb + Pb collisions [21]. The location and magni-
tude of the positive c2{4} depend on the rapidity range used
to define centrality. We show that this sign-change behavior
is related to the centrality smearing effects from CF. We
predict similar sign-change behavior for c3{4} and symmetric
cumulants SC(2, 3) and SC(2, 4), as well as more complex
sign-change patterns for higher order cumulants c2{6} and
c2{8}. We find that the magnitude and detailed pattern of
sign change are sensitive to the fluctuation of Ns. We also
carry out a study of the mixed correlation between multiplicity
and eccentricity and predict significant positive correlation
between the two. We argue that by exploring the UCC in
different collision systems and as a function of η, one can use

flow and multiplicity cumulants to constrain the longitudinal
dynamics of particle production.

The structure of the paper is as follows. Section II in-
troduces the independent source model. Section III presents
the results on the multiplicity cumulants, focusing on the CF
arising from the centrality definition and its limiting behav-
iors in UCC. Section IV presents results on the eccentricity
cumulants, which probe the probability distributions p(εn)
and p(εn, εm), and are found to be very sensitive to the CF.
Results on the multiplicity-eccentricity mixed cumulants for
p(N, εn) are discussed in Sec. V. In Sec. VI, we extended the
above studies to other smaller collision systems. In Sec. VII,
we introduce the subevent cumulant method, recently suc-
cessfully applied for flow correlations [22–25], to multiplicity
cumulants and mixed cumulants. We argue that the subevent
methods are very useful in probing the longitudinal structure
and particle production mechanism in heavy-ion collisions.
We then summarize and discuss the main results in Sec. VIII.
Details on derivation of some of the formulas are given in the
Appendix.

II. INDEPENDENT SOURCE MODEL AND CENTRALITY
FLUCTUATIONS

Particle production is simulated with a simple independent
source model, where the total particle multiplicity in each
A + A collision is calculated as a sum of particles from
each source via a common probability distribution. The
sources could be participating nucleons, those given by two-
component model, or participating constituent quarks and
they are generated using a Glauber model framework [1].
Quantities describing the collision geometry, such as the
transverse area or the eccentricities εn, can be obtained from
transverse positions (x, y) of the sources. The present study
does not model explicitly the subnucleonic degree of freedom,
and the number of sources Ns therefore represents either
the Nw (the wounded nucleon or WN model) or Nan =
(1 − x)Nw/2 + xNbin (the two-component model). However,
as pointed out in Ref. [3], the Nan and associated nuclear
geometry is a good proxy for the number of participating
constituent quarks and their associated nuclear geometry. We
leave the explicit study of subnucleonic degree of freedom to
future work.

The particle production from each source is assumed to
follow a negative binomial distribution (NBD):

pnbd(n; m,p) = (n + m − 1)!

(m − 1)!n!
pn(1 − p)m, p = n̄

n̄ + m
,

(1)

where n̄ is the average number of particle in the acceptance
and p is the probability of a particle falling into the accep-
tance. This form has been widely used to describe the mul-
tiplicity distributions in pp collisions [26,27]. One important
property of the NBD for our study is its relative width σ̂ :

σ̂ 2 ≡ 〈(n − n̄)2〉
n̄2

= 1

n̄
+ 1

m
, (2)

which controls the strength of the fluctuation for each source.
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The distribution of total multiplicity is obtained as a super-
position of the NBD distributions from all sources:

p(N ; Ns) = pnbd(n1; m,p) ⊗ pnbd(n2; m,p)

⊗ · · · ⊗ pnbd(n
Ns

; m,p)

= pnbd(N ; mNs, p), N ≡
Ns∑
i=1

ni. (3)

where we used the additive nature of the NBD distributions
for convolution. One interesting consequence of this feature is
that we can subdivide the multiplicity distribution into sources
with smaller number of particles:

pnbd(N ; mNs, p) = pnbd(n1; m/k, p) ⊗ pnbd(n2; m/k, p)

⊗ · · · ⊗ pnbd(nkNs
; m/k, p), (4)

where each source is subdivided into k identical sources with
smaller average n̄/k but the same p, without changing the
total multiplicity distribution. In this case, Glauber models
with and without explicit treatment of subnucleonic degree of
freedom would be identical to each other, unless k is allowed
to fluctuate for each wounded nucleon.

The distribution of sources in the collision zone is de-
scribed by a standard Glauber model for various collision
systems. The nucleons are assumed to have a hard core
of 0.3 fm in radii; their transverse positions are generated
according to the Woods-Saxon distribution as provided by
Ref. [2]. A nucleon-nucleon cross section of σ = 68 mb is
used to simulate the collisions at

√
sNN = 5.02 TeV. The

usual geometric quantities, including Nw, Nbin, and εn, are
calculated for each event. The Nan in the two-component
model is given by choosing x = 0.09, very close to those
used at the top RHIC energy [3], which was shown to ap-
proximately describe the multiplicity distribution in A + A
collisions [3,28]. Combined with particle production from
Eq. (1), we obtain the distributions for multiplicity and eccen-
tricities: p(N ), p(εn), p(εn, εm), and p(N, εn). The shape of
these distributions are characterized by multiparticle cumulant
observables, which are described in later sections.

Table I lists the NBD parameters for the wounded nucleon
model and two-component model. The three parameter sets,
Par0, Par1, and Par2, have the same n̄ but different σ̂ . The
Par0 and Par1 sets are adjusted to approximately describe
the shapes of the experimental N rec

ch (|η| < 2.5) and �ET

(3.2 < |η| < 4.9) distributions from the ATLAS Collabora-
tion [21], while the Par2 set corresponds to a case with
much larger fluctuation. The distributions generated from the
three parameter sets are rescaled horizontally by the knee,
defined as the average multiplicity for 2A = 416 nucleons for
Pb + Pb collisions, Nknee = 2An̄. Figure 1 shows the three
rescaled distributions for the wounded nucleon model (left
panel) and two-component model (right panel), respectively.
They are compared to the N rec

ch or �ET distributions, which
are also rescaled by the knee values obtained for Par0 and
Par1, respectively. The two-component model slightly better
describes the shape of the data, as shown by previous stud-
ies [3,28]. This is because the source distribution from the
two-component model p(Nan ) has a smoother and broader

TABLE I. The various parameters sets for the NBD [Eq. (1)] used
for modeling the particle production in the wounded nucleon model
(left) and two-component model (right). The parameters with prime
symbols have the same σ̂ but smaller n̄ than the corresponding ones
without prime symbols (e.g., Par0 vs Par0′).

Wounded nucleon model

p m mean n̄ rms/mean σ̂

Par0 0.688 3.45 7.6 0.65
Par1 0.831 1.55 7.6 0.88
Par2 0.928 0.593 7.6 1.35
Par0′ 0.351 6.77 3.6 0.65
Par1′ 0.644 2.00 3.6 0.88
Par2′ 0.849 0.647 3.6 1.35

Two-component model

p m mean n̄ rms/mean σ̂

Par0 0.391 13.7 8.7 0.43
Par1 0.738 3.10 8.7 0.66
Par2 0.909 0.878 8.7 1.12
Par0′ 0.063 85.7 5.7 0.43
Par1′ 0.596 3.84 5.7 0.66
Par2′ 0.860 0.927 5.7 1.12

knee than that given by the wounded nucleon model p(Nw).
The relative widths σ̂ for each source, therefore, are also
much smaller for the two-component model than the wounded
nucleon model. One important consequence is that once the
generated p(N ) distribution is tuned to have similar shape
(i.e., by matching to the same experimental measured p(N rec

ch )
distribution), the centrality fluctuations are typically larger in
the wounded nucleon model than the two-component model
at the same total multiplicity.

In the independent source picture, particle production for
each source in the wounded nucleon model can be loosely
related to one half of the particles from one pp collision. The
charged particle multiplicity distributions in pp collisions at
LHC are known to be approximately described by NBD fits.
The extracted σ̂ depends on the η window,

√
s, and pT. For

pT integrated charged particles, it is within the range of 0.5 �
σ̂ � 1 [27] but increases by 10–20% from pT > 0.1 GeV to
pT > 0.5 GeV [29]. Therefore, the choice of the parameters
in Table I covers a reasonable range for σ̂ .

Table I also shows three parameter sets with prime sym-
bols, Par0′, Par1′, and Par2′, which have the same σ̂ but
smaller n̄, and therefore larger m than the corresponding
ones without primes. These parameter sets are used to study
whether the multiplicity cumulants are controlled by σ̂ or
whether they depend also on m.

As was discussed in the introduction, to avoid autocor-
relation effects, the particles used to define event centrality
should not be included in the measurement of physics observ-
ables. Therefore, measurements performed in subevent B are
affected by the centrality fluctuations in subevent A associated
with the centrality selection. The second-order cumulant of
the multiplicity fluctuation, for example, can be written as
the sum of the fluctuations in each source in subevent B and
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FIG. 1. The distributions of sources and produced particles based on Par0-Par1 in Table I rescaled by their knee values as described in
the text for the wounded nucleon model (left panel) and two-component model (right panel). They are compared with the shapes of the
experimental N rec

ch (|η| < 2.5) and �ET (3.2 < |η| < 4.9) distributions from Ref. [21].

fluctuation in the number of sources Ns induced by centrality
selection in subevent A [30],

〈(N − N̄ )2〉 = N̄s,A〈(nB − n̄B )2〉 + n̄2
B〈(Ns,A − N̄s,A)2〉, (5)

where we have associated each quantity with its subevent via
subscripts. Subevents A and B are generated using parameter
sets Par0–Par2 listed in the Table I. One main focus of
this paper is to understand how the multiplicity fluctuation
in subevent A induces the CF, which then influences the
fluctuation of physics observables in subevent B.

The relative width σ̂ of the particle production for each
source plays an important role. It largely determines how
the p(N ) is smeared relative to p(Ns). For sufficiently large
Ns, p(N ; Ns) is expected to approach a Gaussian with relative
width of σ̂ /

√
Ns = 1/

√
Ns( 1

n̄
+ 1

m
). Therefore, in ultracentral

collisions, where the Ns is sufficiently large, the shape of
p(N ) is expected to approach the shape of p(Ns). As a
result of the quickly dropping p(Ns), the Ns distributions in
UCC have significant non-Gaussian shape. This non-Gaussian
fluctuation is expected to lead to nonzero values of higher
oder multiplicity and flow cumulants. Therefore, the study of
the centrality fluctuations in UCC events provides an unique
opportunity to understand the nature of the sources in the
early stage of heavy-ion collisions and how they drive the
fluctuations of collective flow. Note that the shape of p(Ns)
was also parameterized as impact parameter distribution p(b)
convoluted with fluctuation of sources at fixed b [31]; in
this approach, however, inferring the impact parameter of
the event does not necessarily constrain the centrality and/or
volume fluctuation.

Obviously, the independent source model based on Glauber
and NBD has certain limitations in its predictive power. It does
not model the interaction between different sources, which
clearly is important in the final state. These interactions may
modify the particle correlations in each source or create new
sources of fluctuations. Our model also assumes explicitly that
Ns is the same independent of rapidity. In reality, the Ns and
the length of the source in rapidity are expected to have strong
fluctuations [32–36]. For example, the subnucleonic degree

of freedom may evolve with rapidity, such that the number of
sources for each nucleon is not the same between midrapidity
and forward rapidity [34,37]. These longitudinal fluctuations
tend to weaken the centrality correlation between the forward
and midrapidity, such that the CF in forward rapidity may not
be the same as that at midrapidity. Nevertheless, our model
serves as a useful baseline. It can be considered as a first
step toward a more realistic simulation that includes the full
space-time dynamics of the heavy-ion collisions.

III. CENTRALITY FLUCTUATIONS AND MULTIPLICITY
CUMULANTS

We use the following definition of multiplicity cumulants
for distributions of total multiplicity p(N ), multiplicity distri-
bution for each source p(n), and distribution of total number
of sources p(Ns):

K2 = 〈(δN )2〉
N̄

, K3 = 〈(δN )3〉
N̄

,

(6)

K4 = 〈(δN )4〉 − 3〈(δN )2〉2

N̄
, δN = N − N̄,

k2 = 〈(δn)2〉
n̄

, k3 = 〈(δn)3〉
n̄

,

(7)

k4 = 〈(δn)4〉 − 3〈(δn)2〉2

n̄
, δn = n − n̄,

kv
2 = 〈(δNs)2〉

N̄s
, kv

3 = 〈(δNs)3〉
N̄s

,

(8)

kv
4 = 〈(δNs)4〉 − 3〈(δNs)2〉2

N̄s
, δNs = Ns − N̄s.

These quantities are related to each other via the following
well-known formula [5]:

K2 = k2 + n̄kv
2, K3 = k3 + 3k2n̄kv

2 + n̄2kv
3,

(9)
K4 = k3 + (

4k3 + 3k2
2

)
n̄kv

2 + 6k2n̄
2kv

3 + n̄3kv
4 .
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The second-order cumulant defined this way is the same as the
scaled variance ω used in many previous studies [30,38–40].
The second-order cumulant for each source is also related
to the relative width: σ̂ 2 = k2/n̄. For the NBD distribution
used to describe the particle production for each source, the
cumulants depend only on the p parameter:

k2(p) = 1

1 − p
= 1 + n̄

m
, k3(p) = 1 + p

(1 − p)2
,

(10)

k4(p) = 1

1 − p
+ 6p

(1 − p)3
.

We now discuss the relation between the fluctuation of N
for events with a fixed Ns and the fluctuation of Ns for events
with the same N . The moments of these two fluctuations can
be expressed as

〈(δN )k〉Ns =
∫

(δN )kp(N ; Ns)dN,

(11)

〈(δNs)k〉N =
∫

(δNs)kp(N ; Ns)p(Ns)dNs.

In midcentral collisions where the p(Ns) can be treated as a
constant, a precise relation can be derived for NBD distribu-
tion (details in Appendix A). The 〈(δN )k〉Ns

and km calculated
for NBD parameter p are directly related to the 〈(δNs)k〉N and
kv
m calculated for 1 − p:

n̄m−1kv
m(1 − p) = pm−1

(1 − p)m−1
km(p). (12)

From this, we obtain several useful relations between the
multiplicity fluctuation and centrality fluctuation:

r2 = n̄kv
2

k2
= 1, (13)

r3 = n̄2kv
3

k3
= 2 − p

1 + p
,

1

2
� r3 � 2, (14)

r4 = n̄3kv
4

k4
= p2 + 6(1 − p)

(1 − p)2 + 6p
,

1

6
� r4 � 6. (15)

In ultracentral collisions where the boundary effect on Ns

is important, one could approximate multiplicity for large

Ns with a narrow Gaussian p(N ; Ns) ≈ 1√
2πσ̂ 2Ns

e
− (N−n̄Ns )2

2σ̂2Ns via

the central-limit theorem [41]. In this case, the moments of
centrality fluctuations can be estimated as

〈(δNs)k〉 ≈
∫

(δNs)k
1√

2πσ̂ 2Ns

e
− (Ns−N̄s )2

2σ̂2Ns p(Ns)dNs. (16)

This shows that the centrality fluctuations are only sensitive
to the relative width σ̂ of the p(n), not its functional form.
One important consequence of Eq. (16) is that k2 ≈ n̄kv

2 in
Eq. (13) is generally valid for independent source model in
central collisions, even if p(n) is not a NBD.

The calculation of cumulants follows the standard proce-
dure. Each Pb + Pb event is divided into two subevents:
subevent A for centrality selection and subevent B for the
calculation of multiplicity cumulants. The particle multiplic-
ities in these two subevents, NA and NB, are generated in-

dependently from the same Ns in each event. The events are
divided into narrow centrality classes according to NA. The
cumulants are first calculated from p(NB) for events with the
same NA, which are then combined into broader NA ranges
to reduce the statistical uncertainty. For each NA range, the
average number of sources, 〈Ns〉, is calculated based on the
two-dimensional (2D) correlation between Ns and NA. The
multiplicity cumulants, denoted as Km,B|A, are then presented
as a function of 〈Ns〉. In this setup, the centrality fluctuations
arise from the subevent A, and we rewrite Eq. (10) as

K2,B|A = k2,B + n̄Bkv
2,A,

K3,B|A = k3,B + 3k2,B n̄Bkv
2,A + n̄2

Bkv
3,A, (17)

K4,B|A = k4,B + (
4k3,B + 3k2

2,B

)
n̄Bkv

2,A

+ 6k2,B n̄2
Bkv

3,A + n̄3
Bkv

4,A,

The Km,B|A is the observed multiplicity fluctuation in
subevent B, which has contributions from km,B , multiplicity
fluctuation within each source in subevent B, and kv

m,A, the
centrality fluctuation from subevent A. The kv

m,A is calculated
from p(Ns) for events selected with fixed NA and then aver-
aged over a finite NA range. In the following, we first discuss
the behavior of kv

m,A and its relation to km,A and then discuss
results for the total multiplicity fluctuation Km,B|A.

The top row of Fig. 2 shows the second-, third-, and fourth-
order cumulants for centrality fluctuations in the wounded
nucleon model. Each cumulant has been calculated for the
three NBD parameter sets, Par0, Par1, and Par2, from Table I.
The values of the second-order cumulant (or scaled variance)
kv

2 are constant in midcentral collisions, but decrease toward
very peripheral and very central collisions. These decreases
are due to the boundary effects on Ns that reduce the width of
the centrality fluctuations. The higher order cumulants kv

3 and
kv

4 show strong oscillating behavior toward central collisions,
which reflects the strong non-Gaussianity of p(Ns) for events
required to have similar NA [see Eq. (16)]. Over the full
centrality range, the value of kv

m depends strongly on the
relative width σ̂ of the NBD parameters. Larger σ̂ leads to
stronger smearing and larger multiplicity fluctuation, and the
impact is stronger for higher order cumulants. These results
are qualitatively similar to those obtained in earlier studies
[5,7,8].

The calculations are repeated for the two-component
model, and the results are shown in the bottom row of Fig. 2.
In general, the cumulants for a given parameter set are smaller
than their counterparts in the wounded nucleon model, as
indicated by the larger multiplicative factor in the legends,
although they are tuned to have similar p(N ) distribution
(comparing the left and right panels of Fig. 1). We also see
that the kv

2 values in ultracentral collisions do not decrease
to zero as seen for the wounded nucleon model case. These
differences are due to a weaker constraint from the boundary
effects due to a broader p(Ns) distribution than that from the
wounded nucleon model in central collisions.

In the midcentral region where the p(Ns) is a slowly
varying function, we derived Eqs. (12)–(15) that relate the
multiplicity cumulants for each source to centrality fluctuation
cumulants. The validity of these relations are verified in Fig. 3
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FIG. 2. Cumulants for centrality fluctuations of different order, kv
2 (left column), kv

3 (middle column), and kv
4 (right column), from wounded

nucleon model (top row) and two-component model (bottom row), as a function of 〈Ns〉. They are calculated using parameter sets Par0, Par1,
and Par2 for NBD distributions from Table I. The kv

m values are scaled by a factor as indicated in the legend, so they can be shown in the same
panel.

for the wounded nucleon model. The scaled ratios r2, r3
1+p
2−p

,

and r4
(1−p)2+6p
p2+6(1−p) are plotted for Par0, Par1, and Par2, which are

expected to be one if these relations are valid. We found this
indeed is the case for midcentral collisions. These relations
break down in most peripheral and central collisions.

Using the Gaussian approximation Eq. (16), we have ar-
gued that the properties of kv

m are controlled by the relative
width σ̂ in the full centrality for m = 2 and in central col-

lisions for m > 2. This is verified by comparing two NBD
parametrizations with the same σ̂ . Figure 4 shows the volume
cumulants calculated for Par1 and Par1′, whose n̄ values differ
by more than factor of 2. We found that the kv

2 are nearly
identical between the two in the full centrality range. For
higher order cumulants, they are very close to each other in
the ultracentral region where p(Ns) dominates the properties
of cumulants but differ significantly otherwise.

FIG. 3. The r2 (left), r3
1+p

2−p
(middle), and r4

(1−p)2+6p

p2+6(1−p)
(right) defined in Eqs. (13)–(15) as a function of 〈Nw〉 in the wounded nucleon model.
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FIG. 4. The cumulants for centrality fluctuation, kv
2 (left), kv

3 (middle), and kv
4 (right), as a function of 〈Nw〉. They are calculated in the

wounded nucleon model for Par1 and Par1′, which have different n̄ but the same σ̂ .

Now we focus our attention on the behavior of total mul-
tiplicity fluctuation in subevent B when centrality is defined
in subevent A, as described by Eq. (17). In our model, the
property of each source is assumed to be independent of
centrality, i.e., km,B is constant. Therefore, the shape of the
multiplicity cumulant Km,B|A as a function of 〈Ns〉 must
reflect the centrality dependence of kv

m,A. Figure 5 shows the
Km,B|A for m = 2, 3, 4 calculated with the Par1 for subevent
A but all three different parameter sets for subevent B. Indeed,
the three curves are different from each other by a constant
offset, which reflects their different km,B values, while the
nonflatness is due to a common kv

m,A.1

In ultracentral collisions, where the cumulants are dom-
inated by the shape of p(Ns), if the cumulants for each
source are not very large, i.e., p is not very close to 1, we
found that the contributions of the cross terms in Eq. (17) are
subdominant and the higher order cumulants can be approx-
imated as K3,B|A ≈ k3,B + n̄2

Bkv
3,A, K4,B|A ≈ k4,B + n̄3

Bkv
4,A,

which imply that the shape of Km,B|A should be similar to
kv
m,A but is rescaled by a constant n̄m−1

B .
One could also select centrality in subevent B, study mul-

tiplicity cumulant in subevent A, and question the relation
between Km,B|A and Km,A|B . Since Eq. (13) is valid in midcen-
tral collisions independent of the underlying p(n), the relation
for scaled variance is particular useful. Using Eq. (17), we
have K2,B|A ≈ k2,B + n̄B

n̄A
k2,A and similarly for K2,A|B , from

which we obtain

K2,B|A − K2,A|B = (n̄B − n̄A)

(
k2,B

n̄B

+ k2,A

n̄A

)

= (n̄B − n̄A)(σ̂B + σ̂A). (18)

This implies that if subevents A and B are used for centrality
selection for each other, the scale variance for subevent B is

1These results imply that the cumulant ratios, for instance, K4/K2,
are much larger than those involved in the net-proton fluctuations
[12] in the flat region where the CF is not important. In this region,
K4/K2 ≈ k4/k2 = kσ 2, where k is the excess kurtosis and σ 2 is
the variance of the fluctuation for each source. The large K4/K2 is
mainly because the σ 2 for total multiplicity is much larger than that
for the net proton.

larger than subevent A if it also has large n̄. Furthermore, if the
two subevents have the same relative width for each source,
i.e., σ̂A = σ̂B , then K2,B|A − K2,A|B = (n̄B − n̄A)(σ̂ + kv

2 ),
and it is valid over the entire centrality range.

Let us consider another situation where the subevent A′ is
used to provide centrality selection for subevent B. If σ̂A =
σ̂A′ , cumulants in subevent B are independent of whether A
or A′ is used for centrality selection: K2,B|A = K2,B|A′ . For
higher order cumulants, this statement is only true in ultra-
central collisions. On the other hand, if subevent B is used for
centrality selection, relation K2,A|B/K2,A′ |B = n̄A/n̄A′ is valid
over the full centrality range. For the third-order cumulants,
we find that the terms involving centrality fluctuations are
related to each other by a constant:

3k2,An̄Akv
2,B + n̄2

Akv
3,B

3k2,A′ n̄A′kv
2,B + n̄2

A′kv
3,B

= n̄2
A

n̄2
A′

. (19)

IV. CENTRALITY FLUCTUATIONS AND ECCENTRICITY
CUMULANTS

In heavy-ion collisions, it is commonly believed that the
flow vector vn = vne

in�n is driven by hydrodynamic response
to the eccentricity vector εn, calculated from the transverse
position (r, φ) of the particle production sources

εn = εne
in�n ≡ −〈rneinφ〉

〈rn〉 , (20)

where we have used complex numbers to encode the magni-
tude and phase. Hydrodynamic model studies have show v2

and v3 correlate almost linearly with corresponding eccentric-
ity vectors, vn = bnεn [14–16], where bn is a constant within a
given centrality class. The quadrangular flow v4, on the other
hand, has a large nonlinear contribution proportional to v2

2, on
top of a linear contribution associated with the fourth-order
eccentricity ε4. Measurements [21,42,43] show that the linear
contribution dominates the 0–10% centrality range, where
ε4 ∝ v4 is still a good approximation. The higher order flow
harmonics (v5...) are always dominated by nonlinear terms, so
we will not discuss them here.
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FIG. 5. The total multiplicity cumulant K2,B|A (left panel), K3,B|A (middle panel), and K4,B|A (right panel) as a function of 〈Nw〉 obtained
in the wounded nucleon model. Centrality is defined in subevent A with parameter set Par1, and three curves in each panels are cumulants
calculated with parameter sets Par0, Par1, and Par2.

The flow probability distribution p(vn) is characterized by
the multiparticle cumulants, defined as

cn{2} = 〈
v2

n

〉
, cn{4} = 〈

v4
n

〉 − 2
〈
v2

n

〉2
,

4cn{6} = 〈
v6

n

〉 − 9
〈
v4

n

〉〈
v2

n

〉 + 12
〈
v2

n

〉3
, (21)

33cn{8} = 〈
v8

n

〉 − 16
〈
v6

n

〉〈
v2

n

〉 − 18
〈
v4

n

〉2
+ 144

〈
v4

n

〉〈
v2

n

〉2 − 144
〈
v2

n

〉4
.

The prefactors 4 and 33 are introduced, such that cn{2k} =
(−1)k+1v2k

n if vn is a constant. If the scaling between vn and εn

were exactly linear, p(vn) has the same shape as p(εn) up to a
constant scale factor. Therefore, the nature of flow fluctuations
can be studied via the corresponding eccentricity cumulants,
cn,ε{2k}, which are obtained by replacing the vn with εn in
Eq. (21), for example, cn,ε{4} = 〈ε4

n〉 − 2〈ε2
n〉2. The following

relation should be valid for any integers k:

cn{2k}
cn{2}k = cn,ε{2k}

cn,ε{2}k , k = 2, 3, . . . . (22)

Based on this, we shall define normalized cumulants similar
to Ref. [44]:

ĉn{2k} ≡ cn{2k}
cn{2}k , ĉn,ε{2k} ≡ cn,ε{2k}

cn,ε{2}k . (23)

The normalized flow cumulant ĉn{2k} for a event class can
be approximated by corresponding normalized eccentricity
cumulants ĉn,ε{2k}, which can be easily calculated from the
Glauber model.

Cumulant observables can also be defined to study cor-
relation between different flow harmonics p(vn, vm). Three
interesting examples are

nsc(2, 3) =
〈
v2

2v
2
3

〉
〈
v2

2

〉〈
v2

3

〉 − 1, nsc(2, 4) =
〈
v2

2v
2
4

〉
〈
v2

2

〉〈
v2

4

〉 − 1,

(24)

nac(2, 4) =
〈
v2

2v
∗
4

〉
√〈

v4
2

〉〈
v2

4

〉 .

The first two, nsc(2, 3) and nsc(2, 4), are known as nor-
malized “symmetric cumulants” [45], which measure the
correlation of the magnitudes of two flow harmonics. The
third one nac(2, 4), is the analogous normalized “asymmetric
cumulant” or event-plane correlator [42,46]. Similarly, these
observables can also be defined based on the eccentricities:

nscε (2, 3) =
〈
ε2

2ε
2
3

〉
〈
ε2

2

〉〈
ε2

3

〉 − 1, nscε (2, 4) =
〈
ε2

2ε
2
4

〉
〈
ε2

2

〉〈
ε2

4

〉 − 1,

(25)

nacε (2, 4) =
〈
ε2

2ε
∗
4

〉
√〈

ε4
2

〉〈
ε2

4

〉 .

Since ε2 and ε3 are linearly proportional to the correspond-
ing harmonic flow, it is expected that nscε (2, 3) = nsc(2, 3).
However, nscε (2, 4) and nacε (2, 4) can be used to estimate
the corresponding flow correlations only in very central col-
lisions. In the following, we shall study the influence of
centrality fluctuations on eccentricity fluctuations.

The same events generated for multiplicity analysis are
used for calculating the eccentricity cumulants. The events
are divided into narrow bins according to the generated multi-
plicity distribution p(N ). Since eccentricity is a global event
property, there is no need to distinguish the subevent used
for centrality and subevent used for eccentricity cumulants.
The cumulants are first calculated in each bin, which are
combined to give the values for broader multiplicity bins.
These cumulants are then used to obtained the normalized
cumulants according to Eqs. (22)–(25). The final results are
presented as a function of 〈Ns〉, which is calculated based on
the 2D correlation between N and Ns, but can be mapped to
any other x axis such as N/Nknee. This procedure is repeated
for each parameter set listed in Table I and separately for
the wounded nucleon model and the two-component model.
For comparison, we also calculate the eccentricity cumulants
for events binned directly on Ns, for which the effects of
centrality fluctuations are minimized. This case is equivalent
to modeling p(n) as a δ function.

The top row of Fig. 6 shows the normalized cumulants
ĉ2,ε{4}, ĉ2,ε{6}, and ĉ2,ε{8} as a function of 〈Nw〉 in the
wounded nucleon model. When eccentricity cumulants are
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FIG. 6. The normalized cumulants ĉ2,ε{4} (left), ĉ2,ε{6} (middle), and ĉ2,ε{8} for the three parameter sets in Table I for the wounded nucleon
model (top row) and two-component model (bottom row). They are calculated in narrow particle multiplicity bins then combined and mapped
to average number of sources.

calculated for events binned directly on Nw, the magnitudes
of normalized cumulants decrease toward more central colli-
sions, but they never change sign, i.e., ĉ2,ε{4} < 0, ĉ2,ε{6} >
0 and ĉ2,ε{8} < 0 over the entire centrality range. However,
when events are binned on generated particle multiplicity
distribution p(N ), which is broader than p(Nw) due to particle
production, a characteristic sign change is observed in central
collisions. In particular, ĉ2,ε{4} becomes positive, reaches a
maximum, and then decreases to zero toward more central
collisions. This finding is qualitatively similar to the sign-
change behavior of c2{4} observed in the ATLAS data [21].
Furthermore, as the relative width σ̂ increases from that for
Par0 to that for Par2, the location where ĉ2,ε{4} crosses zero
is shifted toward less central collisions and the maximum
ĉ2,ε{4} value increases. Our study also predicts more complex
patterns of sign change for higher order cumulants when
events are binned on generated particle multiplicity p(N ). For
sufficiently large σ̂ , the ĉ2,ε{6} shows double sign change, and
ĉ2,ε{8} shows triple sign change in the central collision region.

The bottom row of Fig. 6 shows similar results calculated
for the two-component model. It is interesting to see that the
cumulants calculated for events binned directly on Nan already
exhibit sign changes in central collisions. This implies that the
sign change is also sensitive to the nature of the fluctuations
of the sources that drive the collective flow, not only on the
smearing of sources by p(n). After including particle pro-

duction, the behavior of ĉ2,ε{2k} shows qualitatively similar
trends as those observed for the wounded nucleon model,
but the magnitudes of ĉ2,ε{2k} in the sign-change region are
smaller.

To further understand the origin of the sign-change behav-
ior, we focus on ĉ2,ε{4} shown in the top-left panel of Fig. 6.
We choose a particular range of multiplicity distribution p(N )
for the three parameter sets, corresponding to roughly the
same 〈Nw〉. We then calculate the corresponding distributions
of Nw and scaled eccentricity ε2/〈ε2〉 for the selected events.
We repeat this procedure in three different ranges and plot the
corresponding distributions p(Nw) and p(ε2/〈ε2〉) in the three
columns of Fig. 7. The distributions p(Nw) and p(ε2/〈ε2〉)
are different between the three parameter sets, even though
they correspond to similar 〈Nw〉. This observation suggests
that the sign change of ĉ2,ε{2k} reflects the non-Gaussianity
of p(ε2/〈ε2〉), which arises due to combining events with
different Nw and therefore different p(ε2) shape.

Figure 8 shows the centrality dependence of other nor-
malized cumulant observables, ĉ3,ε{4}, nsc(2, 3), nscε (2, 4),
and ascε (2, 4), calculated in the wounded nucleon model.
The characteristic sign-charge patterns are observed in central
collisions except for ascε (2, 4). ATLAS measurement seems
to suggest a sign change for ĉ3,ε{4} when event class is
defined using the charge particle multiplicity at midrapidity
[21]. However, the uncertainties of the present measurement
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FIG. 7. Distribution of Nw (top row) and corresponding scaled eccentricity ε2/〈ε2〉 (bottom row) for events selected in three range of
particle multiplicity N in the central collision region. The three curves in each panel corresponds to the three parameter sets for the wounded
nucleon model.

are too large for a definite conclusion. We emphasize that it
would be very interesting to measure nscε (2, 3), which should
have better statistical precision than ĉ3,ε{4}. This observable
is relatively insensitive to the final-state effects [45,47,48],
and therefore can be used to probe the initial centrality
fluctuations. We have also repeated such studies for the two-
component model: The sign-change patterns are similar but
with smaller magnitude (see Appendix C).

Figure 9 compares ĉ2,ε{4}, ĉ3,ε{4}, and nscε (2, 3) calcu-
lated for Par0, Par1, and Par2, with those calculated for Par0′,
Par1′, and Par2′. A good consistency is observed, suggesting

the eccentricity cumulants depend only on σ̂ , similar to the
multiplicity cumulants discussed in Sec. III. Particle distribu-
tions p(n) other than NBD are also studied, and the results are
found to be insensitive to the functional form of the p(n) (see
Appendix C).

Our study suggests that normalized cumulants, just like
multiplicity cumulants discussed in previous sections, are
sensitive to the underlying p(Ns) and σ̂ . Therefore, by fitting
the measured p(N ) and flow cumulants such as ĉ2{4}, one
could simultaneously constrain the p(Ns) and σ̂ in a given
model.

FIG. 8. The normalized cumulants ĉ3,ε{4} (left), nscε (2, 3) (second to the left), nscε (2, 4) (second to the right), and ascε (2, 4) (right) for
the three parameter sets in Table I for the wounded nucleon model. They are calculated in narrow particle multiplicity bins and then combined
and mapped to an average number of Nw.
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FIG. 9. The normalized eccentricity cumulant ĉ2,ε{4} (left panel), ĉ3,ε{4} (middle panel), and nscε (2, 3) (right panel) compared between
ParX and ParX′ from Table I for the wounded nucleon model.

V. CENTRALITY FLUCTUATIONS AND
MULTIPLICITY-ECCENTRICITY MIXED CUMULANTS

Since both multiplicity and eccentricity fluctuations are
sensitive to the CF effects, it would be interesting to correlate
them together. One way to do this is to measure the mul-
tiplicity cumulant and eccentricity cumulant using the same
event class definition and plot one against the other. One such
example is shown in Fig. 10, where the ĉ2,ε{4} from Fig. 6 and
CF cumulant kv

m from Fig. 2 are plotted against each other over
the full range of Nw. The advantage of this correlation is that
both axes represent physical quantities instead of using 〈Ns〉
for one axis, and therefore such correlation can be directly
compared to experimental measurements. The kv

m is nearly
independent of ĉ2,ε{4} until reaching central collisions, where
both observables are affected by CF. Such a pattern could be
searched for in the experimental data analysis by correlating
the multiplicity cumulants with the flow cumulants.

Another, more direct way to study the multiplicity-
eccentricity correlation is to construct mixed correlators be-
tween sources and eccentricity such as

F
(
kv

1, εn

)=
〈
Nsε

2
n

〉
〈Ns〉

〈
ε2
n

〉 − 1, F
(
kv

2, εn

)=
〈
(δNs)2ε2

n

〉
〈
(δNs)2

〉〈
ε2
n

〉−1, (26)

which are related to the multiplicity eccentricity correlation
that is easier to access experimentally

F (K1, εn) =
〈
Nε2

n

〉
〈N〉〈ε2

n

〉 − 1, F (K2, εn) =
〈
(δN )2ε2

n

〉
〈
(δN )2

〉〈
ε2
n

〉 − 1,

(27)

Expression for higher-order mixed cumulants and associated
discussions are given in Appendix B. Assuming linear re-
sponse between εn and vn, these quantities should be equal
to experimentally measurable quantities F (Km, vn), which
are obtained by simply replacing εn by vn in Eq. (27). In
this section, we discuss the behaviors of F (Km, εn) and their
relations to the centrality fluctuations F (kv

m, εn), which can be
regarded as predictions for F (Km, vn).

In the independent source model, eccentricities depend
only on the positions of sources and are not correlated with
multiplicity fluctuation within each source. Therefore, if cen-
trality is selected on subevent A and particle multiplicity is
calculated at subevent B, it is easy to show that

F (K1,B|A, εn) = F
(
kv

1,A, εn

)
,

(28)

F (K2,B|A, εn) = k2,BF
(
kv

1,A, εn

) + n̄Bkv
2,AF (kv

2,A, εn)

k2,B + n̄Bkv
2,A

,

FIG. 10. The correlation between ĉ2,ε{4} and cumulants for centrality fluctuations kv
m obtained from the wounded nucleon model for the

three parameter sets from the Table I.
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FIG. 11. The multiplicity-eccentricity mixed cumulants F (K1,B|A, ε2) calculated with three parameter sets for subevent B for centrality
defined in subevent A and compared with F (kv

1,A, ε2 ). All four curves are found to be on top of each other. The three panels correspond to
three different NBD parameter sets for subevent A. They are all calculated for the wounded nucleon model.

where we have added explicit subscripts to indicate that
the CF cumulants kv

m arise from subevent A, and Km,B|A is
the multiplicity cumulants in subevent B when centrality is
defined in subevent A. If subevents A and B are replaced
with subevents A′ and B′ with the same relative widths σ̂A =
σ̂A′ and σ̂B = σ̂B ′ , one can also show that F (K2,B|A, εn) =
F (K2,B ′|A′ , εn).

Figure 11 shows the lowest-order multiplicity-eccentricity
correlation from the wounded nucleon model. The values
of F (K1,B|A, ε2) always agree with F (kv

1,A, ε2) independent
of the parameter sets used in the subevent B. However, the
effects of centrality fluctuation from subevent A have strong
influence on F (kv

1,A, εn). Larger σ̂ associated with parameter
set Par2 gives the largest signal (right panel). The values of
these correlators are slightly negative, indicating a weak anti-
correlation between multiplicity and eccentricity fluctuations.
Note that the magnitudes of these correlators are very small,
on the order of a few percent or less. Therefore, they could be
easily affected by finite dynamical effects not included in our
simulation.

Figure 12 shows the correlation between multiplicity vari-
ance and eccentricity from the wounded nucleon model. The
values of F (K2,B|A, ε2) and F (kv

2,A, ε2) are small in most
of the centrality range but increase dramatically toward very

central collisions, where F (K2,B|A, ε2) shows shapes similar
to F (kv

2,A, ε2) but with smaller magnitudes. Results for Par2
in subevent B have the smallest magnitudes, implying that the
correlation between Ns and eccentricity tends to be diluted by
a broader p(n).

Equation (28) shows that the F (K2,B|A, εn) has contribu-
tions from the first- and second-order CF cumulants. Com-
bined with Eq. (17), the second-order volume-eccentricity
correlation can be expressed as

F (kv
2,A, εn) = K2,B|A

K2,B|A − k2,B

F (K2,B|A, εn)

− k2,B

K2,B|A − k2,B

F
(
Kv

1,B|A, εn

)
. (29)

All quantities on the right-hand side of the equation, except
k2,B , can be directly measured. The value of k2,B could be
estimated from minimum bias pp collisions.

VI. DEPENDENCE ON THE SIZE OF
THE COLLISION SYSTEM

In the independent source model framework, the centrality
fluctuations depend on the distribution of sources p(Ns) and
smearing from particle production for each source p(n). The

FIG. 12. The multiplicity-eccentricity mixed cumulants F (K2,B|A, ε2) calculated with three parameter sets for subevent B for centrality
defined in subevent A and compared with F (kv

2,A, ε2). The three panels corresponds three NBD parameter sets for subevent A. They are all
calculated for the wounded nucleon model.

044903-12



CENTRALITY FLUCTUATIONS IN HEAVY-ION COLLISIONS PHYSICAL REVIEW C 98, 044903 (2018)

FIG. 13. The distributions of Nw (left panel), ĉ2,ε{4} (second to the left), ĉ3,ε{4} (second to the right), and nscε (2, 3) (right panel) as a
function of Nw/2A. They are obtained using the wounded nucleon model from the sources without particle productions.

shape of p(Ns) also changes with the size of the collision
system, leading to different amount of centrality fluctuations.

We studied several nuclei covering a broad range of the Ns:
Xe + Xe,2 Cu + Cu, S + S, and O + O collisions, with total
number of nucleons 2A = 258, 126, 64, 32 respectively. The
Glauber simulation is carried out using the same NBD param-
eters from Table I, and experimental observables discussed in
previous sections are calculated for each collision system. For
simplicity, only results obtained with Par1 are discussed.

Figure 13 shows the distribution of Ns and eccentricity
cumulants from these collision systems in central collision
region prior to particle production. In order to compare them
properly across different collision systems, the x axes for
these quantities have been rescaled by Nmax

w = 2A. The eccen-
tricity cumulants ĉn,ε{4} and nscε (2, 3) remain negative over
the entire Nw range and are more negative for smaller collision
system.

Figure 14 shows the same quantities for event class binned
in particle multiplicity produced with Par1 from Table I. The

2We have not consider the nuclear deformation of Xe, which could
be important for ε2 in central collisions. However, it is expected to
not change the overall system size dependence.

x axes have been rescaled by the average multiplicity for
maximum number of sources, Nknee = 2An̄. The p(N ) dis-
tributions show significant tails in smaller systems comparing
to large systems, which are expected to affect the centrality
fluctuations and eccentricity fluctuations. Indeed, the ĉn,ε{4}
values show significant convex shape in the ultracentral re-
gion, which leads to a sign change when the collision systems
are large enough. It is interesting to note that the sign for
O + O system never changes. This is because the ĉn,ε{4}
values are significantly negative in Fig. 13, and any additional
smearing from p(n) apparently is not sufficient to make it to
flip sign.

Figure 15 shows the cumulants for centrality fluctuations.
As the collision system becomes smaller, the centrality range
where centrality fluctuations play a significant role becomes
much wider. However, the maximum magnitudes of these cu-
mulants in central collisions become smaller. Figure 16 shows
the multiplicity-eccentricity mixed cumulants F (kv

1, ε2) and
F (kv

2, ε2), the magnitude of F (kv
1, ε2) increases dramatically

for smaller collision system, but more or less similar be-
tween different systems for F (kv

2, ε2). These results suggest
that study of multiplicity and flow mixed cumulants for
different collision system are sensitive to the nature of the
sources and particle production mechanism. Measurement of

FIG. 14. The distributions of Nw (left panel), ĉ2,ε{4} (second to the left), ĉ3,ε{4} (second to the right), and nscε (2, 3) (right panel) as a
function of particle multiplicity scaled by the knee. The eccentricity cumulants are obtained from events binned in the final particle multiplicity
p(N ). The calculation is done using the wounded nucleon model and Par1 from Table I.
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FIG. 15. Cumulants for centrality fluctuations of different orders, kv
1 (left), kv

2 (middle), and kv
3 (right), as a function of scaled multiplicity

for different collision systems. They are calculated for parameter set Par1 of the NBD distribution in the wounded nucleon model.

system-size dependence of cumulants in ultracentral colli-
sions could provide detailed information on the nature of
coupling between centrality fluctuations and flow fluctuations
and help us to understand whether and how the sources driving
particle production and sources driving the flow fluctuation
are related to each other.

Last but not the least, Fig. 17 shows the correlation
between centrality fluctuation cumulant kv

m and eccentricity
cumulant ĉ2,ε{4}, both obtained using the same event cen-
trality definition according to Par1. Interesting system-size-
dependent behavior is observed in central collisions. Such
a pattern could be searched for in the experimental data
analysis.

VII. SUBEVENT MULTIPLICITY CUMULANTS
AND ECCENTRICITY CUMULANTS

In the standard cumulant method discussed before, all
particles passing the selection criteria are treated as a single
event, and all combinations (pairs, triplets, etc.) among these

particles are considered. In this section, we consider cumu-
lants calculated from subevents; i.e., particles in the combi-
nation are taken from different regions in η.3 This so-called
subevent cumulant method has been used in flow correlation
studies and has the advantages of suppressing short-range
correlations and exposing long-range dynamics of the event
[22–25]. Since centrality is a global property of the event,
multiplicity cumulants based on subevent method is a useful
tool to study the centrality fluctuations.

Let us consider several subevents a, b, c, each from a
unique η range, and construct the following “normalized”

3This should be distinguished from the subevent A for centrality
selection and subevent B used for cumulant analysis discussed
earlier. Subevent A is always assumed for centrality selection in all
cumulant methods. The key of subevent cumulant is to subdivided
particles used for analysis (subevent B) into smaller subevents and
only take combinations across these different smaller subevents.

FIG. 16. The multiplicity-eccentricity mixed cumulants F (kv
1, ε2) (left) and F (kv

2 , ε2 ) (right) as a function of scaled multiplicity for
different collision systems. They are calculated for parameter set Par1 of the NBD distribution in the wounded nucleon model.
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FIG. 17. The correlation between ĉ2,ε{4} and cumulants for CF cumulants kv
m obtained from the wounded nucleon model for the parameter

set Par1 from Table I.

two- and three-particle cumulants:

C2,ab = 〈δNaδNa〉
N̄aN̄b

, C3,abc = 〈δNaδNbδNc〉
N̄aN̄bN̄c

, C3,a2b =
〈
(δNa )2δNb

〉
N̄2

a N̄b

. (30)

C3,a2b corresponds to three-particle cumulants where two particles are chosen from subevent a and one particle from subevent
b. This notation is similar to the reduced correlation functions of Ref. [49]. We can identify the following four types of subevent
four-particle cumulants,

C4,abcd = 〈δNaδNbδNcδNd〉 − 〈δNaδNb〉〈δNcδNd〉 − 〈δNaδNc〉〈δNbδNd〉 − 〈δNaδNd〉〈δNbδNc〉
N̄aN̄bN̄cN̄d

,

C4,a2b2 = 〈(δNa )2(δNb )2〉 − 〈(δNa )2〉〈(δNb )2〉 − 2〈δNaδNb〉2

N̄2
a N̄2

b

,

(31)

C4,a2bc = 〈(δNa )2δNbδNc〉 − 〈(δNa )2〉〈δNbδNc〉 − 2〈δNaδNb〉〈δNaδNc〉
N̄2

a N̄bN̄c

,

C4,a3b = 〈(δNa )3δNb〉 − 3〈(δNa )2〉〈δNaδNb〉
N̄3

a N̄b

.

The same definitions can be obtained for correlation within each source by replacing uppercase letters with lowercase letters.
Some examples are given below:

c2,ab = 〈δnaδnb〉
n̄an̄b

, c3,abc = 〈δnaδnbδnc〉
n̄an̄bn̄c

,

(32)

c4,abcd = 〈δnaδnbδncδnd〉 − 〈δnaδnb〉〈δncδnd〉 − 〈δnaδnc〉〈δnbδnd〉 − 〈δnaδnd〉〈δnbδnc〉
n̄an̄bn̄cn̄d

.

For comparison purposes, we also define the normalized cumulants without using subevents:

C2 = 〈(δN )2〉
N̄2

, C3 = 〈(δN )3〉
N̄3

, C4 = 〈(δN )4〉 − 3〈(δN )2〉2

N̄4
, c2 = 〈(δn)2〉

n̄2
, c3 = 〈(δn)3〉

n̄3
, c4 = 〈(δn)4〉 − 3〈(δn)2〉2

n̄4
.

(33)

They are related to the previously defined cumulants by a normalization factor: Cm ≡ Km/N̄m−1 and cm ≡ km/n̄m−1.
Just like for the standard cumulants, the subevent multiplicity cumulants contain contributions from correlations within each

source and fluctuation of the Ns. In the independent source model, one can show that

C2,ab = 1

〈Ns〉
〈δnaδnb〉

n̄an̄b

+
〈
δN2

s

〉
〈δNs〉2 = c2,ab + kv

2

〈Ns〉 , C3,abc = c3,abc + (c2,ab + c2,ac + c2,bc )kv
2 + kv

3

〈Ns〉2 ,

C4,abcd = c4,abcd + (c2,abc2,cd + pe. + c3,abc + pe.)kv
2 + (c2,ab + pe.)kv

3 + kv
4

〈Ns〉3 . (34)
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“pe.” is a short-hand notation for other terms obtained
from permutation of abcd, e.g., c2,abc2,cd + pe. ≡
c2,abc2,cd + c2,acc2,bd + c2,adc2,bc, c3,abc + pe. ≡ c3,abc +
c3,abd + c3,acd + c3,bcd , and c2,ab + pe. ≡ c2,ab + c2,ac +
c2,ad + c2,bc + c2,bd + c2,cd . From these, we can see
normalized cumulants Cm scale as 1/〈Ns〉m−1.

One advantage of subevent cumulants is that they are much
less susceptible to the statistical bias present in the standard
cumulants [50]. To see this, let us consider events with
very small acceptance. In this case, p(n) follows a Poisson
distribution, and cm = 1/n̄m−1, which diverges when n̄ → 0.
Therefore, the nonvanishing values of cm reflect pure statisti-
cal effect and do not carry any dynamical information. In con-
trast, since the statistical fluctuations are uncorrelated between
different subevents, the subevent cumulants c2,ab, c3,abc, and
c4,abcd carry only dynamical correlations, and therefore one
expects c2,ab � c2, c3,abc � c3 and c4,abcd � c4 for small
detector acceptance. This conclusion is also true for Cm.

ATLAS has previously measured C2,ab(ηa, ηb ) in pp colli-
sions [51], where the two subevents are chosen differentially
in η over |η| < 2.4. The C2,ab signal is decomposed into
a short-range and a long-range component. The short-range
component has approximately a Gaussian shape in �η =
ηa − ηb with a width of about one unit, while the long-
range component scales as C2,ab ≈ aηaηb. The magnitude of
long-range component decreases as a function of N rec

ch , and
the value of the coefficient a is about 0.015 in minimum
bias pp collisions (see Fig. 7 in the auxiliary figure of
Refs. [51]). Therefore, with a reasonable rapidity gap require-
ment, subevent cumulants for each source is expected to have
very small values, assuming each source can be approximated
by the pp collision. This is expected as both the short-range
correlation and statistical bias has been suppressed. In this
case, the subevent cumulants for total multiplicity are ex-
pected to be dominated by centrality fluctuations:

C2,ab ≈ kv
2

〈Ns〉 , C3,abc ≈ kv
3

〈Ns〉2 , C4,abcd ≈ kv
4

〈Ns〉3 . (35)

This is especially true if the subevent used for centrality
selection has small acceptance and therefore larger centrality
fluctuations.

The subevent method also provide a natural way to use
mixed event technique to correct for detector effects, such
as nonbinomial detector response [52,53]. Take C3,abc as
an example, it can be measured in narrow pseudorapidity
bins and then integrated to broader η range to recover the
standard cumulant result [49]. The differential distribution
also provides a way to handle correlated detector effects such
as track splitting or merging effects, for example, by smooth-
ing the nonphysical structures in the differential distribution
C3,abc(ηa, ηb, ηc ) before the integration.

Another property of subevent cumulants is that for
C2,ab, C3,abc, and C4,abcd , where one particle is taken from
each subevent in constructing each pair, triplet, or quadruplet,
their factorial cumulant-moment is the same as the cumulant-
moment. This feature simplifies some technical difficulties in
experimental analysis, such as efficiency correction.

One can also generalize the subevent cumulant to
the multiplicity-eccentricity mixed cumulants. For example,

mixed cumulant between multiplicity variance and eccentric-
ity in Eq. (27) can be written as

F (K2,ab, εn) =
〈
δNaδNbε

2
n

〉
〈δNaδNb〉

〈
ε2
n

〉 − 1

= c2,abF
(
kv

1, εn

) + kv
2F

(
kv

2, εn

)
c2,ab + kv

2

≈ kv
2

c2,ab + kv
2

F
(
kv

2, εn

)
, (36)

where we have used the approximation that both c2,ab and
F (kv

1, εn) are small numbers. Therefore, the subevent cumu-
lants probe more directly the correlations between centrality
fluctuation and eccentricity fluctuation.

Our independent source model does not contain longitudi-
nal dynamics within each source; therefore, it cannot be used
to make precise prediction for the behavior of the subevent
cumulants. It would be interesting to extend the current model
framework to use pp collisions to approximate the correla-
tions within each source, as well as to calculate these observ-
ables using dynamic model of heavy-ion collisions, such as
HIJING [54], AMPT [55], and event-by-event hydrodynamics
models with full three-dimensional (3D) dynamical initial
states [36]. We leave this to a future work.

The standard cumulant and subevent cumulant method can
be generalized to any bulk observables that is sensitive to the
global fluctuations of the system. One example that has been
studied recently is the transverse momentum fluctuations,
which is sensitive the transverse size of the fireball. A event
with smaller transverse size accumulates stronger radial flow
and therefore a larger average transverse momentum, [pT]
[56]. This physics is beyond the scope of our independent
source model but has been studied in event-by-event hydro-
dynamics models. The authors of Refs. [50,57] have studied
the correlation of the [pT] between two pseudorapidity bins,
as well as mixed correlation between 〈pT〉 and harmonic
flow vn from several pseudorapidity bins. These correlations
have been shown to be less affected by nonflow backgrounds
and more sensitive to the transverse size fluctuations of the
fireball.

VIII. SUMMARY AND DISCUSSION

In heavy-ion collisions, due to fluctuations in the particle
production process, the centrality or the volume of the fireball
for events selected to have the same final-state particle mul-
tiplicity fluctuates from event to event. The so-called volume
or centrality fluctuations lead to significant uncertainties in in-
terpreting centrality dependence of experimental observables.
This paper investigates the effects of centrality fluctuations on
multiplicity and flow fluctuations in an independent source
model framework, which simulates the particle multiplicity
as a superposition of particles from Ns uncorrelated sources
in each event, N = ∑Ns

i=1 ni , where the particle multiplic-
ity in each source ni follows a common negative binomial
probability distribution p(n). A Glauber model is used to
simulate the transverse distribution of sources in each event
and to calculate the eccentricity εn. Following the standard
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experimental centrality selection procedure, the centrality
fluctuations are imposed by selecting events with fixed N ,
which contribute to event-by-event fluctuations of source
multiplicity and eccentricities: p(Ns), p(εn), p(εn, εm), and
p(Ns, εn). These distributions are directly related to exper-
imentally measurable distributions: p(N ), p(vn), p(vn, vm),
and p(N, vn). The main goal of this paper is to propose a set of
cumulant observables related to these distributions and study
their sensitivities to centrality fluctuations.

We first study the multiplicity cumulants Km, which de-
scribe multiplicity fluctuation p(N ) in Pb + Pb collisions.
In experimental data analysis, the centrality is typically de-
fined in one subevent A, and multiplicity cumulants are
calculated in a different subevent B for events in a narrow
centrality range. The total multiplicity cumulant Km,B|A there-
fore receives contributions from cumulant for each source
in subevent B km,B and centrality cumulants for the sources
Ns in subevent A, kv

m,A [see Eq. (17)]. Since our model
assumes km to be independent of Ns, the centrality dependence
of Km,B|A is mainly controlled by kv

m,A. We also studied
relation between the multiplicity cumulant for each source
km,A and the resulting centrality cumulants kv

m,A in subevent
A. In midcentral collisions where p(Ns) is a slowly varying
function, we derived a general formula, Eq. (12), relating km|A
and kv

m,A. This formula is valid independent of the functional
form of p(n) for the second-order cumulant or scaled variance
(m = 2), but is valid for higher order cumulants when p(n)
is negative binomial distribution (NBD). In central collisions
where p(Ns) is a rapidly changing function, the kv

m,A is found
to be dependent on the relative width of the p(n), σ̂ .

Next, we study the influence of the fluctuation of sources
on the eccentricities εn, which characterizes the shape of the
collision zone and drives the final-state harmonic flow vn. We
found that the centrality fluctuations for a given centrality
selection criteria influence significantly p(εn) and p(εn, εm).
This is especially true in central collisions, where eccentricity
fluctuations are very sensitive to any non-Gaussianity intro-
duced by centrality fluctuations. Indeed, we found that the
four-, six-, and eight-particle cumulants for ε2 and ε3 exhibit
rather complex sign-change patterns in central collisions,
indicative of significant non-Gaussianity in p(εn). Similar
sign-change patterns are also observed for four-particle sym-
metric cumulants between ε2 and ε3 and between ε2 and ε4,
consistent with significant non-Gaussianity of p(ε2, ε3) and
p(ε2, ε4) in central collisions. We found these eccentricity
cumulants are sensitive to the underlying p(Ns); they are also
sensitive to the σ̂ of p(n) but not its functional form. We
also studied mixed cumulants between multiplicity and eccen-
tricity to probe p(Ns, εn). We found a small anticorrelation
between Ns and ε2

n but a rather strong correlation between
variance of Ns, (δNs)2, and ε2

n in central collisions. Note
that the current studies ignores the fact that impact parameter
of nucleon-nucleon maybe correlated with A + A centrality,
which may lead to small centrality-dependent biases on the
calculated eccentricity values.

These studies are also repeated for smaller collisions
systems. We found the non-Gaussian behavior of centrality
fluctuations due to boundary effect of p(Ns) plays a more
important role: It influences kv

m in a wider centrality range

but the overall magnitudes of kv
m are smaller. The sign change

of eccentricity cumulants become less dramatic or disappear
in small systems. The anticorrelation between Ns and ε2

n

becomes stronger while the correlation between (δNs)2 and
ε2
n remains approximately the same for smaller systems. Re-

peating these studies in experimental data and comparing the
results with model predictions could improve our understand-
ing of the particle production mechanism, as well as the nature
of sources and their fluctuations as function of system size.

We also explore the possibility of using pseudorapidity-
separated subevents to study the multiplicity and flow fluctu-
ations. This so-called subevent cumulants avoid the statistical
bias arising from autocorrelations which complicate the inter-
pretation of the experimental results; they also allow a system-
atic separation of the short-range final-state dynamical effects
from long-range global event characteristics which often can
be associated with centrality fluctuations. The mathematical
expression is simplified in the subevent method, and the
results are expected to be closer to the expectation from global
centrality fluctuations [see Eqs. (35) and (36)]. The subevent
method also provides a natural way to use mixed-event tech-
niques to correct for detector effects, such as nonbinomial
detector response. They can be measured in narrow η bins
and then integrated to broader η range to recover the standard
cumulant result [49]. The differential distribution provides a
handle for the correlated detector effects such as track splitting
or merging effects, for example by smoothing nonphysical
structures in the differential distribution before integration.
Recently, a lot of experimental efforts have been devoted
to studies of fluctuation of conserved charges, such as net-
charge or net-proton fluctuations [12]. Since the centrality is
defined in a subevent separated from cumulant measurement,
the centrality fluctuations could be very important noncritical
flucutation background for these analyses [13].

Our present study assumes that the sources are boost
invariant in the longitudinal direction. In reality, the number of
sources Ns as well as their distributions in the transverse plane
may fluctuate in rapidity: (1) In models based on string picture
[32,33,36], the number of strings, their lengths, and their
endpoints in rapidity fluctuate. (2) The subnucleonic degrees
of freedom are expected to evolve with rapidity [34]: In the
forward rapidity, the projectile nucleons are dominated by a
few large-x partons, while the target nucleons are expected
to contribute mainly low-x soft gluons. (3) The number of
forward-going and backward-going participating nucleons,
NF

w and NB
w , are not the same in a given event [37,58]. For

these reasons, the Ns in general should be a function of η
even in a single event, which tends to weaken the centrality
correlation between different rapidities. This also means that
a simple combination of particles from two very different
rapidity regions may not improve the centrality resolution if
the longitudinal fluctuations are large. We plan to extend our
model framework to explore this direction in the future.

We believe that the study of the interevent longitudinal
fluctuations as a way to infer the bulk characteristic of the
entire A + A event will be an important direction of heavy-ion
research. Subevent correlation or subevent cumulant method
is a valuable tool to disentangle physics happening at dif-
ferent timescales. Initial studies on flow and multiplicity
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fluctuations have been performed at RHIC [59,60] and the
LHC [23,48,51,61] but with rather limited η range, comparing
to their respective beam rapidities. At RHIC, the STAR ex-
periment has embarked on a very significant forward upgrade
program, which extends the rapidity coverage for particle
identification from |η| < 0.9 to |η| < 1.5 [62], as well as
instrumenting the forward region 2.5 < η < 4 with tracking
detector and calorimeter [63]. A forward upgrade has also
been planned for the PHENIX experiment [64]. Experiments
at LHC also proposed forward upgrades [65], mostly notably
the upgrades from ATLAS and CMS to extend rapidity cover-
age of tracking from |η| < 2.5 to |η| < 4. Another interesting
possibility is to directly measure Nw in each event, therefore
the p(Nw), by detecting all spectator fragments using a dedi-
cated “centrality detector” [66], which should provide strong
model-independent constraints on the centrality fluctuations.4

These upgrades will allow us to work toward a complete
picture of the bulk characteristic of the entire event in the
coming years.
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APPENDIX A: FROM MULTIPLICITY FLUCTUATION
TO CENTRALITY FLUCTUATION

In this section, we discuss how the centrality selection in a
subevent is related to the resulting centrality fluctuation in the
same subevent. For large Ns, p(N ; Ns) can be approximated
by a narrow Gaussian distribution using central-limit theorem
[41]:

p(N ; Ns) ≈ 1√
2πσ 2Ns

e
− (N−n̄Ns )2

2σ2Ns , N̄ = n̄Ns (A1)

Therefore, the moments of multiplicity fluctuation can be
written as

〈(N − N̄ )k〉Ns =
∫

(N − N̄ )kp(N ; Ns)dN ≈
√

n̄√
2πσ 2

N̄k+1/2
∫

t ke−t2 n̄N̄

2σ2 dt, t ≡ N − N̄

N̄
. (A2)

Similarly the Ns fluctuation for at fixed N , which we denote as N̄ , can be approximated by

〈(Ns − N̄s)k〉N=N̄ =
∫

(Ns − N̄s)kp(N̄ ; Ns )p(Ns)dNs ≈ 1

n̄k

√
n̄√

2πσ 2
N̄k+1/2

∫
t k (1 + t )−1/2e− t2

1+t
n̄N̄

2σ2
1

n̄
p(Ns)dt

≈ 1

n̄k

√
n̄√

2πσ 2
N̄k+1/2

∫
xk (1 + x/2)ke−x2 n̄N̄

2σ2
1

n̄
p

(
N̄

n̄
(1 + x)

)
dx, x ≡ t2/(1 + t ), t ≡ n̄Ns − N̄

N̄
. (A3)

In these equations, the range where the integrand is significant is limited to |t |, |x| � 1.
In midcentral collisions, where p(Ns) can be treated as constant, the following approximation holds for even k:

〈(Ns − N̄s)k〉N=N̄ ≈ n̄k〈(N − N̄ )k〉Ns , k = 2, 4, . . . . (A4)

From this, we obtain a useful relation for the scaled variance,

k2 ≈ n̄kv
2, (A5)

which relates the multiplicity fluctuation for each source with the corresponding centrality fluctuation obtained by fixing N in
the same subevent. The approximation Eq. (A1), however, is not sufficient for calculating the third- and higher order cumulants,
since they are zero for Gaussian fluctuation. We need to consider non-Gaussian feature of p(N ; Ns).

If p(n) follows NBD distribution, some useful relations can be derived between 〈(δNs)k〉N=N̄ and 〈(δN )k〉Ns
. Using the

relation npnbd(n; m,p) = mpnbd(m; n, 1 − p), Eqs. (A2) and (A3) become

〈(δN )k〉Ns =
∫

(δN )kpnbd(N ; mNs, p)dN =
∫

(δN )kpnbd

(
N ;

1 − p

p
N̄, p

)
dN, (A6)

〈(δNs)k〉N=N̄ =
∫

(δNs)kpnbd(N̄ ; mNs, p)p(Ns)dNs =
∫

(δNs)k
mNs

N̄
pnbd

(
1 − p

p
n̄Ns; N̄, 1 − p

)
p(Ns)dNs

= 1

n̄k

∫
(δX)k

1 − p

p
pnbd

(
1 − p

p
X; X̄, 1 − p

)
p
(

X
n̄

)
X

n̄X̄
dX

= 1

n̄k

pk

(1 − p)k

∫
(δY )kpnbd

(
Y ;

p

1 − p
Ȳ , 1 − p

)
p
(

p
1−p

Y
n̄

)
Y

n̄Ȳ
dY, (A7)

where the following substitutions have been used: X = n̄Ns, X̄ = N = n̄N̄s, and Y = 1−p
p

X.

4This is an extension to the commonly used zero-degree calorimeter at RHIC and LHC, which detects only a small fraction of all spectators.
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If p(Ns)Ns is a slowly varying function and therefore assumed to be constant in the significant integration range, the
integration in the last part of Eq. (A7) is the same as that appearing in Eq. (A6) except that parameter p is replaced with
1 − p. If p = 0.5, km are the same as n̄m−1kv

m. But in general, we arrive the following relation between multiplicity fluctuation
calculate for p and induced centrality fluctuation calculated for 1 − p:

n̄m−1kv
m(1 − p) = pm−1

(1 − p)m−1
km(p), (A8)

Substituting km with Eq. (10), we obtain the following relations for the first three cumulants:

r2 = n̄kv
2

k2
= n̄2〈(δNs)2〉

〈(δN )2〉 = 1, r3 = n̄2kv
3

k3
= n̄3〈(δNs)3〉

〈(δN )3〉 = 2 − p

1 + p
,

1

2
� r3 � 2,

(A9)

r4 = n̄3kv
4

k4
= n̄4(〈(δNs)4〉 − 3〈(δNs )2〉2)

〈(δN )4〉 − 3〈(δN )2〉2
= p2 + 6(1 − p)

(1 − p)2 + 6p
,

1

6
� r4 � 6.

The fact that r2 = 1 simply confirms Eq. (A5), which is valid
for any p(n) distribution. However, depending on the param-
eter p of the NBD distribution, the range of r3 is between 1/2
and 2, while the range of r4 is between 1/6 and 6. Since the
NBD distribution approaches Poisson distribution for p → 0,
we expect r3 = 2 and r4 = 6 if the particle production for each
source follows a Poisson distribution. On the other hand, when
p → 1, the NBD distribution approaches a � distribution
p(n; m, θ ) = 1

�(m)θm nm−1e−n/θ with θ = 1
1−p

→ ∞ and m =
k. In this limit, the r3 = 1/2 and r4 = 1/6.

In regions of centrality where p(Ns) is a rapidly changing
function, e.g., very peripheral or ultracentral regions, there
is no simple relation between kv

m and km. In the ultracentral
region, however, one could use the Gaussian approximation,
Eq. (A1), to estimate the centrality fluctuation:

〈(δNs)k〉 ≈
∫

(δNs)k
1√

2πσ̂ 2Ns

e
− (Ns−N̄s )2

2σ̂2Ns p(Ns)dNs. (A10)

This shows that the centrality fluctuation is insensitive to the
details of p(n) for each source; rather, it is only sensitive to
the relative width σ̂ of p(n). For example, two pnbd(n; m,p)
distributions with different average multiplicity but same rel-

ative width should have the same higher order moments and
cumulants for centrality fluctuations.

APPENDIX B: EXPRESSIONS FOR MIXED
AND SUBEVENT CUMULANTS

In the independent source model framework, eccentricity
depends only on the fluctuation of position of sources and
not the multiplicity within each source; therefore, the mixed
correlations between multiplicity and eccentricity can be
written as〈

Nε2
n

〉 = n̄
〈
Nsε

2
n

〉
, (B1)〈

(δN )2ε2
n

〉 = 〈(δn)2〉〈Nsε
2
n

〉 + n̄2
〈
(δNs)2ε2

n

〉
, (B2)〈

(δN )3ε2
n

〉 = 〈(δn)3〉〈Nsε
2
n

〉 + 3n̄〈(δn)2〉〈(δNs)2ε2
n

〉
+ n̄3

〈
(δNs)3ε2

n

〉
. (B3)

The forms are very similar to the multiplicity cumulants,
Eq. (9) (see also Ref. [67]). For example, the two terms in
the right-hand side of Eq. (B2) represent the contribution
of correlation within each source and correlation between
different sources, respectively. From this, one can derive
the expression for mixed correlators containing higher order
multiplicity correlations:

F (k1, εn) = F
(
kv

1, εn

)
, F (k2, εn) = k2F

(
kv

1, ε2
) + n̄kv

2F
(
kv

2, εn

)
k2 + n̄kv

2

,

F (k3, εn) = k3F
(
kv

1, εn

) + 3k2n̄kv
2F

(
kv

2, εn

) + n̄2kv
3F

(
kv

3, εn

)
k3 + 3k2n̄kv

2 + n̄2kv
3

,

F (k4, εn) = k4F
(
kv

1, εn

) + (
4k3 + 3k2

2

)
n̄kv

2F
(
kv

2, εn

) + 6k2n̄
2kv

3F
(
kv

3, εn

) + n̄3kv
4F

(
kv

4, εn

)
k4 + (

4k3 + 3k2
2

)
n̄kv

2 + 6k2n̄2kv
3 + n̄3kv

4

. (B4)

Similarly, we can also derive the expressions for subevent correlation:

〈δNaδNb〉 = 〈Ns〉〈δnaδnb〉 + 〈
δN2

s

〉
n̄an̄b,

〈δNaδNbδNc〉 = 〈δnaδnbδnc〉〈Ns〉 + (n̄a〈δnbδnc〉 + n̄b〈δnaδnc〉 + n̄c〈δnaδnb〉)〈(δNs )2〉 + n̄an̄bn̄c〈(δNs)3〉, (B5)

〈(δNa )2δNb〉 = 〈(δna )2δnb〉〈Ns〉 + (2n̄a〈δnaδnb〉 + n̄b〈(δna )2〉)〈(δNs)2〉 + n̄2
an̄b〈(δNs)3〉.
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They lead to the following expressions for some selected normalized subevent cumulants:

C2,ab = 〈δNaδNb〉
N̄aN̄b

= 1

〈Ns〉
〈δnaδnb〉

n̄an̄b

+
〈
δN2

s

〉
〈δNs〉2

= c2,ab + kv
2

〈Ns〉 ,

C3,abc = 〈δNaδNbδNc〉
N̄aN̄bN̄c

= c3,abc + (c2,ab + c2,ac + c2,bc )kv
2 + kv

3

〈Ns〉2
,

C3,a2b = 〈(δNa )2δNb〉
N̄2

a N̄b

= c3,a2b + (2c2,ab + c2,a2 )kv
2 + kv

3

〈Ns〉2
,

C4,abcd = c4,abcd + (c2,abc2,cd + pe. + c3,abc + pe.)kv
2 + (c2,ab + pe.)kv

3 + kv
4

〈Ns〉3
,

C4,a2b2 = c4,a2b2 + (
c2,a2c2,b2 + 2c2

2,ab + 2c3,a2b + 2c3,ab2

)
kv

2 + (c2,a2 + c2,b2 + 4c2,ab )kv
3 + kv

4

〈Ns〉3
. (B6)

The subevent method can also be generalized to multiplicity-eccentricity mixed cumulants, for example,

F (K2,ab, εn) =
〈
δNaδNbε

2
n

〉
〈δNaδNb〉

〈
ε2
n

〉 − 1 = c2,abF
(
kv

1, ε2
) + kv

2F
(
kv

2, εn

)
c2,ab + kv

2

, (B7)

F (K3,abc, εn) =
〈
δNaδNbδNcε

2
n

〉
〈δNaδNbδNc〉

〈
ε2
n

〉 − 1 = c3,abcF
(
kv

1, εn

) + (c2,ab + c2,ac + c2,bc )kv
2F

(
kv

2, εn

) + kv
3F

(
kv

3, εn

)
c3,abc + (c2,ab + c2,ac + c2,bc )kv

2 + kv
3

. (B8)

If the higher order centrality fluctuation dominates, one expects F (K2,ab, εn) ≈ F (kv
2, εn) and F (K3,abc, εn) ≈ F (kv

3, εn).
Finally, in the independent source model framework, we can also relate the cumulants to some of the strongly intensive

quantities studied earlier [68,69]. For example, correlators describing correlations between the multiplicity in two subevents can
be written as [70]

�[Na,Nb] ≡ 1

〈Na〉 + 〈Nb〉 [〈Na〉K2,b + 〈Nb〉K2,a − 2(〈NaNb〉 − 〈Na〉〈Nb〉)] = n̄ak2,b + n̄bk2,a − 2〈δnaδnb〉
n̄a + n̄b

,

�[Na,Nb] ≡ 1

〈Na〉 + 〈Nb〉 [〈Nb〉K2,a − 〈Na〉K2,b] = n̄bk2,a − n̄ak2,b

n̄a + n̄b

. (B9)

APPENDIX C: OTHER RESULTS

Figure 18 shows centrality dependence of several nor-
malized cumulant observables for the two-component model.
They are complementary to those shown in Fig. 8. Figure 9
has shown that the eccentricity cumulants depend only on the
relative width of p(n) of the negative binomial distribution.
Other forms of p(n) are tried as well, including Gaussian,
triangle, flat, or even double-δ distributions as shown in the

left panel of Fig. 19. These functions have been chosen to have
identical σ̂ and n̄. The resulting multiplicity distributions,
as well as the normalized eccentricity cumulant c2,ε{4}, are
shown in the middle and right panels of Fig. 19, respectively.
The results are found to be insensitive to the functional form
p(n) the centrality range shown. Figures 20 and 21 show the
multiplicity-ε3 mixed cumulants; they are complementary to
those shown in Figs. 11 and 12 for ε2.

FIG. 18. The normalized cumulants ĉ3,ε{4} (left), nsc(2, 3) (second to the left), nsc(2, 4) (second to the right), and asc(2, 4) (right) for the
three-parameter sets in Table I for the two-component model. They are calculated in narrow particle multiplicity bins and then combined and
mapped to an average number of Nan.
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FIG. 19. The multiplicity distribution for each source p(n) (left panel) and the corresponding total multiplicity distribution p(N ) (middle)
and four-particle normalized cumulant ĉ2,ε{4} (right panel). They are calculated in the wounded nucleon model with σ̂ = 0.4 for Pb + Pb
collisions. The large statistical error bar is due to limited event statistics in the simulation.

FIG. 20. The multiplicity-eccentricity mixed cumulants F (K1,B|A, ε3) calculated with three parameter sets for subevent B for centrality
defined in subevent A and compared with F (kv

1,A, ε3). All four curves are found to be on top of each other. The three panels corresponds three
different NBD parameter sets for subevent A. They are all calculated for the wounded nucleon model.

FIG. 21. The multiplicity-eccentricity mixed cumulants F (K2,B|A, ε3) calculated with three parameter sets for subevent B for centrality
defined in subevent A and compared with F (kv

2,A, ε3). The three panels correspond to three NBD parameter sets for subevent A. They are all
calculated for the wounded nucleon model.
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