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We construct nucleonic microscopic optical potentials by combining the Green’s function approach with the
coupled-cluster method for 40Ca and 48Ca. For the computation of the ground states of 40Ca and 48Ca, we
use the coupled-cluster method in the singles-and-doubles approximation, while for the A = ±1 nuclei we
use particle-attached and particle-removed equation-of-motion method truncated at two-particle–one-hole and
one-particle–two-hole excitations, respectively. Our calculations are based on the chiral nucleon-nucleon and
three-nucleon interaction NNLOsat, which reproduces the charge radii of 40Ca and 48Ca, and the chiral nucleon-
nucleon interaction NNLOopt. In all cases considered here, we observe that the overall form of the neutron
scattering cross section is reproduced for both interactions, but the imaginary part of the potential, which reflects
the loss of flux in the elastic channel, is negligible. The latter points to neglected many-body correlations that
would appear beyond the coupled-cluster truncation level considered in this work. We show that, by artificially
increasing the parameter η in the Green’s function, practical results can be further improved.
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I. INTRODUCTION

Nuclear reactions are the primary experimental tool to
study atomic nuclei. With the recent progress in the devel-
opment of rare-isotopes beams (RIBs), regions of the nuclear
chart far from stability, that were previously out of reach, are
now becoming accessible. More progress is expected, with
future projects at RIB facilities, to explore systems far from
stability [1–3]. In parallel to the progress on the experimental
side, efforts should be pursued on the theoretical front to
develop or extend reaction models to nuclei far from stability.

It is customary in reaction theory to reduce the many-body
picture to a few-body one where only the most relevant de-
grees of freedom are retained [4]. In that case, one introduces
effective interactions, the so-called optical potentials, between
the clusters considered. Traditionally, these interactions have
been constrained by data, particularly data on stable isotopes.
Consequently, the use of these potentials to study exotic nuclei
is unreliable and has uncontrolled uncertainties. In order to
advance the field of nuclear reactions, it is then critical to
connect the effective interaction to an underlying microscopic
theory, so that extrapolations to exotic regions are better under
control, together with rigorous assessment of uncertainties.

Realistic ab initio nuclear structure calculations based on
nucleon-nucleon (NN ) and three-nucleon forces (3NFs) from
chiral effective field theory [5–7] have now reached the point
where reliable predictions for nuclei as heavy as 100Sn [8]
can be made. This progress is due to the development of
many-body methods that scale polynomially with system’s
size [9–19] and ever-increasing computational power. On the
other hand, the ab initio nuclear reaction community is behind

in reached mass number, precision, and accuracy. There has
been a lot of effort in developing microscopic reaction theories
for light nuclei starting from realistic NN and 3NFs [20–30],
while less so for medium-mass and heavy nuclei [31–35].
With upcoming experiments on rare isotopes in the medium-
and heavy-mass regions of the nuclear chart, it is important
to develop ab initio reaction theory that can make accurate
predictions in these mass regions. It is the aim of this paper to
take the first steps toward this goal.

In this paper, we will present ab initio calculations of
nucleon-nucleus optical potential for the doubly magic nuclei
40Ca and 48Ca. This work follows up on a previous study [35].
The optical potential (also known as the self-energy) enters
the Dyson equation together with the one-body Green’s func-
tion. Assuming some approximations for the self-energy, the
standard way of obtaining the optical potential is to iterate
the nonlinear Dyson equation until a self-consistent solution
is obtained. This is known as the self-consistent Green’s func-
tion approach [11,36–38]. Our approach differs from the self-
consistent Green’s function approach in that the optical poten-
tial is obtained directly by inverting the Dyson equation [35].
We calculate the single-particle Green’s function by combin-
ing the coupled-cluster method [9,10,39–43] with the Lanczos
continued fraction method [27,32,35,44–46] and employing a
complex Berggren basis [47–51]. In this work, we focus on the
chiral NN and NNN interaction NNLOsat, which has been
shown to produce accurate ground-state energies and charge
radii from light- to medium-mass nuclei [52–56].

This paper is organized as follows. In Sec. II, we
briefly revisit the formalism of the Green’s function and the

2469-9985/2018/98(4)/044625(10) 044625-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.98.044625&domain=pdf&date_stamp=2018-10-29
https://doi.org/10.1103/PhysRevC.98.044625


ROTUREAU, DANIELEWICZ, HAGEN, JANSEN, AND NUNES PHYSICAL REVIEW C 98, 044625 (2018)

coupled-cluster method along with the Berggren basis. We
start Sec. III by showing the convergence pattern of the
optical potentials associated with the bound states in 41Ca
and 49Ca and then present cross-section results for the neu-
tron elastic scattering on 40Ca and 48Ca. For comparison,
we also show calculated elastic cross sections obtained with
the NNLOopt [57] interaction (also derived within the chiral-
EFT approach) and the phenomenological Koning-Delaroche
(KD) potential [58]. Finally, we conclude and discuss future
possible applications in Sec. IV.

II. FORMALISM

A. The single-particle Green’s function

Let us consider a nucleus with A nucleons. As outlined in
Ref. [35], the single-particle Green’s function for that nucleus
has matrix elements

G(α, β,E) = 〈�0|aα

1

E − (
H − EA

gs

) + iη
a
†
β |�0〉

+ 〈�0|a†
β

1

E − (
EA

gs − H
) − iη

aα|�0〉, (1)

where α and β represent single-particle states, and |�0〉
represents the ground state of the nucleus with energy EA

gs .
By definition, the parameter η is such that in the physical
limit η → 0+. The operators a†

α and aβ create and annihilate
a nucleon in the single-particle states α and β, respectively,
and their labels are shorthand for the quantum numbers α =
(n, l, j, jz, τz). Here, n, l, j, jz, τz label the radial quantum
number, the orbital angular momentum, the total orbital mo-
mentum, its projection on the z axis, and the isospin projec-
tion, respectively. The intrinsic Hamiltonian H reads

H =
A∑

i=1

�pi
2

2m
−

�P 2

2mA
+

∑
i<j

Vij +
∑

i<j<k

Vijk, (2)

with �pi being the momentum of the nucleon i of mass m

and �P = ∑A
i=1 �pi being the momentum associated with the

center-of-mass motion. The terms Vij and Vijk are NN and
3NFs, respectively. It is useful to rewrite the Hamiltonian as

H =
A∑

i=1

�p2
i

2m

(
1 − 1

A

)
+

∑
i<j

(
Vij − �pi �pj

mA

)
+

∑
i<j<k

Vijk,

(3)

where one separates the one-body and two-body (three-body)
contributions. In the following, we work with the single-
particle basis solutions of the Hartree-Fock (HF) potential
generated by H . We recall here that the HF basis is a good
starting point for coupled-cluster calculations and that the HF
Green’s function denoted as G(0) is a first-order approxima-
tion to the Green’s function (1). The Green’s function fulfills
the Dyson equation

G(α, β,E) = G(0)(α, β,E) +
∑
γ,δ

G(0)(α, γ,E)

×�∗(γ, δ, E)G(δ, β,E). (4)

Here, �∗(γ, δ, E) is the self-energy, which can be obtained
from the inversion of Eq. (4):

�∗(E) = [G(0)(E)]−1 − G−1(E). (5)

Finally, one obtains the optical potential as

�′ ≡ �∗ + U, (6)

where U is the HF potential. For E � EA
gs , �′ in Eq. (6)

corresponds to the optical potential for the elastic scattering
from the A-nucleon ground state [59,60]. For E � EA

gs , �
′ has

a discrete number of solutions which correspond to the bound
states in the A + 1 nucleon system. The optical potential is
nonlocal, energy-dependent, and complex [60]; for E � EA

gs ,
its imaginary component describes, by construction, the loss
of flux due to absorption into channels other than the elastic
channel.

In this paper, the optical potential is obtained by inverting
the Dyson equation (4) after a direct computation of the
Green’s function (1) with the coupled-cluster method [43].
In the following, we present the main steps involved in the
computation of the Green’s function in our approach.

B. Coupled-cluster approach for the Green’s function

In this section, we briefly show how we construct the
Green’s function following the coupled-cluster method. For a
more detailed account, we refer the reader to Refs. [35,41,43].
In coupled-cluster theory, the ground state is represented as

|�0〉 = eT |�0〉, (7)

where T denotes the cluster operator which gets expanded in
the number of particle-hole excitations

T = T1 + T2 + · · ·
=

∑
i,a

tai a†
aai + 1

4

∑
ijab

tab
ij tijaba

†
aa

†
bajai + · · · . (8)

The operators T1 and T2 induce 1p-1h and 2p-2h excitations of
the HF reference, respectively. Here, the single-particle states
i, j, ... refer to hole states occupied in the reference state |�0〉
while a, b, ... denote valence states above the reference state.
In practice, the expansion (8) is truncated. In the coupled
cluster with singles and doubles (CCSD), all operators Ti

beyond i = 2 are neglected.
One can show that the CCSD ground state is an eigenstate

of the similarity-transformed Hamiltonian H ≡ e−T HeT in
the space of 0p-0h, 1p-1h, and 2p-2h configurations. Note
that the transformed Hamiltonian is not Hermitian because the
operator eT is not unitary. As a consequence, H has left and
right eigenvectors which constitute a biorthogonal basis with
the following completeness relation∑

i

|�i,R〉〈�i,L| = 1̂, (9)

where the right ground state |�0,R〉 is the reference state |�0〉,
while the left ground state is given by 〈�0,L| = 〈�0|(1 + �)
with � a linear combination of particle-hole de-excitation
operators.
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Using the ground state of the similarity-transformed
Hamiltonian H , we can now write the coupled-cluster Green’s
function GCC as

GCC (α, β,E)

≡ 〈�0,L|aα

1

E − (
H − EA

gs

) + iη
a
†
β |�0〉

+ 〈�0,L|a†
β

1

E − (
EA

gs − H
) − iη

aα|�0〉. (10)

In the expression above, aα = e−T aαeT and a
†
β = e−T a

†
βeT

are the similarity-transformed annihilation and creation oper-
ators, respectively. We note that the truncation of the cluster
operator T is reflected in the expression of the coupled-cluster
Green’s function (10) and, if all excitations up to Ap-Ah were
taken into account in the expansion (8), the Green’s func-
tion (10) would be exact and identical to (1). In principle, the
Green’s function could be obtained by inserting completeness
relations into (10), with the solutions of the A ± 1 systems
obtained with the particle-attached equation of motion (PA-
EOM) and particle-removed equation of motion (PR-EOM)
coupled-cluster methods [61]. However, in practice, this ap-
proach is difficult to pursue as the sum over all states also
involves eigenstates in the continuum. To bypass this issue, we
use the Lanczos continued fraction technique [27,32,35,44–
46] for the computation of the Green’s function Eq. (10).

C. Berggren basis

Our goal is to compute the optical potential for elastic
scattering at arbitrary energies. However, as η → 0+, the
coupled-cluster Green’s function in Eq. (10) has poles at en-
ergies E = (EA+1

i − EA
gs ) (with EA+1

i being the eigenvalues
of the A + 1 system), which make the numerical calculation
unstable.

In order to bypass this issue, we consider, as we did in
Ref. [35], an analytic continuation of the Green’s function
in the complex-energy plane. This is achieved by working in
the complex Berggren basis (generated by the HF potential),
which includes bound, resonant, and discretized nonresonant
continuum states [47–51]. In our previous work, we con-
sidered only NN interactions, while in this work we also
consider 3NFs, and the transformation of the Hamiltonian to
the Berggren basis is thus much more involved. In order to
obtain the Berggren HF basis and transform the Hamiltonian
with 3NFs to this basis, we follow the numerically efficient
procedure outlined in Ref. [62]. As a consequence, the many-
body spectrum for the A + 1 (A − 1) systems obtained with
the PA-EOM (PR-EOM) is composed of bound, resonant, and
complex-continuum states, i.e., the poles of the analytically
continued Green’s function have either a negative real or
complex energy. In that case, the Green’s function matrix
elements for E � 0 smoothly converge to a finite value as
η → 0+.

In order to fulfill the Berggren completeness [47], the
complex-continuum single-particle states must be located
along a contour L+ in the fourth quadrant of the complex
momentum plane, below the resonant single-particle states.

According to the Cauchy theorem, the form of the contour
L+ is not important, as long as all resonant states lie between
the contour and the real momentum axis. The Berggren com-
pleteness then reads

∑
i

|ui〉〈ũi | +
∫

L+
dk|u(k)〉〈 ˜u(k)| = 1̂, (11)

where |ui〉 are discrete states corresponding to bound and res-
onant solutions of the single-particle potential, and |u(k)〉 are
complex-energy scattering states along the complex-contour
L+. In practice, the integral along the complex continuum is
discretized, yielding a finite discrete basis set.

III. RESULTS

We present here applications of the coupled-cluster
Green’s function approach for 40Ca and 48Ca. We show results
for the bound states in 41Ca and 49Ca as well as for the neutron
elastic scattering.

Calculations are performed using the NNLOsat chiral inter-
action [52] which reproduces the binding energy and charge
radius for both systems [53,54]. All results reported here
are obtained from coupled-cluster calculations truncated at
the CCSD level, while the PA-EOM and PR-EOM Lanczos
vectors have been truncated at the 2p-1h and 1p-2h excitation
level, respectively.

We first perform HF calculations in a single-particle basis
that employs a mixed representation of harmonic oscillator
and Berggren states. More precisely, to calculate a neutron-
target optical potential in the (l, j ) channel, we use only
Berggren states for the (l, j ) neutron partial wave, whereas
the rest are taken as harmonic oscillator shells. We include
all harmonic oscillator shells such that 2n + l � Nmax. We
checked that the results do not require a special treatment of
the continuum in the other partial waves. The Berggren states
are introduced as a discretized set of Nberg = 50 states along
a contour in the complex-k plane up to kmax = 4 fm−1. This
is sufficiently precise to ensure that results are independent of
the form of the contour in the complex plane.

The NNLOsat interaction includes two-body and three-
body terms. Let us denote by N2 and N3 the cutoffs of the
interaction terms defined respectively as the maximum num-
ber of quanta allowed in the relative motion of two nucleons
and three nucleons. In all calculations here, we always take
N2 = Nmax and N3 is taken equal to Nmax, except for the most
extensive calculations considered here where Nmax = 14 and
N3 = 16. Moreover, the three-nucleon forces are truncated at
the normal-ordered two-body level in the HF basis [62]. The
harmonic oscillator frequency is kept fixed at h̄ω = 16 MeV.

To provide perspective, we also show results for the neu-
tron elastic scattering obtained with the chiral NN interaction
NNLOopt interaction [57]. In that case, the calculations were
carried out for Nmax = 14 with the harmonic oscillator fre-
quency h̄ω = 20 MeV.

We begin by studying the numerical convergence for the
bound states and the associated optical potentials in 41Ca
and 49Ca.
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TABLE I. PA-EOM CCSD energies (in MeV) for bound states
in 41Ca and 49Ca calculated with the chiral NNLOsat interaction as a
function of Nmax.

Nmax E(7/2−) E(3/2−) E(1/2−)

41Ca
12 −7.35 −3.47 −1.31
14 −7.62 −3.87 −1.80

14 (N3 = 16) −7.84 −4.07 −2.15
Exp −8.36 −6.42 −4.74
49Ca E(3/2−) E(1/2−) E(5/2−)

12 −3.88 −2.025 −0.37
14 −4.35 −2.40 −1.00

14 (N3 = 16) −4.56 −2.45 −1.42
Exp −5.14 −3.12 −1.56

A. Convergence for bound states

The energy for the bound states in 41Ca and 49Ca, solutions
of the PA-EOM CCSD equations, are shown in Table I as
a function of Nmax. For both nuclei, there are only three
bound states supported by the NNLOsat Hamiltonian. As
expected, the convergence pattern is slower for the higher
energy states. Specifically, for 41Ca, the difference between
the energies obtained for (Nmax, N3) = (14,14) and (14,16)
is ≈220 keV in the case of the ground state, whereas it
is ≈350 keV in the case of the Jπ = 1/2− second ex-
cited state. For 49Ca, the difference is ≈210 keV for the
ground state and ≈420 keV for the Jπ = 5/2− excited
state.

Even though the absolute binding energy is underestimated
in the CCSD approximation, when compared to experiment
(for 40Ca we obtain a binding energy of 299.28 MeV for
(Nmax, N3) = (14, 16), whereas the experimental value is
342.05 MeV), the neutron separation energies are consis-
tently within 600 keV of the experimental values. By in-
cluding both perturbative triple excitations and perturbative
estimates for the neglected residual 3NFs (3NF terms beyond
the normal-ordered two-body approximation), a good agree-
ment with experimental binding energies can be obtained for
40,48Ca [53].

We show for illustration in Fig. 1, the converging
pattern of the real part of the radial (diagonal) optical po-
tential for the three bound states in 41Ca. By construction,
the calculated eigenenergies of these potentials are equal to
the bound-state energies in Table I when using the effec-
tive mass m A/(A − 1) instead of the actual reduced mass
m (A − 1)/A. This can be traced to Eq. (3), where the ef-
fective mass associated with the kinetic operator is equal
to m A/(A − 1).

In the following, we study the convergence pattern for the
neutron elastic scattering on 40Ca and 48Ca and the corre-
sponding optical potentials.

B. Convergence for scattering states

We now turn our attention to the neutron elastic scatter-
ing on 40Ca and 48Ca. For each partial wave, the scattering
phase shift is calculated from the single-particle Schrödinger

FIG. 1. Real part of the radial (diagonal) optical potential for
the bound states in 41Ca, calculated with the NNLOsat interaction.
Results are shown for the f7/2, p3/2, and p1/2 neutron partial waves
and for several values of Nmax.

equation using the optical potential in Eq. (6) and the reduced
mass m (A − 1)/A. Few comments are in order here. Since
the calculations of the optical potential are performed using
the laboratory coordinates [the Hamiltonian H in Eq. (3)
is defined with these coordinates], the optical potential in
Eq. (6) is obtained in these coordinates and not in the relative
neutron-target coordinate. However, we will assume here that
we can identify the potential in the relative coordinate with
the potential calculated with Eq. (6). The error associated
with this approximation gets smaller as the mass of the nuclei
involved increases [63].

We show in Table II the real part of the phase shifts for
a few partial waves for each isotope, at a given scattering
beam energy. The results are shown as a function of Nmax

for neutron scattering at E = 5.17 MeV on 40Ca, and at
E = 7.81 MeV on 48Ca. One can see that some of the
phase shifts in Table II are well converged, whereas there
are variations with the model-space sizes in other cases. For
instance, convergence is reached for all but the s1/2 and d3/2

partial waves for the neutron scattering on 40Ca at 5.17 MeV.
For the neutron scattering on 48Ca at 7.81 MeV, the phase

TABLE II. Real part (in degrees) of the neutron scattering phase
shifts calculated with the NNLOsat Hamiltonian at 5.17 MeV for 40Ca
and 7.81 MeV for 48Ca. Results are shown as a function of Nmax.

Nmax δs1/2 δp1/2 δp3/2 δd3/2 δd5/2

40Ca (E = 5.17 MeV)
12 −93 80 89 1 −99
14 −75 77 88 18 −86

14 (N3 = 16) −68 78 89 35 −86
δs1/2 δp1/2 δp3/2 δg7/2 δg9/2

48Ca (E = 7.81 MeV)
12 −93 55 62 13 −10
14 −83 53 65 22 −10

14 (N3 = 16) −85 53 69 37 −11
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FIG. 2. Differential elastic cross section for 40Ca(n, n)40Ca at
5.17 MeV, calculated with the NNLOsat interaction, as a function of
Nmax. Data points are taken from Ref. [58].

shifts are converged for all but the g7/2 partial wave. This
difference in the convergence pattern is not unexpected and
we have found that the partial waves for which the phase shifts
converge slower correspond to those that exhibit a stronger
energy dependence around the energy of interest.

For both systems, the phase shifts should have a finite
imaginary part which reflects the loss of flux in the elastic
channel. For instance, in the case of 40Ca at E = 5.17 MeV,
there is a potential absorption due to excitation of 40Ca to
either its first excited state E(0+) = 3.35 MeV or second
excited state E(3−) = 3.74 MeV. However, calculations yield
a negligible value for the absorption in all partial waves. We
will return to this point in the next section.

Next, we obtain elastic angular distributions by summing
the contribution from each partial wave. We show in Figs. 2
and 3 the angular distribution for 40Ca(n, n)40Ca at 5.17
MeV and 48Ca(n, n)48Ca at 7.81 MeV, as a function of Nmax.
We find that the inclusion of partial waves with angular

FIG. 3. Differential elastic cross section for 48Ca(n, n)48Ca at
7.81 MeV, with the NNLOsat interaction, as a function of Nmax. Data
points are taken from Ref. [58].

FIG. 4. Real part of the diagonal optical potential for
40Ca(n, n)40Ca at E = 5.17 MeV, calculated with the NNLOsat

interaction, as a function of Nmax. Results are shown for the neutron
p1/2, p3/2, d3/2, d5/2 partial waves.

momentum L � 5 and L � 6 is sufficient for 40Ca and 48Ca,
respectively, the contribution of partial waves with higher L
being negligible. All scattering phase shifts other than the
ones shown in Table II have converged with respect to Nmax.
The variations around the first minimum are significant and
are a consequence of the convergence pattern of the scattering
phase shifts with Nmax. We understand then that the calculated
cross sections will contain an error due to the model-space
truncation. Note that however, for (Nmax, N3) = (14, 16), the
calculated distribution for 48Ca(n, n)48Ca is already in ex-
cellent agreement with the data at lower angles where the
differential cross section is the largest.

Finally, we show for illustration in Fig. 4, the converging
pattern of the real (diagonal) part of the optical potentials in
the neutron p, d partial waves for 40Ca(n, n)40Ca at 5.17 MeV
as a function of Nmax. All corresponding phase shifts have
converged excepted for the d3/2 partial wave (cf. Table II).

C. Results with finite values of η

As we mentioned previously, the calculated optical poten-
tials for neutron scattering on 40Ca at E = 5.17 MeV and 48Ca
at 7.81 MeV both have negligible absorption.

In order to understand this feature better, let us consider
in more detail the scattering on 40Ca at 5.17 MeV. In that
case, there is enough energy for the scattered neutron to excite
the target (40Ca in its ground state) to its two first excited
states located at E(0+) = 3.35 MeV and E(3−) = 3.74 MeV.
However, the 0+ excited state (which is known to have
significant 4p-4h components) is not properly captured in
the EOM-CCSD approximation: Its calculated energy is at
15.98 MeV above the ground state. On the other hand,
the energy of the second excited state is well reproduced
at the EOM-CCSD level with EEOM−CCSD(3−) =3.94 MeV.
Consequently, only potential excitation to the second excited
state could in principle be accounted for. The fact that the
calculated absorption is nevertheless negligible implies that
the CCSD and PA-EOM wave functions are not sufficiently
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FIG. 5. Volume integral JW (E) of the imaginary part of the neu-
tron optical potential in the s1/2 (upper panel) and d3/2 (lower panel)
partial wave for 40Ca(n, n)40Ca as a function of energy E. Results are
shown for the NNLOsat (symbols with lines) and NNLOopt (symbols
without lines) interactions at η = 2, 5, 10 MeV. Results for the KD
potential are also shown for comparison.

correlated. In other words, correlations beyond the singles
and doubles truncation level are needed to account for the
absorption due to target excitation. The situation is similar for
the scattering off of 48Ca: In that case, the position of the first
excited state E(2+) = 3.83 MeV is fairly well reproduced at
the EOM-CCSD level with EEOM−CCSD(2+) =4.65 MeV, but
the calculated absorption is still negligible, pointing out again
to a lack of correlations in the CCSD and PA-EOM wave
functions.

We should also note that the formation of a compound
nucleus will contribute to flux removal from the elastic chan-
nel. However, again, at that level of truncation, this cannot
be accounted for since the compound states consist of a high
number of particle-hole excitations and are usually described
by stochastic approaches [64].

We have seen here that one would need to consider excita-
tions beyond the single and double excitations to describe the
absorption seen in nature. However, a cheaper solution may be
provided by artificially considering finite values of η instead
of taking the limit η → 0+ [see Eq. (10)]. In the following,
we explore the impact of using finite η values on the optical
potential and the scattering phase shift.

We show in Fig. 5 the imaginary volume integral J l
W (E),

J l
W (E) = 4π

∫
drr2

∫
drr ′2Im�′

l (r, r
′; E), (12)

FIG. 6. Imaginary part of the phase shift in the spd partial waves
for 40Ca(n, n)40Ca at 5.17 MeV as a function of η.

of the optical potential for 40Ca(n, n)40Ca in the s1/2 and d3/2

partial waves with η = 2, 5, 10 MeV. Results are shown for
the NNLOsat and NNLOopt interactions and the KD potential.
While these quantities are not observables, the comparison
with the integral of the KD potential is instructive (see Fig. 5)
and underscores the lack of significant absorption of the
potential calculated with the coupled-cluster Green’s function
at the singles and doubles approximation level. Obviously,
increasing the value of η increases the value of the integrals

FIG. 7. Differential elastic cross section for 40Ca(n, n)40Ca at
5.17 MeV calculated with the NNLOsat (top) and NNLOopt (bottom)
interactions. Calculations are shown for η = 0, 2, 5 MeV. Results
obtained using the KD potential are shown for comparison. Data
points are taken from Ref. [58].
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FIG. 8. Differential elastic cross section for 40Ca(n, n)40Ca at
6.34 MeV calculated with the NNLOsat (top) and NNLOopt (bottom)
interactions. Calculations are shown for η = 0, 2, 5 MeV. Results
obtained using the KD potential are shown for comparison. Data
points are taken from Ref. [58].

(in modulus) and consequently the neutron absorption in the
scattering reaction. This is further illustrated in Fig. 6 where
we show the imaginary part of the scattering phase shifts
for 40Ca(n, n)40Ca at 5.17 MeV as a function of η. For η =
0 MeV, all phase shifts have a vanishing imaginary part and
as η increases, the imaginary parts increase more or less de-
pending on the partial wave considered. If we were interested
in reproducing the volume integral of the KD potential at
5.17 MeV in the s1/2 partial wave, one would choose a value
of η ∼ 10 MeV (see Fig. 5).

In the following section, we show results for the elastic
cross section on 40Ca and 48Ca with increasing absorption by
using finite values of η.

D. Results for elastic scattering

We now discuss predictions for the elastic cross section
when considering values of η = 0, 2, 5 MeV, for 40Ca and
48Ca. All calculations presented in this section correspond
to the largest model space discussed in the previous section
namely Nmax = 14 and N3 = 16.

The calculated differential elastic cross sections for neu-
tron scattering on 40Ca at E = 5.17 MeV and E = 6.4 MeV
are shown in Figs. 7 and 8, respectively. The top (bottom)
panel corresponds to the results using the NNLOsat (NNLOopt)
interaction. For comparison, we also show the angular dis-
tributions obtained with the phenomenological KD potential,
and also the measured cross sections (errors on the data are
smaller than the symbols). As expected, when η increases,
the elastic scattering cross section decreases with a more

FIG. 9. Differential elastic cross section for 48Ca(n, n)48Ca at
4.00 MeV calculated with the NNLOsat (top) and NNLOopt (bottom)
interactions. Calculations are shown for η = 0, 2, 5 MeV. Results
obtained using the KD potential are shown for comparison.

pronounced (relative) reduction at larger angles. Moreover,
the agreement with data improves as η increases. The level
of disagreement between the experimental data and the result
obtained with KD is an illustration of the level of accuracy that
can be expected from a phenomenological global interaction.

Next, we show predictions for neutron elastic scattering on
48Ca at E = 4 MeV (Fig. 9) and E = 7.81 MeV (Fig. 10).
There is no data available for the neutron elastic scattering
at 4 MeV, but we chose to include it in our study to show
that the general behavior of increasing absorption is the same
independent of the scattering energy and the target system.
As for 40Ca, it is also clear that when including η as a fine-
tuning parameter we can improve the agreement with data.
Note that even at η = 0 MeV, the calculated distribution for
NNLOsat in Fig. 10 is in excellent agreement with the data
at smaller angles where the differential cross section is the
largest. The same characteristics shown for 40Ca are present in
48Ca case, namely the cross section is not strongly dependent
on η at small angles, while at larger angles the cross section
is significantly reduced with increasing η. Moreover, for both
nuclei, the results show a sensitivity of the distributions to the
employed Hamiltonian.

An encouraging result of our calculations is that, within
the energy range considered in this work, fine-tuning η allows
us to improve the description of neutron elastic scattering for
both 40Ca and 48Ca. The value of η we use should not be
interpreted as the effective width of the states, but rather as
a means to compensate for the truncations inherent to our
approach.
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FIG. 10. Differential elastic cross section for 48Ca(n, n)48Ca at
7.81 MeV calculated with the NNLOsat (top) and NNLOopt (bottom)
interactions. Calculations are shown for η = 0, 2, 5 MeV. Results
obtained using the KD potential are shown for comparison. Data
points are taken from Ref. [58].

Finally in Table III, we show the total elastic cross sections
for both isotopes and energies, as a function of η. These
were obtained by integrating the differential cross sections
over angle. We only show the value for NNLOsat (the same
features appear when using NNLOopt). We also include an
error based on the model space truncation: We assign an
error as being the difference between the total cross section
obtained with Nmax, N3 = (14, 16) and that for (Nmax, N3) =
(14, 16). In the last column, we show the results using the
phenomenological interaction KD. In all cases, we can see that
the cross sections calculated with the coupled-cluster optical
potential are larger than the predictions obtained with the KD
potential.

TABLE III. Total elastic cross sections (in b) calculated with
the NNLOsat interaction for 40Ca and 48Ca. Results are shown for
η = 0, 2, 5 MeV. For each case, we assign an error defined as
the difference between the calculated cross section obtained with
(Nmax, N3) = (14, 16) and (Nmax, N3) = (14, 14). Results obtained
with the KD potential are shown for comparison.

A E (MeV) η = 0 MeV η = 2 MeV η = 5 MeV KD

40 5.17 229(12) 195(13) 166(12) 108
6.3 195(3) 169(10) 144(9) 96

48 7.81 182 (32) 159(13) 139 (12) 88

IV. CONCLUSIONS

In this paper, we constructed microscopic nuclear optical
potentials by combining the Green’s function approach with
the coupled-cluster method at the singles and doubles trunca-
tion level. We used an analytical continuation in the complex-
energy plane, based on a complex Berggren basis, to compute
the Green’s function. The Dyson equation was then inverted to
obtain the optical potential. We showed applications for 40Ca
and 48Ca with the chiral NN and 3NF interaction NNLOsat.
The choice of this interaction was motivated by the fact that
it allows for a good description of masses and radii in a
wide mass range and furthermore reproduces the charge radii
of 40Ca and 48Ca. First, we showed results for the optical
potentials associated with the bound states in 41Ca and 49Ca
and then presented applications to the neutron scattering. We
also showed, for comparison, the results for neutron scattering
obtained with the chiral NN interaction NNLOopt and with
the phenomenological Koning-Delaroche potential. We have
seen that the overall form of the scattering cross section is
reproduced for both nuclei at several scattering energies. At
this level of truncation, the absorption is practically negligible,
which points to a lack of many-body correlations in the wave
functions of the coupled-cluster method at the singles and
doubles approximation level. We showed that by increasing
the parameter η in the Green’s function, results can be some-
what improved.

This work can be extended in several directions. We plan
to consider higher order correlations in our coupled-cluster
Green’s function calculations as was recently done for the
dipole response of 48Ca [65] and excited states in 101Sn [8].
The first step will be to include iterative triples excitations
in the ground state and investigate the impact of these cor-
relations on the absorptive character of the calculated optical
potential. It could also be interesting to investigate optical
potentials constructed by starting with the singles and doubles
coupled-cluster Green’s function potential and add an ad hoc
polarization terms which would effectively account for the
missing physics (such as collective excitations and formation
of compound nucleus) at that level of truncations.

The Department of Energy will provide public access to
these results of federally sponsored research in accordance
with the DOE Public Access Plan [66].
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