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Background: Recent work has studied the uncertainty in predictions for A(d,p)B reactions using the distorted-
wave Born approximation (DWBA), coming from the parametrization of the effective dA interactions [Lovell
et al. Phys. Rev. C 95, 024611 (2017)]. There are different levels of sophistication in reaction theories for one-
nucleon transfer reactions, including the adiabatic wave approximation (ADWA) which takes deuteron breakup
into account to all orders.
Purpose: In this paper, we quantify the uncertainties associated with the ADWA method that come from the
parametrization of the NA interactions and compare ADWA with DWBA.
Method: Similar to Lovell et al. [Phys. Rev. C 95, 024611 (2017)], we use nucleon elastic-scattering data on
a wide variety of targets at the appropriate incoming and outgoing energies to constrain the optical potential
input to the ADWA theory. Pulling from the χ 2 distribution, we obtain 95% confidence bands for the elastic
distributions. From the resulting parameters, we predict 95% confidence bands for the (d,p) transfer cross
sections. Results obtained with the standard uncorrelated χ2 are compared to those using the correlated χ 2

of Lovell et al. [Phys. Rev. C 95, 024611 (2017)]. We also repeat the DWBA calculations for the exact same
reactions for comparison purposes.
Results: We find that NA elastic-scattering data provide a significant constraint to the interactions, and, when the
uncertainties are propagated to the transfer reactions using ADWA, predictions are consistent with the transfer
data.
Conclusions: The angular distributions for ADWA differ from those predicted by DWBA, particularly at small
angles. As in Lovell et al. [Phys. Rev. C 95, 024611 (2017)], confidence bands obtained using the uncorrelated
χ 2 function are unrealistically narrow and become much wider when the correlated χ2 function is considered.
For most cases, the uncertainty bands obtained in ADWA are narrower than DWBA when using elastic data of
similar quality and range. However, given the large uncertainties predicted from the correlated χ2 function, at
this point, the transfer data cannot discriminate between these two methods.

DOI: 10.1103/PhysRevC.98.044623

I. INTRODUCTION

Advances in rare isotope facilities around the world are
leading to unique beam intensities and detector systems that
will allow the collection of a wide array of reaction data
on nuclei far from stability with higher precision than ever
before. As these experimental advances take place, one needs
to ask whether the theory needed for the interpretation of
these high quality data is adequate. Much effort has been
put into benchmarking standard approximations in the field
of direct reaction theory (e.g., Refs. [1–5]). In addition, new
approaches are being developed that allow a more micro-
scopic foundation for the input needed (e.g., Refs. [6–10]).
However, the important question remains: For a given reaction
model, what is the uncertainty in the theoretical prediction for
the cross section? In this paper, we address this question in
connection to one-nucleon (d,p) reactions.

*nunes@nscl.msu.edu

Although there are some ab initio approaches to reactions,
most direct-reaction theories resort to retaining only a few
degrees of freedom that are essential to describe the relevant
reaction mechanisms. Thus, the input for describing transfer
A(d,p)B reactions are effective interactions, the so-called
optical potentials, for the NA system and/or the dA system,
depending on whether one uses a true three-body approach
or a perturbative approach, such as the Born series [11].
Ambiguities in the optical potentials represent the single most
important source of uncertainty in reaction theory. Efforts
to develop these effective interactions from the underlying
NN force are underway (e.g., Ref. [7]), yet there are still
many problems that need to be resolved before these mi-
croscopically derived effective interactions can be used in
the interpretation of reaction data. Most commonly, optical
potentials are generated from fitting elastic (and other) data.
Global parametrizations are developed for a range of scat-
tering energies and target masses, based on stable nuclei for
which data are abundant (e.g., Refs. [12–14]). Despite the
unknown uncertainties, especially in extrapolating away from
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stability, global potentials have been widely used and are
considered by most to be the best available option.

In order to move the field forward, it is critical to quantify
uncertainties and develop tools that enable us to improve
predictions made by reaction theory. The standard way to
determine uncertainties involves using the covariance matrix
and exploring the χ2 function around the best fit. The study
performed in Ref. [15] inspected the χ2 function around min-
ima and determined confidence bands for angular distributions
for elastic, inelastic, and (d,p) cross sections at energies in the
range of 5–25 MeV/u on targets with masses of A = 12–208.
A comparison was performed between results obtained with
the standard χ2 function and a correlated χ2 function. The
results in Ref. [15] demonstrate that the correlated χ2 function
produces parametrizations that are more physical, yet the con-
fidence bands are significantly broader. The (d,p) reactions
included in the study of Ref. [15] were performed within
the distorted-wave Born approximation (DWBA). One of the
goals of this paper is to revisit the study in Ref. [15] with an
upgraded reaction model.

In the area of nuclear reactions, there are many alternative
models that have additional physics included. The breakup
of the deuteron, thought to play an important role in (d,p)
reactions, is treated in a crude manner in DWBA. Methods,
such as continuum-discretized coupled channels [16] and its
simpler relative adiabatic wave approximation (ADWA) [17],
provide nonperturbative approaches based on a three-body
Hamiltonian. However, Occam’s razor tells us that one should
opt for the simplest model that is compatible with the data. Is
the (d,p) transfer data able to discriminate between DWBA
and ADWA or even reject one of the models? The answer to
this question relies on the ability to quantify the uncertainties
arising from the theory itself. In this paper, we will quan-
tify the uncertainties due to the optical potentials in (d,p)
reactions within both DWBA and ADWA using the same
fitting philosophy. We will then be able to make a meaningful
comparison between DWBA and ADWA predictions and de-
termine the level of sophistication required for describing the
(d,p) data.

In Sec. II, we summarize the reaction theory used in this
paper as well as the statistical methods used. In Sec. III, we
present the results obtained when using ADWA and DWBA as
well as a comparison between the two theories. Conclusions
are then drawn in Sec. IV.

II. THEORY AND IMPLEMENTATION SUMMARY

A. Reaction theory

Due to the loosely bound nature of the deuteron, it is
common to describe the A(d,p)B reaction starting from a
three-body Hamiltonian of n + p + A,

H3B = TR + Tr + UnA + UpA + Vnp, (1)

where the pairwise interactions UnA and UpA are effective
interactions describing the main features of the nucleon-target
systems and Vnp is the known NN force. TR and Tr are the
two-body kinetic-energy operators for the deuteron-target and
n-p systems.

The exact T -matrix amplitude for A(d,p)B can be written
in the post form as

T = 〈φnAχ
(−)
pB |Vnp + �|� (+)〉, (2)

where φnA describes the final neutron bound state, χpB is the
proton distorted wave, and � = UpA − UpB is the remnant
term which is negligible for reactions on intermediate and
heavy masses. � corresponds to the exact three-body wave
function in the incident channel, but Johnson and Tandy
realized that this wave function would only be needed within
the range of Vnp [17]. This led to the choice of using the
Weinberg basis to expand the three-body wave function. If
one then makes the adiabatic approximation, neglecting the
excitation energy of the np system in the reaction and retains
only the first term in the Weinberg expansion, one arrives at a
simple form for the T matrix,

T = 〈φnAχ
(−)
pB |Vnp

∣∣φnpχad
d

〉
, (3)

where the adiabatic wave χad
d is generated from the effective

adiabatic potential,

UAD = −〈φ0(r)|Vnp(UnA + UpA)|φ0(r)〉, (4)

with φ0 being the first Weinberg eigenstate.
The method of Johnson and Tandy, referred to as ADWA

has been discussed in detail in Ref. [18] and was recently
extended to incorporate nonlocal interactions [19]. ADWA has
been been tested against exact Faddeev calculations [2], and
results demonstrate its validity for deuteron energies in the
range of E = 20–40 MeV.

As opposed to ADWA, the one-step DWBA replaces the
full incoming wave function by the deuteron elastic-scattering
channel,

T = 〈φnAχ
(−)
pB |Vnp + �|φnpχdA〉, (5)

where φd describes the deuteron bound state and χdA is the
deuteron distorted wave, obtained with the optical potential
UdA typically fit to deuteron elastic scattering. In DWBA,
deuteron breakup is only included implicitly through the
deuteron elastic channel.

The transfer calculations shown in this paper include finite-
range effects and neglect the remnant term. For the cases
considered, the remnant term contributes by less than 3%.
For the deuteron bound state and the operator Vnp in Eqs. (3)
and (5), we fix the NN interaction to Reid [20]. The neutron
final bound state is described by a Woods-Saxon interaction
with a standard radius of r = 1.25 fm and a diffuseness of
a = 0.65 fm and with the depth adjusted to reproduce the
experimental separation energy in the corresponding (A + 1)
system.

B. Fitting procedure and uncertainty bands

The optical model describes the elastic scattering of a
projectile-target combination in terms of a Uopt effective po-
tential. Given a set of parameters x, the optical model makes
predictions for the angular distribution m(x, θ ) of elastic scat-
tering. The tradition in our field is to minimize the standard
(uncorrelated) χ2 function, which is the sum of the square
of the residuals, the difference between the differential cross
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sections predicted by the model m(x, θi ) and the data di for
elastic scattering measured at M angles θi with experimental
errors σi (with UC representing the uncorrelated case),

χ2
UC = 1

M

M∑

i=1

[m(x, θi ) − di]2

σ 2
i

, (6)

In minimizing this χ2, one finds the best-fit set of parameters
x̂. A large number of parameter sets can then be pulled from
the χ2 distribution around the minimum and run through the
optical model to determine a corresponding set of differential
cross sections. Then, 95% confidence bands are defined by
removing the highest 2.5% and lowest 2.5% of the predicted
values for those cross sections at each angle.

Typically, the optical potential used to describe a light
projectile impinging on a target is parameterized in terms of
Ref. [12]: (i) a volume real part of a Woods-Saxon form with
parameters V, r , and a for the depth, radius, and diffuseness,
(ii) a volume imaginary term of a Woods-Saxon form with
parameters Wv, rv , and av , (iii) a surface imaginary term,
proportional to the derivative of a Woods-Saxon form, with
parameters Ws, rs , and as , (iv) a spin-orbit term, and (v)
when the projectile has charge, a Coulomb force. Note that
the parameters associated with the spin orbit and the Coulomb
force are kept fixed in our procedure, whereas all others are,
in principle, allowed to vary to find the best minimum.

The χ2 function in Eq. (6) assumes that the model pre-
dictions at angles θi and θj are independent. As argued in
Ref. [15] due to the angular momentum decomposition, all
angles in our model are correlated. We have thus considered
the following correlated χ2 function [15] (with C representing
the correlated case):

χ2
C = 1

M

M∑

i=1

M∑

j=1

Wij [m(x, θi ) − di][m(x, θj ) − dj ]. (7)

Wij ’s are the matrix elements of W = (Cm + �)−1, where Cm

is the model covariance matrix, which is assumed to describe
the correlations between calculated cross-section values at
different angles, and � is a diagonal matrix with σ 2

i on
the diagonals. [When Cm = 0, Eq. (7) reduces to Eq. (6).]
Once the best fit associated with χ2

C is obtained, one can
again construct a 95% confidence band, pulling a large set of
parameters from this new correlated distribution and removing
the highest and lowest 2.5% of the predicted values for the
observable of interest.

C. Data and fitting protocol

An important goal in this paper is to obtain 95% con-
fidence bands for (d,p) angular distributions, reflecting the
ambiguities in the optical potentials. For this purpose, we use
elastic-scattering data to constrain all of the optical potentials
that are input to the transfer reaction model. We carefully
reviewed the literature and compiled those cases for which
there is nA, pA, and dA elastic-scattering data at the relevant
energies (both for the incoming channel and for the outgoing
channel) as well as the corresponding A(d,p)B data. Note
that, for constraining the optical potential in the outgoing

TABLE I. References to the experimental data used for the
elastic-scattering fits, including the energy of the data.

Reaction Energy (MeV) Reference

48Ca(p,p) 12 [21]
48Ca(n,n) 12 [22]
48Ca(p,p) 25 [23]
48Ca(d,d ) 23.2 [24]
90Zr(p,p) 12.7 [25]
90Zr(n,n) 10 [26]
90Zr(p,p) 22.5 [27]
90Zr(p,p) 9.018 [28]
90Zr(n,n) 24 [26]
90Zr(d,d ) 23.2 [24]
208Pb(p,p) 16 [29]
208Pb(n,n) 16.9 [30]
208Pb(p,p) 35 [31]
208Pb(d,d ) 28.8 [32]

proton channel, we fit proton elastic scattering on the closed-
shell systems (48Ca, 90Zr, and 208Pb) for which there are more
data than for the (A + 1) systems (49Ca, 91Zr, and 209Pb). We
then rescale the radius appropriately. Wide angular distribu-
tions and low errors bars were important considerations in
our selection. In the end, the cases considered are provided
in Table I along with the sources used for the data through
Ref. [33]. Experimental error bars were taken directly from
Ref. [33].

We used modified versions of SFRESCO [34] to perform χ2

minimizations for the angular distributions generated with the
optical model, FRESCO [34] for elastic-scattering confidence
bands and NLAT [35] to determine the transfer cross section
in DWBA and ADWA, respectively. Confidence bands were
produced with 800 pulls from the χ2 distributions.

III. RESULTS

A. Adiabatic wave approximation

To illustrate this study in detail, we picked one case:
90Zr(d,p) 91Zr(g.s.) (where g.s. represents the ground state)
at 22.7 MeV. In ADWA we need the optical potentials for
n-90Zr and p-90Zr at half the deuteron energy and p-90Zr at
the energy in the exit channel (these data being more readily
available than p-91Zr). The assumption that the nucleon opti-
cal potentials should be computed at half the deuteron beam
energy has been questioned in Ref. [36], however we here
maintain the traditional approach. Using the data referenced
in Table I and the uncorrelated χ2 function, we obtained the
best-fit parameters shown in Table II. For all but 90Zr(p,p) at
12.7 MeV, we initialized the minimization procedure with the
global parameters of Becchetti and Greenlees (BG) [12]. For
the (p,p) scattering at 12.7 MeV, the BG initialization led to
a minimum with a geometry very different than that obtained
for the corresponding neutron optical potential. Thus, for
consistency, we used the best fit obtained for (n,n) at 10 MeV
as the starting point for the protons. In this way, the optical
potentials are somewhat similar as one would expect based on
physical considerations.
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TABLE II. Best-fit optical potential parameters for elastic scattering of neutrons, protons, and deuterons on 90Zr at the relevant energies,
obtained with the uncorrelated χ 2 function. Also shown are the χ 2 values at the minimum χ 2

UC and for the starting point [12] χ 2
BG. Parameters

in italics were allowed to vary in the fit.

Reaction Initial E (MeV) V (MeV) r (fm) a (fm) Ws (MeV) rs (fm) as (fm) Wv (MeV) rv (fm) av (fm) χ 2 χ 2
BG

90Zr(p,p) Un 12.7 53.99 1.249 0.524 4.409 1.124 0.790 1.231 1.533 0.573 0.8 51
90Zr(n,n) BG 10 50.58 1.186 0.636 3.334 1.064 0.802 0.600 1.525 0.573 1.7 83
90Zr(p,p) BG 22.5 54.79 1.139 0.786 6.637 1.360 0.659 2.134 1.405 0.590 1.1 2.7
90Zr(d,d ) AC 23.2 91.99 1.178 0.675 9.385 1.284 0.902 2.180 1.042 0.537 65 122

The parameters obtained (shown in Table II) are physically
reasonable, except for the radius of the imaginary volume term
which is rather large. This apparent issue has no consequences
because the depth of the imaginary volume term is very small.
In some cases, there were several parameters that were fixed in
the final minimization procedure. Only the parameters shown
in italic in Table II were allowed to vary in the final state of
the minimization procedure. Generally, this is because some
parameters could not be constrained by the data within this
fitting method, mostly parameters in the imaginary volume
term. This is to be expected because at these energies the
absorption is mostly at the surface.

The χ2 per degree of freedom for the best fit and the
initial BG, are shown in the last two columns of Table II
respectively. The quality of the fits is excellent and much
better than what was obtained with the initial BG potential.
We then pull from the χ2 function around the minimum to
obtain the 95% confidence bands as described in Sec. II.

This whole procedure was repeated for the correlated χ2
C .

In this case, we considered two initial starting points: the
global parametrization BG [12] and the best fit obtained for
the uncorrelated case shown in Table II. We found that the
best-fit parameters do depend on the initialization. There are
several local minima in the parameter space, and we found
that the lowest χ2 is obtained for the first initialization choice.
Thus, Table III shows the best-fit parameters for the BG [12]
initialization. It is worth noting that the correlations in the
parameters are strongly reduced in the correlated fit when
compared to the uncorrelated fit.

The prediction of the elastic angular distributions obtained
with the best fits of Tables II and III are shown in Fig. 1:
The red-dashed line is for the uncorrelated (UC), and the
green-dotted line is for the correlated case (C). Also shown are
the corresponding 95% confidence bands (red-dashed-hashed
lines for the uncorrelated case and green-dotted-hashed lines
for the correlated case) and the data. As in Ref. [15], the bands
obtained using the uncorrelated χ2 are narrow. These become
much wider when model correlations are included.

As the last step, we use these optimized optical po-
tentials in an ADWA calculation for the transfer cross-
section 90Zr(d,p) at 22.7 MeV. The ADWA angular dis-
tributions obtained with the best fits are shown in Fig. 2
for the uncorrelated (ADWA, red-dashed line) and corre-
lated (ADWA-C1, green-dotted line) cases. These have been
normalized to the data at the peak of the angular distri-
bution with normalization of S = 0.70 for the uncorrelated
case and S = 0.75 for the correlated case. We see that the
two ADWA angular distributions are essentially the same—
correlations in the fit do not affect the angular dependence for
transfer.

Since all three nucleon potentials (neutron and proton po-
tentials in the incident channel and the proton potential in the
outgoing channel) are needed to calculate the ADWA transfer
cross section, we pull randomly from their corresponding χ2

distributions to obtain 95% confidence bands for the ADWA
transfer angular distributions. The results are shown in Fig. 2
with the red-dashed-hashed band corresponding to the uncor-
related case and the green-dotted-hashed band corresponding
to the correlated case. The confidence bands produced with
the correlated χ2 are much wider than those obtained for the
uncorrelated χ2. This could be expected given the results for
elastic scattering. The band resulting from the correlated fits
is strongly asymmetric around the best-fit prediction, contrary
to what is typically the case for the standard uncorrelated
results.

Also added to Fig. 2 are the predictions coming from the
NA best-fit parameters of the correlated χ2, initialized with
the best fit of the uncorrelated χ2 and the corresponding
95% confidence bands (ADWA-C2, blue-dot-dashed line).
The best-fit prediction provides the same angular distribution
as that obtained for the uncorrelated best fit, although the con-
fidence band is much wider. The differences in the confidence
bands ADWA-C1 and ADWA-C2 demonstrate that there is
a dependence on the initialization not only in the best-fit
prediction, but also on the relative width of the uncertainty
predicted.

TABLE III. Best-fit parametrization for correlated nucleon and deuteron elastic-scattering fittings. Parameters in italics were allowed to
vary in the fit.

Reaction E (MeV) V (MeV) r (fm) a (fm) Ws (MeV) rs (fm) as (fm) Wv (MeV) rv (fm) av (fm) χ 2

90Zr(p,p) 12.7 52.86 1.252 0.545 6.628 1.282 0.633 0.572 1.266 0.709 0.1
90Zr(n,n) 10 51.89 1.160 0.672 4.054 1.282 0.633 0.572 1.266 0.709 0.6
90Zr(p,p) 22.5 50.13 1.218 0.604 7.180 1.299 0.694 1.845 1.409 0.610 0.1
90Zr(d,d ) 23.2 90.69 1.186 0.695 3.035 1.278 0.497 9.695 1.150 0.410 0.2
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(a)

(b)

(c)

FIG. 1. Elastic scattering on 90Zr: (a) protons at 12.7 MeV, (b)
neutrons at 10 MeV, and (c) protons at 22.5 MeV; best-fit predictions
using the uncorrelated χ 2 (red-dashed line) and correlated χ 2 (green-
dotted line); the 95% confidence bands using the uncorrelated (red-
dashed-hashed band) and correlated χ 2 (green-dotted-hashed band).
Data from Refs. [25–27].

B. Distorted-wave Born approximation

We studied the same reaction 90Zr(d,p) 91Zr(g.s.) at
22.7 MeV within DWBA. In DWBA, one needs the effective
potential for d-90Zr in addition to the proton optical potential
in the exit channel which was already studied in Sec. III A.
Using the (d,d ) elastic data at 23.2 MeV mentioned in
Table I, we obtain the best-fit parameters shown in the last
row of Table II. We initialized the minimization procedure
with the global parameters of An and Cai (AC) [38]. The
best-fit parameters obtained from the minimization are, again,

FIG. 2. ADWA angular distribution for 90Zr(d,p) at 22.7 MeV:
uncorrelated and correlated 95% confidence band predictions. Best-
fit predictions are shown by the red-dashed line (uncorrelated),
green-dotted line (correlated with uncorrelated initialization), and
blue-dot-dashed line (correlated with BG initialization). Data from
Ref. [37].

physically reasonable. The resulting χ2 is rather large, but this
is mainly due to the very small error bars on the data and is not
a good representation of the quality of the fit. We repeated the
procedure for the correlated χ2 and obtained the parameters
shown in the last row of Table III.

The elastic angular distributions for 90Zr(d,d ) at
23.2 MeV for the best-fit parameters resulting from
the uncorrelated χ2 (UC, red-dashed line) and χ2

C (C,
green-dotted line), are shown in Fig. 3, and the corresponding
transfer angular distribution predicted by DWBA are shown
in Fig. 4 (labeled DWBA and DWBA-C1, respectively). The
best-fit transfer prediction uses the best fit for the deuteron
optical potential in the entrance channel and the proton optical
potential for the exit channel provided in Tables II and III.
As in Fig. 2, the transfer angular distributions have been
normalized to the transfer data at the peak of the distribution.
The normalizations are S = 0.73 and S = 0.51 for the

FIG. 3. Elastic scattering for 90Zr(d,d ) at 23.2 MeV, best-fit pre-
dictions using the uncorrelated χ 2 (red-dashed line) and correlated
χ 2 (green-dotted line), and the corresponding 95% confidence bands.
Data from Ref. [24].
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FIG. 4. Comparison of the DWBA correlated and uncorrelated
confidence band predictions for 90Zr(d,p) at 22.7 MeV: DWBA
using the uncorrelated χ 2 (red-dashed line) and DWBA-C1 using
the correlated χ 2 (green-dotted line). DWBA-C1 corresponds to the
correlated fit using the global potential AC [38] as initial parameters.
Data from Ref. [37].

predictions with best-fit parameters obtained from the
uncorrelated and correlated χ2 functions, respectively.
Note that, particularly at small angles, the best-fit angular
distributions predicted with DWBA for the uncorrelated and
the correlated cases are considerably different.

Also shown in Fig. 4 are the corresponding 95% confidence
bands (red-dashed lines for the uncorrelated and green-dotted
lines for the correlated cases). As for ADWA, the band ob-
tained from the χ2

UC functions is much narrower than the one
obtained with the χ2

C functions.

C. Comparing reaction models

Next we compare directly the results obtained within
DWBA and ADWA. We first consider the magnitude of uncer-
tainty obtained within the two models. We define the relative
width of the band at a given angle θ as ε = σmax(θ )−σmin (θ )

σbest fit
×

100. The actual total uncertainties obtained in the transfer
predictions of Figs. 2 and 4 at the peak of the distributions
are given in the last column of Table IV. The first two rows of
Table IV correspond to results obtained with the χ2

UC, and the
remaining rows use χ2

C . We immediately see in the last column
that, for the uncorrelated case, the uncertainty obtained within
ADWA is slightly smaller than that obtained within DWBA,
whereas the opposite is true for the correlated results.

To explore how the uncertainties associated with the var-
ious input optical potentials propagate to the transfer, we

TABLE IV. Relative widths of the 95% confidence bands ε at the
first peak of the angular distribution for reactions on 90Zr.

Target Model εp,in εn,in εd,in εp,out εdp

90Zr ADWA 8.1 8.1 11 19
90Zr DWBA 5 11 23
90Zr ADWA-C1 75 42 37 52
90Zr DWBA-C1 17 37 35

(b)

FIG. 5. Comparison of the ADWA and the DWBA confidence
band predictions for 90Zr(d,p) at 22.7 MeV: (a) uncorrelated and (b)
correlated. Data from Ref. [37].

compute the relative widths of the uncertainty bands at the
first peak for all of the relevant elastic-scattering reactions
on 90Zr for both ADWA and DWBA. These are also shown
in Table IV: columns 3–6 εp,in, εn,in, εp,out, and εd,in are
the relative widths of the uncertainty bands for the incoming
proton, incoming neutron, outgoing proton, and incoming
deuteron elastic scatterings, respectively. We also include the
uncertainty obtained in the transfer channel εdp listed in the
last column of Table IV, corresponding to the results shown
in Figs. 2 and 4.

We now compare directly ADWA and DWBA distributions
in Fig. 5, assuming no correlations [panel (a)] and includ-
ing correlations in the minimization procedures [panel (b)].
From the results ignoring correlations, one might be tempted
to favor DWBA over ADWA, given the comparison of the
angular distributions at small angles with the data. However,
when including correlations, the large uncertainties quantified
in Table IV blur the picture. Then, both ADWA and DWBA
are consistent with the data.

D. Other cases studied

So far we have discussed the results specifically for the
90Zr case. Since the lessons drawn can differ when other
targets are considered, here we include a summary of the
results on 48Ca and 208Pb. Table V contains the same rel-
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TABLE V. Relative widths of the 95% confidence bands ε at the
first peak of the angular distribution for reactions on 90Zr.

Target Model εp,in εn,in εd,in εp,out εdp

48Ca ADWA 10 24 8.0 12
48Ca DWBA 11 8.0 8.3
48Ca ADWA-C 49 321 117 30
48Ca DWBA-C 192 117 132
208Pb ADWA 2.9 53 23 24
208Pb DWBA 23 23 34
208Pb ADWA-C 18 100 143 50
208Pb DWBA-C 61 143 71

ative widths as Table IV for the reactions on 48Ca and
208Pb. Focusing first on the last column of Table V, in
both 48Ca(d,p) and 208Pb(d,p), ADWA provides a smaller
uncertainty than DWBA with the exception of uncorrelated
results for 48Ca(d,p). For this case, all elastic-scattering fits
for both correlated and uncorrelated results produce narrow
bands with the exception of the neutron elastic scattering, and
this then reflects itself in a slightly wider band for the transfer
prediction in ADWA.

As for the 90Zr case, for both 48Ca and 208Pb, the results
from the correlated fits have a wider uncertainty band than
those from the uncorrelated fits. For 48Ca, the uncertainties
estimated from the quadrature are much larger than the actual
uncertainties when using χ2

C . Also the deuteron elastic data on
48Ca are not as precise as for 90Zr, and therefore the deuteron
channel contributes more strongly to the errors in the DWBA
model, particularly for the analysis with correlations. For
208Pb, when using χ2

C , the uncertainties in the outgoing proton
channel dominate the errors, and estimates of errors with
quadratures provide a very large number, larger by a factor
of 3 than the actual uncertainty obtained when performing the
transfer calculations.

In Table VI, we summarize the relative widths of the
95% confidence bands obtained for the transfer angular dis-
tributions at the peak for all cases studied, assuming that all
optical potential inputs are fit to the corresponding elastic-
scattering data (Table I). For all cases, the uncorrelated fit
provides a smaller uncertainty, and in some cases the corre-
lations introduce an order of magnitude increase in the uncer-
tainty. Figures 6 and 7 compare the ADWA and the DWBA

TABLE VI. Widths of the 95% confidence bands for the (d,p)
transfer at the peak of the angular distribution for a variety of
targets: comparing results obtained with and without correlations in
χ 2 function (correlated fits started from the BG parameters).

Target Model E (MeV) θ (deg) εUC (%) εC (%)

48Ca ADWA 19.3 8.0 12 30
48Ca DWBA 19.3 5.0 8.3 132
90Zr ADWA 22.7 14 19 52
90Zr DWBA 22.7 16 23 36
208Pb ADWA 32.9 1.0 24 158
208Pb DWBA 32.9 16 34 71

(a)

(b)

FIG. 6. Comparison of the ADWA and the DWBA confidence
band predictions for 48Ca(d,p) at 19.3 MeV: (a) uncorrelated and
(b) correlated. Data from Ref. [39].

distributions for the corresponding (d,p) reactions (48Ca and
208Pb, respectively). Panel (a) assumes no correlations, and
panel (b) includes correlations in the minimization process.
From these results, we can draw the same conclusions as those
deduced from the analysis of the 90Zr case, namely, that, due
to the large uncertainties produced when we include corre-
lations in the fitting, the data cannot discriminate between
ADWA and DWBA.

IV. CONCLUSIONS

This study follows from the work performed in Ref. [15].
Here we consider (d,p) reactions on a variety of targets
and quantify the uncertainties in the predicted cross sections
coming from the optical potentials. We constrain the optical
potentials with the corresponding elastic-scattering data us-
ing either a standard χ2 function or a correlated version as
introduced in Ref. [15]. We perform transfer (d,p) calcula-
tions within both the adiabatic wave approximation and the
distorted-wave Born approximation. We discuss the results for
elastic and transfer reactions on 90Zr in detail but also present
results on 48Ca and 208Pb.

We find that best-fit parameters obtained with the cor-
related χ2 are significantly different from those obtained
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(a)

(b)

FIG. 7. Comparison of the ADWA and the DWBA confidence
band predictions for 208Pb(d,p) at 32.9 MeV: (a) uncorrelated and
(b) correlated.

with the standard uncorrelated χ2. Systematically, the 95%
confidence bands for elastic scattering obtained pulling from
the correlated χ2 function are much wider than those ob-
tained when pulling from the uncorrelated χ2. Nevertheless,
the elastic-scattering results are consistent in that the bands

obtained from χ2
UC are contained within the bands obtained

with χ2
C .

When propagating the uncertainties to transfer reactions
using χ2

UC, the ADWA predictions differ from the DWBA
predictions at small angles. Thus, if one could ignore cor-
relations in the model, one might discriminate between the
two theories. However, once correlations are included, these
differences are washed out, and both the DWBA and the
ADWA predictions corroborate the transfer data. Using the
first peak of the transfer (d,p) angular distribution to extract
a spectroscopic factor as is standard in our field, we obtain
consistent spectroscopic factors in ADWA and DWBA.

Although we have made assumptions as to the form of the
correlations in the model, the study in Ref. [15] demonstrates
that these need to be included. It would be useful to have an
understanding of whether our correlated χ2 function is the
best representation for the correlations in the cross-section
observables. Bayesian statistics may offer another path toward
this goal.

The main conclusion from this paper is that the uncer-
tainties coming from the optical potentials, constrained by
all relevant elastic-scattering channels, are too large and it is
crucial to reduce them in order to enable model comparison.
Work to include a larger variety of data in the fit is in the
pipeline. Then we can explore which types of data offer
additional and optimal constraints.
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