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Theoretical considerations about heavy-ion fusion in potential scattering
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We carefully compare the one-dimensional Wentzel, Kramers, Brillouin barrier tunneling model, and the one-
channel Schrödinger equation with a complex optical potential calculation of heavy-ion fusion, for a light and a
heavy system. It is found that the major difference between the two approaches occurs around the critical energy,
above which the effective potential for the grazing angular momentum ceases to exhibit a pocket. The value of
this critical energy is shown to be strongly dependent on the nuclear potential at short distances, on the inner
region of the Coulomb barrier, and this dependence is much more important for heavy systems. Therefore the
nuclear fusion process is expected to provide information on the nuclear potential in this region. We compare
calculations with available data to show that the results are consistent with this expectation.
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I. INTRODUCTION

Nuclear collisions involve several degrees of freedom.
Besides the projectile-target separation vector, r, the collision
depends on intrinsic coordinates of the collision partners,
which are coupled with r by Coulomb and nuclear forces
[1–4]. In this way, the collision may lead to various final states
of the systems (channels). In addition to elastic scattering,
it may undergo direct reactions, such as inelastic scattering,
transfer and breakup, or fuse to form a compound nucleus
(CN). The simplest quantum mechanical treatment of a nu-
clear collision, referred to as potential scattering, ignores all
intrinsic degrees of freedom. It approximates the problem by
a collision of two point particles, interacting through a real po-
tential, V (r). Clearly, this approach can only make predictions
for elastic scattering. However, it is necessary to take into
account the attenuation of the incident wave, resulting from
transitions to nonelastic channels. Owing to these transitions,
the current associated with the elastic wave function does not
satisfy the continuity equation. This would be inconsistent
with the wave function of a Hermitian Hamiltonian. To fix
this problem, one simulates the effects of nonelastic channels
by the inclusion of a negative imaginary part in the potential.

However, potential scattering is a very poor treatment
of nucleus-nucleus collisions. More satisfactory results can
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be obtained through the coupled-channel (CC) approach. In
this method, the wave function is expanded over a set of
intrinsic states of the system and the expansion is inserted
into the Schrödinger equation with the full Hamiltonian. In
this way, one gets a set of coupled equations for the wave
functions in these channels. If the expansion contained all
relevant channels, one would obtain realistic predictions for
the experimental cross sections. However, this condition is
not satisfied in heavy-ion collisions, owing to the fusion
channel. The formation of a compound nucleus and its sub-
sequent decay are very complicated processes, which cannot
be handled in the coupled-channel approach. Nevertheless,
fusion and its influence on direct reactions must be taken
into account. They can be estimated through the inclusion
of an imaginary potential in the Hamiltonian. This poten-
tial must be negative and very strong to absorb completely
the current that reaches the inner region of the Coulomb
barrier. It is believed that the details of this potential are
not important, provided that it produces strong short-range
absorption.

An alternative way to handle fusion, is to keep the po-
tential real and solve the radial equations with ingoing wave
boundary conditions (IWBCs) at some radial distance r =
Rin, located in the inner region of the barrier. This procedure
is adopted by some authors, and used in the CCFULL [5]
computer code. The IWBC assumes that there are no re-
flected waves at Rin, which implies that the incident wave
is completely absorbed at r < Rin. Thus, it is expected to
be equivalent to solving the radial equation with the usual
boundary conditions at r = 0, but with a complex potential,
which produces total absorption in this region, and is not
active elsewhere.
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The purpose of the present work is to investigate the
dependence of the fusion cross section on reasonable choices
of the interaction. For simplicity, our study is restricted to
potential scattering with real nuclear potentials evaluated by
some version of the folding model. These potentials take into
account the nuclear densities but ignores the nuclear structure
properties of the collision partners. It is well known that these
properties may strongly affect sub-barrier fusion. Therefore,
we consider only collisions at above-barrier energies, where
the fusion cross section predicted by potential scattering and
the ones obtained in coupled-channel calculations are similar.
Although this may not happen in fusion reactions with weakly
bound projectiles, it does not affect our conclusions, since
collisions of this kind are not considered here.

The paper is organized as follows. In Sec. II, we discuss
the basic aspects of fusion in potential scattering within the
Feshbach general description of nuclear reactions. In Sec. III
we investigate the influence of different commonly used treat-
ments of absorption and choices of the nuclear potential on
the fusion cross section, considering as examples the cases of
a heavy and a light system. Finally, in Sec. IV we present the
conclusions of our work.

II. POTENTIAL SCATTERING WITHIN FESHBACH’S
THEORY OF NUCLEAR REACTIONS

Commonly, the analyses of experimental nuclear scattering
data are based on the use of the complex potential in potential
scattering theory. The determination of the complex nuclear
potential, referred to as the optical potential, is done by
fitting the data of the elastic cross sections. For the sake of
completeness we supply below the basic theory of the optical
potential within the unified theory of Feshbach [6,7], which is
based on many-body scattering theory.

In Feshbach’s theory, the dynamics is governed by the full
Hamiltonian of the system, H, (blackboard bold fonts denote
operators acting on both collision and intrinsic degrees of
freedom),

H = K + h + V. (1)

Above, K is the kinetic energy operator, h is the intrinsic
Hamiltonian of the system, and V is the operator representing
the interaction between the projectile and the target. This
interaction depends both on the collision coordinate and the
intrinsic degrees of freedom. The full scattering state is then
the solution of the Schrödinger equation

[E − H] |� (+)〉 = 0, (2)

with scattering boundary conditions.
The derivation of the optical potential can be made for-

mally but quite transparently within the Feshbach theory.
Denoting by P the elastic channel projection operator and by
Q the projector on all other channels, both closed and open,
one can decompose Eq. (2) into the coupled equations

[E − HPP] |� (+)
P 〉 = HPQ |�Q〉 (3)

[E − HQQ] |�Q〉 = HQP |�P〉. (4)

Above, we adopted the short-range notations: HAB = AHB,
where A and B stand for any of the two projectors, � (+)

P =
P� (+) and �Q = Q� (+). At this stage, we assume that only
closed channels (compound nucleus) are coupled to the elastic
channel.

Solving Eq. (4) for �Q and inserting the result into Eq. (3),
we obtain the equation for the elastic component of the wave
function,

[E − K − VPP − Veff ]|� (+)
P 〉 = 0, (5)

where VPP = PVP . This equation involves the potential con-
strained to the subspace of the elastic channel, VPP, plus the
additional term

Veff = HPQ

1

E − HQQ

HQP. (6)

The projectors can be expressed in terms of the eigenfunc-
tions of h. Denoting them by |ϕα ), with |ϕ0) standing for the
ground state, they are given by

P = |ϕ0) (ϕ0|; Q =
∑
α �=0

|ϕα ) (ϕα|. (7)

Inserting the above equations into Eq. (5), one gets the
Schrödinger equation for potential scattering,

[E − K − Ū − Veff ]|ψ (+)〉 = 0, (8)

where, |ψ (+)〉 is the scattering state in the space of the collision
degrees of freedom. Above,

Ū = (ϕ0| V |ϕ0) (9)

represents the bare potential operator and

Veff = (ϕ0| HPQ

1

E − HQQ

HQP |ϕ0) (10)

is the effective compound nucleus coupling potential operator.
Both Ū and Veff are operators acting exclusively on the r
space.

A. Bare potential

The potential Ū (r ) of Eq. (9) is clearly real. It represents
the interaction between the collision partners when they are
in their ground states, that is, when couplings to nonelastic
channels are completely ignored. It can be written as

Ū (r ) = UC(r ) + ŪN(r ), (11)

where UC and ŪN are, respectively, the Coulomb and nuclear
components of Ū .

Adopting a microscopic point of view, where the intrinsic
degrees of freedom are the nucleon coordinates, the bare
potential in the coordinate representation can be evaluated by
the folding model. Then, neglecting nucleon exchange, one
gets

ŪN(r) =
∫

dr′ dr′′ ρP(r′) v(r − r′ + r′′) ρT(r′′). (12)

Above, ρP and ρT are, respectively, the densities of the
projectile and the target, and v is a conveniently chosen
nucleon-nucleon interaction. A frequent trend in the literature
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is to adopt Michigan’s M3Y nucleon-nucleon interaction [8].
We consider two versions of the folding potential: The São
Paulo potential (SPP) [9–11] and the Akyüz-Winther potential
(AW) [12,13]. The SPP has two advantages. The first is that it
restores, in an approximate way, exchange effects neglected in
the folding integral. The second is that the authors developed
a computer code to evaluate the integral of Eq. (12) using the
most realistic densities available in the literature. On the other
hand, there is the disadvantage that this code has not been
published, and therefore it is not widely available. The AW
potential has the disadvantage of being less accurate. It was
developed in three steps. First, the authors used approximate
analytical expressions for the densities, to simplify the folding
integral. Second, they evaluated the potential for a large
number of systems in different mass ranges, and fitted the
potentials by WS functions. The fits aimed at reproducing
the potential in the barrier region. Finally, they obtained
approximate analytical expressions for the WS parameters, in
terms of the mass numbers of the collision partners. In this
way, the evaluation of the WS potential is extremely simple.
Despite their different origins, the barriers of the SPP and the
AW potential are quite similar. This point will be discussed
further in Sec. III B.

B. Effective compound nucleus coupling potential

Now we consider the effective potential of Eq. (10), which
accounts for the influence of CN couplings on the elastic wave
function. The most important consequence of these couplings
is the partial absorption of the incident wave, associated with
the populations of CN states. The potential of Eq. (6) is real.
Furthermore, this potential has poles at E = HQQ. This very
strong energy dependence of the effective potential renders
Eq. (10) useless.

The above-mentioned shortcomings can be eliminated
through energy averaging. One chooses an interval in energy,
I , which encompasses many compound nucleus resonances.
This procedure leads to the complex potential [2,4,6,7,14],

Veff = (ϕ0| HPQ

1

E − HQQ + iI/2
HQP |ϕ0). (13)

This potential can be written as

Veff = �U + i W. (14)

The real part of Veff ,

�U = (ϕ0| HPQ P
{

1

E − HQQ + iI/2

}
HQP |ϕ0), (15)

with P standing for the principal value, is a small correction
to the potential Ū of Eq. (9). It is usually neglected.

On the other hand, the imaginary part of Veff ,

W = −π (ϕ0| HPQ

[
I/2(

E − HQQ

)2 + I 2/4

]
HQP |ϕ0), (16)

is very important. It is responsible for strong absorption of the
low partial waves, as it will be discussed in detail below.

Equation (16) can be further reduced by using a spectral
expansion of HQQ,

HQQ |q〉 = εq |q〉.
One gets

W = −π I

2

∑
q

(ϕ0|V |q〉 〈q̃| V |ϕ0)

(E − εq )2 + I 2/4
. (17)

The above potential can be approximately evaluated through
the following procedures. First, the q sum is replaced by an
integral over εq , by introducing the density of states of the
CN, ρCN(εq ). That is∑

q

→
∫

dεq ρCN(εq ). (18)

The second step is to assume that this density is a slowly vary-
ing function of εq , and take it outside the integral. Then the εq

integral is just the Lorentzian average of (ϕ0|V|q〉 〈q̃|V|ϕ0〉.
The final approximate expression of the energy-averaged ab-
sorptive potential is

W = −2π ρq (εq ) (ϕ0|V|q〉 〈q̃|V|ϕ0〉. (19)

1. Digression into the Hauser-Feshbach compound
nucleus model

It is important to mention that the introduction of energy
averaging and the subsequent emergence of a complex inter-
action would seemingly violate flux conservation. However,
this is fixed by tracking the path of the lost flux, which goes
into the formation of the compound nucleus and separately
calculate the decay of the latter using the so-called statis-
tical theory. The corresponding cross section, the Hauser-
Feshbach [15] cross section contribution to elastic scattering
(compound elastic), is then added incoherently to the elastic
cross section given by the Schrödinger equation with the
optical potential. This potential includes an imaginary part
corresponding to the local approximation to Eq. (19). In this
way, the flux is accounted for completely.

Accordingly, if a comparison with the elastic scattering
angular distribution or excitation function data is called for,
then the theoretical cross section would, according to our dis-
cussion above, be composed of the optical potential contribu-
tion to the cross section plus the compound nucleus (Hauser-
Feshabach) contribution. Interference terms can be made to
average out to zero upon appropriate energy averaging as
was demonstrated by Ref. [16]. In this way, the elastic cross
section is given by

σel(θ ) = σ
opt

el (θ ) + σ CN
el (θ ), (20)

where σ opt
el (θ ) is the elastic cross section calculated in potential

scattering with the optical potential

Vopt = Ū + �U + i W (21)

and σ CN
el (θ ) is the Hauser-Feshbach contribution, arising from

the decay of the CN through the elastic channel. It is given by

σ CN
el (θ ) =

∑
l

σ0,l (θ ) (22)
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with

σ0,l (θ ) = w
π

k2
0

(2l + 1)
[T0(l)]2∑

β Tβ (l)
, (23)

where k0 is the wave number in the elastic channel. Above,
Tβ (l) is the transmission coefficient through the Coulomb
barrier of the potential in a collision initiated in channel β.
It is given by

Tβ (l) = 1 − |Sβ (l)|2, (24)

where Sβ (l) is the lth component of the S matrix of an optical
model calculation for channel β. The sum in the denominator
of Eq. (23) runs over all decay channels of the CN.

The factor w in Eq. (23) is called the width fluctuation
correction [17] or elastic enhancement factor [16,18]. This
factor, which varies with the strength of absorption, starts
with the value 3 when the resonances of the compound
nucleus are isolated, which is the case at very low excita-
tion energies [16,18], and attains the value of 2 when the
compound resonances are overlapping (strong absorption).
An experimental verification of the strong absorption limit,
w = 2, was clearly demonstrated in the reaction 30Si(p, p) at
Ep = 9.8 MeV [19]. The values of w in the intermediate ab-
sorption region (weakly overlapping compound resonances)
were calculated in Ref. [20] and were found to be in the
range 2 < w < 3, as announced above. Since the sum over
decay channels in Eq. (23) can be large, the contribution of
the compound elastic cross section Eq. (23) is usually small
except for light heavy-ion systems.

The contribution from the CN to any nonelastic channel,
say α, can be evaluated similarly. It is given by Eqs. (22)
and (23), replacing in the numerator of the latter: [T0(l)]2 →
Tα (l) T0(l). Eqs. (22) and (23) then become

σ CN
α (θ ) =

∑
l

σα,l (θ ), (25)

σα,l (θ ) = π

k2
0

(2l + 1)
Tα (l) T0(l)∑

β Tβ (l)
. (26)

Note that there is no nonelastic enhancement factor [16]. This
suggests writing the general form of the compound nucleus
cross section for a transition 0 → α as,

σα,l (θ ) = π

k2
0

(2l + 1) [1 + (w − 1)δα,0]
Tα (l) T0(l)∑

β Tβ (l)
, (27)

which reduces to Eq. (23) for the compound elastic case
[18,20].

The fusion cross section is obtained by summing the
Hauser-Feshbach cross sections of Eqs. (25) and (26) over all
final decay channels of the CN (neutron, γ , elastic, inelastic,
etc.). One gets the compound nucleus formation (fusion) cross
section

σF = π

k2
0

∑
l

(2l + 1) T0(l). (28)

The fusion transmission coefficient, T0(l), is calculated
directly from the optical potential Schrödinger equation, and
multiplied by the compound nucleus formation probability as
discussed below. Experimentally one measures evaporation

channels of the compound nucleus and sums their contribu-
tions. If this sum is close to complete, then the fusion cross
section is extracted and compared to one of the theoretical
models, guided by the Hauser-Feshbach theory.

2. Local version of the absorptive CN coupling potential

Of course it is a long path to render the operator W of
Eq. (19) into a potential that can be used in the one-channel
optical potential Schrödinger equation. To begin with, the
potential operator of Eq. (19) is nonlocal when written in
configuration space. Secondly, it is potentially energy depen-
dent. However, using the above discussion as a guide, it is
customary to use a locally equivalent version of it, W (r ).

Although we are not aware of any formal proof that the
imaginary potentials arising from couplings with CN states
have a short range, they are expected to have this property, as a
consequence of the confined nature of the states |q〉 appearing
in Eq. (19). On the other hand, there is empirical evidence of
it. Potential scattering studies of fusion [21] and CC calcu-
lations of fusion, elastic scattering and other reaction chan-
nels systematically adopt strong imaginary potentials with a
short range to account for the fusion process [22,23]. Typical
calculations adopt imaginary potentials with WS shapes with
parameters of the order W0 ∼ 50 MeV, r0 ∼ 1.0 fm and
a ∼ 0.2 fm.

The above discussion clearly indicates that reference to the
compound nucleus formed in the fusion process is important.
Further, W (r ) may account for both closed channels (fusion)
absorption and open channels ones (direct reactions). Of
course these direct channels are accounted for in the Feshbach
theory by allowing some of the Q-projected channels to be
open ones.

3. Contribution of direct channels

It should be mentioned that the real part of the optical
potential is given by the bare potential of Eq. (9) plus the
correction �U [Eq. (15)]. When the couplings are restricted to
CN states, this correction is negligible and the imaginary part
W is very strong. When written in the configuration space,
it is, as mentioned before, nonlocal. But a local version is
constructed and its range is short.

The situation is different when couplings with open chan-
nels are taken into account. Then, the projector Q is split into
two terms, one projecting onto closed, compound nucleus,
channels and the other projecting onto open, direct ones.
These direct channels include, among others, the breakup
channel and in particular nonelastic breakup ones which
contain incomplete fusion as an important absorptive effect
in the case of light weakly bound projectiles, such as 6Li
(=d + 4He). Following the same procedures as in the case
of purely closed channels, one gets an additional potential,
usually called the polarization potential and denoted by Vpol.
Generally, Vpol is difficult to calculate except for some simple
models of the structure of the target nucleus, such as highly
deformed ones where a rotor model is employed. More realis-
tic polarization potentials can be derived using wave functions
obtained from CC calculations [24].
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On the other hand, one can adopt a phenomenological
approach to take into account average effects of both the
CN and direct channels. It consists in using an imaginary
potential with a longer range, reaching the surface region.
Good descriptions of the elastic scattering and total reaction
data have been achieved with an imaginary potential having
the same shape as the real potential but with a slightly weaker
strength [25]. However, this procedure fails when the cou-
plings with open channels are very strong, as in collisions of
a heavy projectile with a highly deformed target, or collisions
of weakly bound systems.

C. One-channel description of absorption

Within a one-channel description, the elastic scattering
and total reaction cross sections can be obtained solving the
Schrödinger equation with the complex potential

V (r ) = Vopt (r ) + Vpol(r ). (29)

The scattering wave function, ψ (+) (r) is then calculated and
the total reaction cross section, which is equal to the absorp-
tion cross section, is given by

σR = σabs = k

E
〈ψ (+)| − Im{V }|ψ (+)〉. (30)

The calculation of the fusion cross section is more compli-
cated. One might be tempted to evaluate σF using the above
expression, but with the replacement: Im{V } → Im{Vopt}.
However this is not correct. The reason is that fusion can take
place in the elastic channel and also in the direct channels
associated with the potential Vpol. The contributions from
the nonelastic channels, which are quite important, would be
completely ignored in this procedure. Then, it is better to
evaluate the wave function using only the real part of the
polarization potential, or to neglect it completely. At sub-
barrier energies, the real part of the polarization potential
tends to reduce the Coulomb barrier, which enhances fusion.
At above barrier energies, couplings with direct channels
are not very important, except in some particular situations,
such as complete fusion of weakly bound nuclei. Since we
are mainly concerned with fusion cross sections above the
Coulomb barrier, we will neglect polarization potentials in
what follows.

If the optical potential accounts exclusively for couplings
with the CN, strong absorption takes place in the inner region
of the barrier. Then, the absorption probability at a given
partial wave is equivalent to the condition of transmission
through the barrier of the real part of the optical potential
plus the centrifugal term. There are three main methods to
calculate the absorption cross section.

Incoming wave boundary condition (IWBC). Within this
model the imaginary part of the l-dependent potential in the
radial equation is neglected. One uses the potential

Ul (r ) = UN(r ) + UC(r ) + h̄2

2μ r2
l(l + 1). (31)

The radial Schrödinger equations are then solved with incom-
ing wave boundary condition at some internal radius, Rin,
which is usually the minimum of Ul (r ). This is equivalent

to assuming total absorption once the flux from the elastic
channel tunnels into the inner well of Ul (r ).

Wentzel, Kramers, Brillouin (WKB) method. In this pro-
cedure, which is an analytical representation of the IWBC
model, the fusion cross section is represented as a sum of
tunneling probabilities calculated by the WKB method [26].

Complex potential model. Here the Schrödinger equation is
solved with the complex optical potential and the absorption
cross section is then given by

σabs = k

E
〈ψ (+)| − W |ψ (+)〉, (32)

where

W (r ) = Im{Vopt} (33)

is the imaginary potential responsible for the absorption.
The numerical calculations reported in the following rely on
the partial wave decomposition of the Schrödinger equation,
which leads to radial equations with the l-dependent potentials

Vl (r ) = Vopt (r ) + h̄2

2μ r2
l(l + 1). (34)

1. IWBC and semiclassical WKB method

The IWBC accounts for short-range absorption using a real
potential in the radial equations but assuming that the incident
wave is completely absorbed in the inner region of the barrier.
On the other hand, absorption cross sections obtained with
this quantum mechanical approach are very close to the ones
obtained with the WKB method [27,28]. Both approaches are
based on the implicit assumption that fusion is a tunneling
phenomenon. The absorption cross section is given by the
partial-wave expansion

σabs = π

k2

∑
(2l + 1) T (l, E), (35)

where T (l, E) is the absorption probability, which in the
WKB method is equivalent to the transmission coefficient
through the barrier of the potential of Eq. (31).

For simplicity, instead of Schrödinger equations with
IWBC, we use Kemble’s version of the WKB approximation,
where the transmission coefficient is given by

T (l, E) = 1

1 + exp[2 �l (E)]
, (36)

with

�l (E) =
∫ r2

r1

kl (r ) dr. (37)

Above,

kl (r ) =
√

2μ [E − Ul (r )]

h̄
(38)

is the local wave number and r1 and r2 are, respectively, the
internal and the external turning points in the barrier region.
In addition, there is an innermost turning point, rin, located in
a region dominated by the centrifugal potential. The influence
of this turning point is disregarded in the IWBC and the WKB
descriptions of the collision. At energies above the barrier
of the potential for the lth partial wave there are no real
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values for the turning points r1 and r2. Then, keeping the
integral of Eq. (37) along the real axis one gets �l (E) = 0,
and thus T (l, E) = 1/2, for any energy above the barrier. This
problem can be handled with the analytical continuation of
the potential on the complex r plane [27,28]. The calculation
of the transmission coefficient in this energy range can be
simplified if one adopts the parabolic approximation for the
potential barrier,

Ul (r ) = Bl − 1
2 μω2

l (r − Rl )
2, (39)

where Bl , Rl , and h̄ωl are, respectively, the height, the radius,
and the curvature parameter of the Ul (r ) barrier. In this
case, the transmission coefficient can be evaluated analytically
and one finds the so-called Hill-Wheeler transmission coeffi-
cient [29]

T HW(l, E) = 1

1 + exp [2π (Bl − E)/h̄ωl]
. (40)

For low partial waves, the potential of Eq. (31) has a barrier
with maximum Bl , located at Rl . The change of behavior takes
place at the critical angular momentum, lcr, which is the l
value satisfying the equation

ωl =
√

−V ′′
l (Rl )/μ = 0. (41)

The grazing energy for lcr, known as the critical energy and
denoted by Ecr, is then given by

Ecr = Blcr . (42)

For l > lcr, the barrier disappears and T (l, E) vanishes.
Thus, according to Eq. (35), partial waves above lcr do not
contribute to σF. Therefore, the partial-wave series is truncated
at l = lcr. In this way, σabs(E > Ecr ) decreases monotonically
with E. Making the classical approximation for the transmis-
sion coefficient, T (l < lcr, E > Ecr ) = 1, the cross section
above the critical energy takes the simple form

σabs(E) 
 σ0 × Ecr

E
, (43)

with

σ0 = πh̄2(lcr + 1)2

2μE
. (44)

The above expression is very accurate, except for energies just
above Ecr where the transmission coefficients for l just below
lcr are not yet very close to 1.

An important difference between absorption probabilities
calculated using the complex potential method and in the
WKB/IWBC approaches is that in the former there is an inher-
ent wave reflection from the imaginary part of the potential.
This reflection is an effective repulsion which renders the
strength to be smaller than the announced one.

2. Calculations with explicit use of imaginary potentials

The treatment of absorption by IWBC or the WKB
method can only be used to describe short-range absorption,
corresponding to the fusion process. However, one frequently
wants to make theoretical predictions of reaction cross sec-
tions with one-channel calculations. In such cases, absorption

arises both from fusion and from direct reactions. One then
solves the Schrödinger equation with a complex potential
whose imaginary part has a longer range than in the case of
pure fusion.

Thus, an important issue in quantum mechanical descrip-
tions of scattering is the range of the imaginary potential.
In coupled-channel calculations including all relevant direct
channels, fusion is the only process the imaginary potential
accounts for. In this case, the couplings act at very short dis-
tances, in the inner region of the Coulomb barrier. The same
happens when the influence of direct channels is neglected. In
such cases, the imaginary potential is usually represented by
the Woods-Saxon function

W (r ) ≡ W F(r ) = W0

1 + exp [(r − R0)/a0]
, (45)

with

R0 = r0
[
A1/3

P + A1/3
T

]
.

The condition of short-range strong absorption is guaranteed
by a large strength parameter, say W0 = −50 MeV, and small
radius and diffusivity parameters, such as r0 = 1.0 fm and
a0 = 0.2 fm.

On the other hand, in typical optical model analyses,
elastic and total reaction cross sections of potential scattering
calculations are compared with data. Of course, the experi-
mental cross sections are influenced by both fusion and direct
reactions. Thus, the imaginary potential must have a longer
range, acting both in the inner region of the Coulomb barrier
and in the barrier region. Then one may use a WS function
with larger values of the r0 and a0 parameters, or another
function with a similar range. Alternatively, one can use the
same radial dependence of the real potential, and multiply the
strength parameter by a factor λ slightly less than one. That is,

W R(r ) = i λ UN(r ), (46)

where UN(r ) is the real part of the nuclear interaction. Gasques
et al. [25] obtained good descriptions of data of a large number
of systems using the above procedure. They adopted the São
Paulo potential [11,30], with λ = 0.78.

D. Absorption vs fusion: CN formation probability

It is clear that fusion corresponds to absorption in the
inner region of the potential barrier. However, short-range
absorption does not necessarily mean fusion. The conditions
for CN formation must be satisfied. Then, the fusion cross
sections may be written as

σF = π

k2

∑
(2l + 1) T (l, E) PCN(l, E), (47)

where PCN(l, E) is the CN formation probability. This prob-
ability depends on two contributing factors, which are dis-
cussed below.

The first factor is related to the density of states of the
compound system, and their widths. The common assumption
is that the probability of formation of the CN is unity, once
the system overcomes the Coulomb barrier. Even at energies
around the Coulomb barrier, the CN resonances are strongly
overlapping and thus the system always finds a way to form
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the CN. Thus, setting PCN(l, E) = 1 is quite appropriate.
Exceptions to this can be found in collisions of light systems
at energies well below the Coulomb barrier, where the CN
formation probability must be less than one. This probability
depends on the product ρCN × �CN, where ρCN is the average
density of states of the compound nucleus and �CN is their
average width. The average spacing between the resonances
is DCN = 1/ρCN. The CN formation probability is here taken
to be given by the sum-over-resonances-based formula of
Moldauer-Simonius (MS) [31–33],

P (MS)
CN (l, E) = 1 − e−2πα, (48)

with

α = �CN(l, ε∗
CN ) × ρCN(l, ε∗

CN ), (49)

where ε∗
CN is the CN excitation energy in a collision with

energy E and angular momentum l. Above, ρCN(l, ε∗
CN ) and

�CN(l, ε∗
CN ) are, respectively, the corresponding density of

states and their average width.
The factor P (MS)

CN (l, E) of Eq. (48) may be very important
when α  1. Such a situation was discovered in the case
of fusion of 12C + 12C at deep sub-barrier energies [34].
The authors of Ref. [34] found for P (MS)

CN (l, E) at these low
energies, the value ≈0.8.

The second factor is that the projectile must remain close
to the target for a long time, orders of magnitude longer
than the time of transit. While the system stays in the inner
region of the potential barrier, the kinetic energy of the relative
motion is dissipated into intrinsic degrees of freedom, until
the formation of an equilibrated CN. For this purpose it is
necessary that the system be trapped in a neighborhood of the
minimum of the potential Ul (r ). Clearly, this cannot happen
at angular momenta higher than the critical value, lcr, above
which Ul (r ) ceases to have a pocket.

As said above the hindrance factor given by the Moldauer-
Simonius formula [Eq. (48)] is effective at low energies where
the CN resonances are not overlapping. This factor is not
expected to be important in the collisions studied in the
present work and for this reason it will be assumed to be
equal to one. On the other hand, the hindrance above the
critical angular momentum depends exclusively on the real
part of the optical potential, and is mostly related to the
strong competition of direct reaction channels simulated by
a stronger dynamic polarization potential.

The higher-energy (HE) CN hindrance factor, call it
P (HE)

CN (l, E), related to couplings to many inelastic channels
and to the breakup channels (incomplete fusion), can be
schematically accounted for in calculations with complex
potentials,

P (HE)
CN (l, E) = 1, for l < lcr

= 0, for � lcr. (50)

We adopt this CN formation probability, P (HE)
CN (l, E), namely

the use of lcr cutoff, in the applications of the next section.
In this way, our fusion cross sections behave as in the Glas
and Mosel [35] model (GM). These authors employ the WKB
method for the tunneling probability and use an lcr in the l sum

FIG. 1. Schematic representation of the dissipation of the inci-
dent energy. (a) shows a collision with E > Bl and l < lcr , where it
leads to the formation of a CN. (b) shows a collision with E > Ecr

and l > lcr. In this case the system emerges with an energy E′ < E,
without forming a CN.

in their calculation of the fusion cross section at the higher
energies. So in a way we are generalizing the GM model to the
complex potential model. Figure 1 illustrates the dissipation
of the kinetic energy of the projectile-target relative motion
in two situation. Figure 1(a) shows a collision with angular
momentum l < lcr, at an energy E satisfying the condition:
Ecr > E > Bl . As the system enters the strong absorption
region, represented by a pink shaded area, the energy E is
quickly dissipated and the system is caught in the pocket of the
potential Ul (r ). Then, after a long time, the excitation energy
of the system is fully thermalized and the CN is formed. In
this collision the CN formation probability is equal to one.

A different situation is depicted on Fig. 1(b). Now the
angular momentum is higher than lcr and the collision energy
is higher than Ecr. As before, there is energy dissipation as
the system reaches the strong absorption region. However,
there is no CN formation. Owing to the strongly repulsive
nature of Ul (r ) and to the absence of a pocket, the duration
of the collision is far too short for full thermalization. Then,
there is some dissipation of the incident energy and the
collision partners may exchange a few nucleons, but they
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FIG. 2. Fusion cross sections for the 16O + 208Pb system calcu-
lated with the AW nuclear interaction and the short-range imaginary
potential of Eq. (45), with parameters W0 = −50 MeV, r0 = 1.0 fm,
and a = 0.2 fm. The blue solid line does not take into account the
CN formation probability of Eq. (50) whereas the green dashed line
does.

eventually reseparate, keeping their identities. Such processes
correspond to multistep excitations and preequilibrium
reactions. Thus, they are very important to the total reaction
cross section but they do not contribute to fusion. In this case
the CN formation probability is zero.

Figure 2 illustrates the importance of the CN formation
probability in 16O + 208Pb fusion. The full blue curve repre-
sents the calculation without the lcr cutoff while the dashed
green one with the lcr cutoff. The calculations were performed
with the AW interaction plus the short-range imaginary po-
tential of Eq. (45). For the latter, we adopted the parameters
W0 = −50 MeV, r0 = 1.0 fm and a = 0.2 fm. Usually, fu-
sion and reaction cross sections at energies reaching Ecr are
plotted against the inverse of the energy. We use instead the
dimensionless variable VB/E. As expected, the two curves are
indistinguishable at energies below Ecr, which corresponds to
VB/E = 0.54. This corresponds to collisions behaving as in
Fig. 1(a). However, they are dramatically different above the
critical energy and the difference increases with the energy.
This corresponds to the situation of Fig. 1(b). Although the
absorption increases with energy, the fusion cross section
is proportional to 1/E, following Eq. (43). We see from
this calculation that the inclusion of the compound nucleus
formation probability of Eq. (50) in the l sum, or equivalently
the introduction of the lcr cutoff in the said sum of the fusion
cross section calculated with the complex potential model,
reduces the cross section by as much as a factor of 4 at the
highest energy considered in the figure.

III. APPLICATION TO HEAVY AND LIGHT SYSTEMS

In this section we investigate the influence of the treatment
of absorption and the choice of the nuclear potential in fusion
cross sections of a heavy (16O + 208Pb) and of a light (6Li +
12C) system.

FIG. 3. Fusion cross sections for the heavy system, 16O + 208Pb.
(a) shows the dependence on the diffuseness parameter, (b) the
dependence on the radius parameter, and (c) the dependence on the
strength of the imaginary potential. The solid black line represents
the calculation within the WKB theory. See text for details.

A. Dependence of σF on the treatment of absorption

Usually, it is assumed that heavy-ion fusion cross sec-
tions of barrier penetration models (IWBC or WKB) at near-
barrier energies are equivalent to cross sections of quantum
mechanical calculations with strong short-range imaginary
potentials, such as WS potentials with parameters in the
range: 50 MeV � W0 � 200 MeV, 0.9 fm � r0 � 1.0 fm
and 0.1 fm � a0 � 0.2 fm. In this section, we check this
assumption comparing cross sections for one heavy system
and one light system. We use as benchmarks the cross sec-
tions of quantum mechanical calculations with WS imaginary
potentials with the parameters W0 = 50 MeV, r0 = 1.0 fm and
a0 = 0.2 fm. In this comparison we adopt the Akyüz-Winther
potential [13,36] for the real part of the nuclear interaction.
With this choice, the Coulomb barriers for the 16O + 208Pb
and 6Li + 12C systems are VB = 76.5 and VB = 3.3 MeV,
respectively. The corresponding critical energies are Ecr =
141 MeV and Ecr = 21.1 MeV. The fusion cross sections
obtained with the different imaginary potentials and with the
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FIG. 4. Same as Fig. 3 for the light mass system, 6Li + 12C. See
text for details.

WKB approximation for the two systems are shown in Figs. 3
and 4.

Figure 3 shows cross sections for the 16O + 208Pb system.
Results of the WKB calculation, represented by black solid
lines, and results of calculations with the imaginary WS po-
tential with the benchmark parameters (W0 = −50 MeV, r0 =
1.0 fm, and a0 = 0.2 fm), represented by blue dashed lines,
are shown on the three panels of the figure. The remaining
curves were obtained with other values of a0 [Fig. 3(a)], other
values of r0 [Fig. 3(b)], and other values of W0 [Fig. 3(c)].

At above-barrier energies below 100 MeV, the cross sec-
tions of all calculations are very close. At higher energies,
the WKB cross section exceeds the ones obtained with the
imaginary potentials, which differ among themselves. The
discrepancies are maximal in the neighborhood of the critical
energy, Ecr = 141 MeV. Beyond this value, the differences
among the curves decrease, as they all exhibit the asymptotic
behavior of Eq. (43). Comparing the curves on the three
panels one concludes that the cross sections are more sen-
sitive to the choice of r0 than of the other two parameters.
The results of a similar study for the light 6Li + 12C system
are presented in Fig. 4. Although the trends of the fusion cross
sections calculated within the WKB and absorption methods

are approximately the same, the discrepancies now are slightly
smaller than in the previous case. Further, we notice that
dispersion among the cross sections obtained with imaginary
potentials with different parameters is less pronounced than
in the previous system, and now the sensitivity of the cross
sections to changes in W0 is larger that to those in r0 or a0.

We now try to give a qualitative interpretation of the energy
dependence of σF. Near the Coulomb barrier, the number of
partial waves contributing to fusion grows with E and, ac-
cordingly, the cross section increases monotonically. For a low
partial wave, the effective potential has the shape represented
on Fig. 1(a). The potential has a barrier, of height Bl , followed
by a dip, as r decreases. For an energy E0 < Bl , fusion is
determined by the probability of tunneling trough the barrier.
If tunneling occurs, then the fusion process takes place, as
the system continues its motion drawn by the strong nuclear
potential in the well, until it reaches the strong absorption
region, indicated by the shaded band at the left of the figure.
Then the CN is formed. The outcome is the same at an energy
E > Bl . In this case the system overcomes the barrier and
reaches the strong absorption region. There, the kinetic energy
is completely dissipated and the system is caught in the dip of
the potential. This situation is schematically represented on
Fig. 1(a).

As the angular momentum increases, the repulsive cen-
trifugal potential leads to a decrease in the depth of the
effective potential well in the inner region of the Coulomb
barrier, until, for l = lcr, the potential has an inflection point
instead of a barrier-well shape. The effective potential for
a partial-wave above lcr is represented on Fig. 1(b). For a
high enough energy, E, the system overcomes the barrier and
reaches the strong absorption region, where its kinetic energy
is partly dissipated. However, there is no CN formation. The
system re-separates with an energy E′, lower than E. This
process corresponds to the situation schematically represented
on Fig. 1(b). As such, partial-waves above lcr do not contribute
to fusion. Accordingly the partial-wave series of Eq. (47) must
be truncated at lcr, which is guaranteed with our choice of
PCN(l, E) of Eq. (50). Then, the cross section at high energies
(E > Ecr) decreases linearly with E, following Eq. (43). This
behavior can be observed in Figs. 3 and 4.

Inspecting Figs. 3 and 4, one concludes that WKB cross
sections are very close to the ones obtained by quantum
mechanics with strong absorption potentials, at near-barrier
energies and at energies well above Ecr. However, they differ
at energies in the neighborhood of Ecr. Further, the quan-
tum mechanical cross sections in this region depend on the
parameters of the imaginary potential. The discrepancies in
this energy range arise from reflections by the real and the
imaginary parts of the potentials at partial waves just below
lcr. In this case there is a single turning point very close to the
barrier radius, outside the region of strong absorption. Then
the incident wave is reflected without contributing to fusion.
WKB calculations neglect this effect and for this reason they
overestimate the fusion cross section in the neighborhood of
Ecr. At higher energies the situation is different. The turning
point for that same partial wave moves into the strong absorp-
tion region, and then the fusion probability is close to one both
in the WKB and in the quantum mechanical calculations.
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FIG. 5. The AW and the SPP potentials for the 6Li + 12C and
16O + 208Pb systems.

B. Dependence of σF on the nuclear potential

Now we investigate the sensitivity of the fusion cross
sections to the choice of the nuclear potential. We study the
16O + 208Pb and 6Li + 12C systems, performing calculations
with complex potentials. We consider the AW and the SPP
nuclear interactions, and adopt the short-range imaginary
potential of Eq. (45), with the parameters: W0 = 50 MeV,
r0 = 1.0 fm and a = 0.2 fm.

Figure 5 illustrates the situation for these two bare nuclear
potentials that coincide on the external region, but that have
very different predictions for the inner well. Table I shows the
heights, radii, and curvature parameters in the parabolic fits of
the AW and SPP barriers. It shows also the critical energy in

TABLE I. The parameters of the parabolic approximation for the
Coulomb barriers of the systems considered in the present work. The
corresponding critical energies are also shown.

System: 16O + 208Pb 6Li + 12C

VB (MeV)
AW: 76.5 3.3
SPP: 76.0 3.0

RB (fm)
AW: 11.6 7.4
SPP: 11.7 7.7

h̄ω (MeV)
AW: 4.5 2.7
SPP: 4.6 2.9

Ecr (MeV)
AW: 141 21.1
SPP: 384 26.3

FIG. 6. Theoretical fusion cross sections for the 16O + 208Pb
system, calculated with the AW (green dashed line) and the SPP (blue
solid line). The experimental data of Morton et al. [37] (black open
circles) and Back et al. [38] (red squares) are also shown.

each case. As we have noticed, the barrier parameters for the
two potentials are quite similar, for both systems. Further, the
critical energies predicted by the two potentials for the light
6Li + 12C system are not very different. The one predicted by
the SPP is roughly 25% higher. However, the critical energies
for the heavy 16O + 208Pb system are, indeed, very different,
with the prediction of the SPP being almost three times larger
than the value predicted by the AW potential. The reason why
the critical energies for the SPP are systematically higher is
that this potential is much deeper than the AW. Whereas the
depth of the former is of a few tens of MeV, that for the
latter is a few hundreds of MeV. This difference becomes
progressively more important as the mass of the system grows,
as illustrated in Fig. 5. The critical energy determines the
transition between two different energy regimes of the fusion
cross section, referred to as region 1 (near barrier) and region
2 (above Ecr). Since this transition can be observed in the data,
the experimental determination of the transition energy can be
used as a criterion to select appropriate models for the bare
potential. Having this in mind, we compare the cross sections
calculated with the AW and the SPP potentials with available
data. Figure 6 shows the comparison for the 16O + 208Pb
system. The figure shows the AW cross section (green dashed
line) in comparison with the SPP cross section (blue solid
line) and the data of Morton et al. [37] (black open circles),
and of Back et al. [38] (red squares). The data of Ref. [37] is
restricted to the low-energy region, where the two theoretical
curves are very close, and they agree very well with the theory.
The older data of Ref. [38] reaches higher energies. Three data
points were taken at energies below the critical energy for the
two potentials and they are a little lower than the theoretical
curves. The fourth data point was taken at an energy slightly
higher than the critical energy of the AW potential, and it
seems to follow the growing trend of the SPP cross section.
However, considering that there is a single point in this region,
the comparison of the data with the theoretical curves is not
conclusive. Figure 7 shows an analogous comparison of cross
sections for the 6Li + 12C system. The notation of the two
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FIG. 7. Theoretical fusion cross sections for the 6Li + 12C
system compared with the available data. The notation of the curves
is the same as in the previous figure and now the black open
circles and the red square correspond respectively to the data of of
Mukherjee et al. [39] and of Takahashi et al. [40].

curves is the same, whereas the black open circles and the
red squares correspond, respectively, to the data of Mukherjee
et al. [39] and Takahashi et al. [40]. First, one notices that the
two curves are very close in the whole energy range. This is
consistent with the similar barriers of the two potentials. The
transition energies of the two potentials are also close. The
data of Mukherjee et al. agree very well with the theoretical
predictions of the two potentials. However, the data points at
the highest energies seem to indicate a transition to region 2
before the theoretical predictions. Nevertheless they are still
in agreement with the theoretical curves within the error bars.
The data of Takahashi et al. are systematically lower than the
theoretical curves, and also than the data of Mukherjee et al.
On the other hand, they indicate a transition energy consistent
with theoretical predictions.

IV. DISCUSSION AND CONCLUSIONS

We have presented a detailed investigation of the sensitivity
of fusion cross sections to different commonly used nuclear
potentials and treatments of absorption in potential scattering.
An important general conclusion we have reached is that fu-
sion cross sections can be computed with an optical potential
as long as the range and the diffuseness of the imaginary part
are small. Cross sections obtained in this way are practically
the same as those with the incoming wave boundary condition
as long as the incident energy is not too low.

We have evaluated fusion cross sections for the light 6Li +
12C system and for the heavier 16O + 208Pb system. We have
performed calculations at energies ranging from the Coulomb
barrier to beyond the critical energy. We have compared
cross sections obtained within the WKB method with those
obtained with optical model calculations with short-range
absorption. We find that WKB cross sections are similar to
the ones obtained from quantum mechanical calculations with
different short-range strong absorption potentials, except in a
neighborhood of the critical energy. In this region, the WKB
cross sections are systematically higher than the quantum
mechanical ones, which show some dependence on the pa-
rameters of the imaginary potential. We point out that in our
optical model calculations the partial-wave series giving the
fusion cross section must be truncated at the critical angular
momentum, since higher partial waves do not contribute to
fusion.

We have performed quantum mechanical calculations of
fusion cross sections using different versions of the folding
interaction: the Akyüz-Winther and the São Paulo potentials.
The calculated cross sections were compared to each other and
to the available experimental data. At near-barrier energies,
the theoretical cross sections for the two methods are very
close, and also close to most data. At higher energies, the
situation for the 6Li + 12C system did not change. However,
the theoretical cross sections for 16O + 208Pb were rather
different. The AW cross section starts to decrease at E =
141 MeV (VB/E = 0.54) whereas the one associated to the
SPP keeps growing up to E = 384 MeV (VB/E = 0.20).
The difference is a consequence of the deeper well in the
SPP, which leads to a higher critical energy. An important
consequence is that one can obtain valuable information about
the nuclear interaction at small distances comparing theoret-
ical predictions with the data. Unfortunately, the presently
available data for the 16O + 208Pb system are restricted to the
relatively low-energy region, where the two theoretical cross
section are close. Therefore, experiments at higher energies
should be important to help understand the nuclear potential
between heavy ions at short separations.
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