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Background: The eikonal approximation is a high-energy reaction model, which is very computationally
efficient and provides a simple interpretation of the collision. Unfortunately, it is not valid at energies around
10 MeV/nucleon, the range of energy of HIE-ISOLDE at CERN and the future ReA12 at MSU. Fukui et al.
[Phys. Rev. C 90, 034617 (2014)] have shown that a simple semiclassical correction of the projectile-target
deflection could improve the description of breakup of halo nuclei on heavy targets down to 20 MeV/nucleon.
Purpose: We study two similar corrections, which aim at improving the projectile-target relative motion within
the eikonal approximation, with the goal to extend its range of validity down to 10 MeV/nucleon in nuclear-
dominated collisions, viz. on light targets. The semiclassical correction substitutes the impact parameter by the
distance of closest approach of the corresponding classical trajectory. The exact continued S-matrix correction
replaces the eikonal phase by the exact phase shift. Both corrections successfully describe the elastic scattering
of one-neutron halo nuclei.
Method: We extend these corrections and study their efficiency in describing the breakup channel. We evaluate
them in the case of 11Be impinging on 12C at 20 and 10 MeV/nucleon.
Results: Albeit efficient to reproduce the elastic channel, these corrections do not improve the description of the
breakup of halo nuclei within the eikonal approximation down to 20 MeV/nucleon.
Conclusions: Our analysis of these corrections shows that improving the projectile-target relative motion is not
the ultimate answer to extend the eikonal approximation down to low energies. We suggest another avenue to
reach this goal.
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I. INTRODUCTION

During the last three decades, the development of
radioactive-ion beams (RIBs) has favored the discovery of
exotic nuclei away from stability. Among these, halo nuclei
exhibit the most peculiar structure [1]. Due to their low-
binding energy, one or two of their nucleons can tunnel far
away from the core of the nucleus. These loosely bound
nucleons hence form a diffuse halo around the core, leading to
a matter radius much larger than stable nuclei [2]. Halo nuclei
are therefore usually described within a few-body model: a
core, which contains most of the nucleons, plus one or two
valence nucleons.

Being located far from stability, they exhibit short lifetimes
and cannot be studied through usual spectroscopic techniques.
Information about their structure is therefore usually inferred
from reaction measurements. To reliably analyze such ex-
periments, an accurate reaction model coupled to a realistic
description of the projectile is needed. Several models have
been developed to this aim [3]. The continuum discretized
coupled channel (CDCC) method can be considered as the

*chloe.hebborn@ulb.ac.be
†pcapel@uni-mainz.de

state-of-the-art model [4–6]. It has the advantage to solve the
few-body system within a fully quantal approach. Its core idea
is to expand the few-body wave function onto the eigenstates
of the Hamiltonian describing the projectile internal structure,
including both the bound states and the continuum, which,
to be numerically tractable, needs to be discretized. This
leads to a set of coupled equations, whose resolution can be
computationally challenging.

This motivates the use of approximations, such as the
time-dependent approach and the eikonal model, that are less
time consuming than CDCC. The time-dependent resolution
relies on a semiclassical description of the relative motion
between the projectile and the target [7,8], coupled with a
quantum description of the projectile. This simplified ap-
proach can reproduce the breakup of one-neutron halo nuclei
[9–13] but misses some quantal effects in reaction observables
[14].

Another computationally affordable model is the eikonal
approximation [15]. It is built on the fact that at high energy
the projectile-target wave function does not differ much from
the incoming plane wave. This assumption leads to a simpli-
fication of the Schrödinger equation, which can therefore be
solved more easily while keeping a quantum description of the
collision. This model is mostly used to describe intermediate
and high-energy collisions [3,16–21] but in its usual form
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and without additional correction, it is not suited for lower
energies (below 40 MeV/nucleon).

Some new facilities, such as HIE-ISOLDE at CERN or
the upcoming ReA12 at MSU, are or will be able to provide
RIBs at 10 MeV/nucleon. As CDCC exhibits convergence
issues in this range of energy, extending the validity of the
eikonal approximation to such energies would be of great in-
terest. This was achieved for Coulomb-dominated reactions in
Ref. [22], through the use of a semiclassical correction [7,8].
This semiclassical correction was generalized to the nuclear
interaction for collisions involving two compact nuclei [23].
We have shown in Ref. [24] that it also provides very precise
results for the elastic scattering of one-neutron halo nuclei
down to 10 MeV/nucleon. In the present work, we investigate
its efficiency to describe breakup observables on light targets
with the hope to obtain in such a way a unified correction of
the eikonal approximation for all types of targets.

The exact continued S-matrix correction [25–27] is another
way to improve the eikonal approximation. It was proven to
be very precise for the description of elastic scattering of one-
neutron halo nuclei [27]. We study here its generalization to
the breakup channel.

We present in Sec. II the theoretical framework of the
eikonal model and the two aforementioned corrections. Sec-
tion III focuses on the comparison of each correction with
CDCC, on the elastic scattering and breakup cross sections
of 11Be impinging on a 12C at 20 and 10 MeV/nucleon. Our
conclusions and prospects are summarized in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Eikonal model

In this work, we focus on the elastic scattering and breakup
of a one-neutron halo nucleus projectile P impinging on a
target T . As one-neutron halo nuclei exhibit a strong two-
cluster structure, a reasonable description is to consider them
as composed of a compact core c to which a neutron n is
loosely bound [3]. This three-body model of the reaction
is illustrated in Fig. 1. For simplicity, we assume in the
following all clusters to be spinless and structureless, and all
the potentials to be central.

The internal structure of the projectile is described by the
effective c-n Hamiltonian

hcn = p2

2μcn

+ Vcn(r ). (1)

The kinetic term p2

2μcn
depends on the c-n relative momentum

p and the c-n reduced mass μcn while the c-n interaction
is simulated by a real effective potential Vcn, adjusted to
reproduce the projectile low-energy spectrum.

Studying this three-body collision hence corresponds to
solving the following Schrödinger equation[

P 2

2μ
+hcn+VcT (RcT )+VnT (RnT )

]
�(R, r ) = E �(R, r ),

(2)

where P is the relative momentum between the projectile
center-of-mass and the target and μ is the reduced mass of

T
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FIG. 1. Coordinates of the three-body model: the c-n relative
coordinate r; the relative coordinate between the projectile center-
of-mass and the target R and its component b transverse to the beam
axis ̂Z; the c-T and n-T relative coordinates RcT and RnT with their
transverse parts bcT and bnT , respectively.

the whole three-body system. As the projectile is modeled as
a two-body object, two optical potentials are needed to simu-
late the interactions with the target. These potentials V(c,n)T

depend only on the distance R(c,n)T between the projectile
fragments (c, n) and the target. The coordinates appearing in
Eq. (2) are defined in Fig. 1.

We consider that the projectile is initially in its ground state
φ0, eigenstate of hcn of energy ε0, and is impinging on the
target with the wave vector K = K Ẑ, the Z axis being chosen
along the incoming beam. Therefore, Eq. (2) has to be solved
with the initial condition

�(R, r ) −→
Z→−∞

exp(iKZ + · · · ) φ0(r ), (3)

where “· · · ” reflects the fact that long-range interactions dis-
tort the incoming plane wave even at large distances.

At sufficiently high energy, the deviation from the incom-
ing plane wave during the collision is small. In the eikonal
model, this plane wave is factorized out of the wave function
[3,15]

�(R, r ) = exp(iKZ) �̂(R, r ). (4)

Inserting this factorization in Eq. (2) and assuming that the
dependence in R of �̂ is smooth enough to neglect its second-
order derivatives compared to the first-order one, we obtain

ih̄v
∂

∂Z
�̂(b, Z, r ) = [(hcn − ε0) + VcT (RcT )

+VnT (RnT )]�̂(b, Z, r ), (5)

where v = h̄K/μ is the asymptotic P -T relative velocity. In
Eq. (5), the dependence of the three-body wave function �̂ on
R is explicitly decomposed into its longitudinal Z and trans-
verse b coordinates. The description of the reaction through
Eq. (5) corresponds to the dynamical eikonal approximation
(DEA), which is very successful to model reactions involv-
ing one-nucleon halo nuclei at intermediate energy [3,20].
Note that by neglecting the second-order derivative along
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the transverse coordinate b, part of the interference between
neighboring b is missing in the eikonal approximation.

The standard eikonal model makes an additional approxi-
mation, which considers the internal coordinates of the pro-
jectile r to be frozen during the collision. This assumption,
called the adiabatic—or sudden—approximation, holds for
collisions occurring in a very brief time, i.e., with only short-
range interactions. In this adiabatic view hcn ≈ ε0 and Eq. (5)
becomes

ih̄v
∂

∂Z
�̂eik (b, Z, r )

= [VcT (RcT ) + VnT (RnT )]�̂eik (b, Z, r ). (6)

The solutions of Eq. (6) satisfying the condition (3), read
[3,15]

�̂eik (b, Z, r ) = exp

[
− i

h̄v

∫ Z

−∞
VcT (bcT , Z′)

+VnT (bnT , Z′)dZ′
]
φ0(r ). (7)

From a semiclassical viewpoint, these solutions describe the
projectile following a straight-line trajectory at constant im-
pact parameter b, along which the wave function accumulates
a complex phase resulting from its interaction with the target.
This phase can be split into two terms, one for each fragment
of the projectile, which are computed for each b(c,n)T (see
Fig. 1).

After the collision, all the information about the reaction is
carried in the eikonal phases

χ(c,n)T (b, r ) = − 1

h̄v

∫ +∞

−∞
V(c,n)T (R, r ) dZ. (8)

The Coulomb interaction needs a particular treatment first
because Eq. (8) diverges for a Coulomb potential and second
because its infinite range is incompatible with the adiabatic
assumption. To solve these two issues, we use the Coulomb-
corrected eikonal approximation (CCE) [28,29].

Unfortunately, the simplicity and forward interpretation of
the eikonal approximation work only at high enough energy,
where the deviation from the initial plane wave is small. At
lower energy, we need to account for the deflection of the
projectile due to its interaction with the target. As shown in
Ref. [22], this can be done for Coulomb-dominated collisions
using a semiclassical correction. We study here the low-
energy extension of the eikonal approximation for nuclear-
dominated reactions.

B. Semiclassical correction

To account for the deflection of the projectile, we first
study a semiclassical correction, which replaces within the
computation of the eikonal phase the impact parameter b
by the distance of closest approach b′ of the corresponding
classical trajectory [7,8]. For a pure Coulomb collision, this
distance b′

C is known analytically [7,8]

b′
C = η +

√
η2 + (Kb)2

K
, (9)

where η is the P -T Sommerfeld parameter. The fact that
b′

C > b accounts for the Coulomb repulsion between the
projectile and the target. Since this correction leads to very
precise results for collisions with heavy targets [22], i.e., for
Coulomb-dominated reactions, its extension to the nuclear
interaction has been investigated [24].

The nuclear deflection of the projectile can be taken into
account by using the distance of closest approach b′ of the
classical trajectory obtained with both the Coulomb and the
real part of the nuclear optical potentials V [30,31]

E − Re{V (b′)} − μv2

2

(
b

b′

)2

= 0. (10)

This implicit equation translates the conservation of energy
and orbital angular momentum in the P -T relative motion.
We have observed that for nuclear-dominated collisions, this
correction induces an increase of the eikonal elastic-scattering
cross section that leads to a significant overestimation of the
exact results. This suggests that the extension of the semi-
classical correction to the real part of the nuclear interaction
misses absorption from the elastic channel [31].

To tackle this issue, it has been proposed in Ref. [23] to
use a complex distance of closest approach b′′ computed from
the whole optical potential. This distance is solution of an
equation similar to Eq. (10), but using the complex V instead
of its sole real part. These b′′ can be computed with numerical
techniques, such as Newton-Raphson. However, since the
imaginary part of b′′ remains small in all the cases studied
here, its perturbative estimate obtained as the first iteration of
the Newton-Raphson method is sufficient. It reads [32]

b′′ = b′ − i

⎡
⎢⎢⎣ Im{V (R)}

d

dR

(
Re{V (R)} + E b2

R2

)
⎤
⎥⎥⎦

R=b′

, (11)

where b′ is the solution of Eq. (10). Including an imagi-
nary part in the distance of closest approach enhances the
absorption and hence improves the eikonal model. As it is
very efficient for elastic scattering of one- [23] and two-body
projectiles [24], we study in the present paper its action on
breakup observables.

At low energy, the adiabatic treatment of the collision
becomes inadequate and the dynamical effects start to play
a role [33]. To test the influence of the sudden approxima-
tion at the energies considered here, we extend the complex
semiclassical correction to the DEA by replacing in Eq. (5)
the transverse components of RcT and RnT by their corre-
sponding complex distances of closest approach b′′

cT and b′′
nT

obtained through Eq. (11).

C. Exact continued S-matrix correction

Another way to correct the P -T relative motion is to use
the exact correspondence between the partial-wave expansion
and the eikonal model. Wallace demonstrates it in the case
of the elastic scattering of a structureless projectile [25].
He shows that the scattering amplitude of the partial-wave
expansion can be computed by a series of integrals over the
impact parameter b. The first term corresponds to the eikonal
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calculation wherein the eikonal phase is replaced by the exact
phase shift

χ (b) → 2δl, (12)

relating the impact parameter to the orbital angular momen-
tum through the semiclassical relation

l = Kb − 1/2. (13)

In Ref. [27], Brooke, Al-Khalili, and Tostevin show that the
zeroth order of this sum is already very accurate to describe
the elastic scattering of structureless nuclei. They generalize
this correction to the elastic scattering of one-neutron halo
nuclei by assuming that, due to the spatial extension of the
projectile and the adiabatic treatment of their relative motion,
the total eikonal phase χ can be approached by the sum of the
exact phase shifts of each fragment [26]

χ (R, r ) = χcT (b, r ) + χnT (b, r ) → 2δlcT + 2δlnT
, (14)

with lcT and lnT , respectively, the c-T and n-T angular
momenta related to the corresponding bcT and bnT of Fig. 1
through Eq. (13). This correction hence substitutes the eikonal
phase for each fragment of the projectile by its actual phase
shift, leading to a more accurate description of their scat-
tering by the target. It significantly enhances the precision
of the eikonal description of elastic scattering down to
10 MeV/nucleons, accordingly we study in this paper its
generalization to breakup reactions. Following Brooke et al.
[27], we consider only the first term of Wallace’s expansion
and replace the eikonal phases by the exact phase shifts within
the computation of the breakup amplitude.

In our calculations, we consider the phase shifts obtained
at the closest integer l to the value obtained through Eq. (13).
We have checked that using this rough interpolation leads to
similar results as with phase shifts calculated for noninteger l
values.

III. RESULTS AND DISCUSSION

A. Two-body interactions

To analyze the corrections presented in Sec. II, we perform
calculations for the elastic scattering and breakup of 11Be
impinging on 12C at 20 and 10 MeV/nucleon. The one-
neutron halo nucleus 11Be is described as an inert 10Be core
to which an s-valence neutron is bound by 0.5 MeV. We
simulate the 10Be-n interaction by the Woods-Saxon potential
given in Ref. [34], and adjust the depth to VR = 62.98 MeV
to produce the 1/2+ ground state in the 1s wave. We use the
same potential in all partial waves but in the d wave, where
we use VR = 69.15 MeV to account for the known 5/2+
resonance in the 10Be-n continuum. This potential produces
a d resonance at energy Ed = 1.27 MeV and with a width
�d = 0.16 MeV, which are close to the experimental values
E5/2+ = 1.274 MeV and �5/2+ = 100 keV. The 10Be-12C and

n-12C interactions are simulated by the same potentials as in
Ref. [24].1

B. Analysis

To estimate the quality of the corrections mentioned in
the previous section, we confront their predictions to CDCC
computations that we take as reference. We perform these
calculations with FRESCO [35] and use the following model
space: the 10Be-n continuum is described up to the c-n orbital
angular momentum lmax = 6, the maximum c-n energy is set
to be Emax = 10 MeV, the number of bin states per partial
wave is between 11 (for large l), 25 (at low l) and up to
49 (within the d wave to account for the presence of the
resonance), and the total angular momentum is considered up
to Jmax = 20 000.

We plot in Fig. 2 the differential elastic-scattering cross
sections at [Fig. 2(a)] 20 MeV/nucleon and [Fig. 2(b)]
10 MeV/nucleon. At large angles, the eikonal cross sections
(dashed green lines) overestimate the CDCC calculations
(solid red lines), suggesting that this model underestimates the
absorption from the elastic channel. It also tends to dampen
the oscillations in that angular region. Interestingly, the DEA
cross sections (short dashed magenta lines) lie close to the
eikonal ones, indicating that the dynamics of the projectile has
little effect on the elastic-scattering process. Note, however,
that these dynamical effects increase at low energy since
the discrepancy between the DEA and the eikonal results is
larger at 10 MeV/nucleon than at 20 MeV/nucleon, as already
observed in Ref. [33].

Let us first compare the complex semiclassical correc-
tion (11) within the standard eikonal model (dash-dotted blue
lines) and the DEA (dotted orange lines). In both cases, this
correction leads to very similar cross sections. At forward
angles (below 15◦ and 20◦ at 20 and 10 MeV/nucleon, respec-
tively), it improves the description of the elastic scattering.
At larger angles, it overcorrects the magnitude of the cross
sections, which now falls below the reference calculation.
The oscillatory pattern of the CDCC calculation is not well
reproduced. Surprisingly, the magnitude of the cross sections
obtained with this semiclassical correction are in better agree-
ment with the CDCC results at 10 MeV/nucleon than at
20 MeV/nucleon.

Contrary to the semiclassical correction, the exact contin-
ued S-matrix one (14) (dash-dotted-dotted black lines) has
a similar accuracy at both energies. The magnitude of the
cross sections is well reproduced up to 15◦ and 20◦ at 20
and 10 MeV/nucleon, respectively. At larger angles, they
slightly underestimate the CDCC calculations. In addition, the
oscillatory pattern is precise up to 25◦ at both energies, but is
slightly shifted to larger angles. Our analysis indicates that
this shift is due to the adiabatic assumption, still considered
in this correction. The remaining discrepancy with CDCC
probably comes from the higher-order terms in the series of

1Note that in Ref. [24] the depth of the surface imaginary term of
the n-12C potential of Ref. [36] is erroneous and should read WD =
7.1585 MeV.
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FIG. 2. Rutherford-normalized elastic-scattering cross sections of 11Be off 12C at (a) 20 MeV/nucleon and (b) 10 MeV/nucleon as a
function of the scattering angle θ . The results are obtained with CDCC, the standard eikonal approximation, the DEA and various corrections
detailed in the text.

integrals over b developed by Wallace, that we neglect in our
computation (see Sec. II C).

These two corrections improve the accuracy of the eikonal
description of the elastic scattering of halo nuclei at low
energies, and, as such, properly correct the deflection of the
projectile by the target. In particular, they better simulate
the absorption from the elastic channel and reproduce the
oscillatory pattern of the reference calculation. Moreover,
these two corrections are insensitive to the choice of optical
potentials. These encouraging results have driven us to extend
them to breakup reactions.

In Fig. 3, we plot the breakup cross section of 11Be on
12C at 20 MeV/nucleon as a function of the 10Be-n relative
energy. Compared to CDCC, the eikonal model reproduces
the right shape of the distribution, except in the range be-
tween 0.25 MeV and 1 MeV, where it predicts a local min-
imum. Unfortunately, it underestimates the cross sections by
approximatively 30%, over the whole energy range. As in
the elastic-scattering case, including the dynamics does not

EC
DEA b′′cT & b′′nT

DEA
Eik. b′′cT & b′′nT

Eik.
CDCC

E [MeV]

d
σ

bu
/d

E
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0.2

0.15

0.1

0.05

0

FIG. 3. Breakup cross sections of 11Be impinging on 12C at
20 MeV/nucleon as a function of the 10Be-n relative energy.

impact significantly the accuracy: the DEA leads to a slightly
larger cross section and improves the shape of the distribution
between 0.25 MeV and 1 MeV, but this is far from enough to
reach the CDCC prediction.

Figure 3 shows that the semiclassical correction acts simi-
larly when applied to the standard eikonal approximation and
to the DEA in breakup observables. It deteriorates the accu-
racy of these models, since the cross sections are reduced be-
low 1 MeV and there is no improvement at larger energy. This
suggests that using the complex distance of closest approach
increases the absorption from all the reaction channels and
not just in the elastic-scattering one. This correction should
thus be treated with care as it worsens the eikonal description
of breakup. Interestingly, the exact continued S-matrix cor-
rection gives results very close to the DEA, although it still
relies on the adiabatic approximation. This suggests that part
of the projectile dynamics is restored through that correction.
This approach has probably more potential as both reaction
channels are improved simultaneously.

Although these two corrections are very accurate to de-
scribe elastic scattering, they fail to reproduce the CDCC
breakup cross sections. These negative results have been
obtained at both 20 (see Fig. 3) and 10 MeV/nucleon (not
shown here). This indicates that improving the deflection of
the projectile by the target is not the only issue that should
be addressed to correct the eikonal approximation on light
targets at low beam energy. As mentioned in Sec. II A, this
approximation, neglecting the second-order derivatives in b,
misses part of the couplings between the angular momenta,
i.e., between the eikonal trajectories at different impact pa-
rameters. Therefore, another way to improve the eikonal
description of breakup at low energies could be to include
the missing couplings between the angular momenta, e.g.,
perturbatively.

IV. CONCLUSIONS

Being away from stability, halo nuclei can be studied only
through indirect techniques, such as reactions. To interpret
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precisely the measurements, one needs an accurate reaction
model. Nowadays, some laboratories are able to deliver RIBs
at about 10 MeV/nucleon. In this range of energy, CDCC is
very computationally expensive and can present convergence
issues. The eikonal model has the advantages to be much
faster and to provide a simple interpretation of the collision.
Unfortunately, it is valid only at high energy. In the case of
Coulomb-dominated reactions, it has been extended down to
low energy thanks to a semiclassical correction [22]. More
recently we have achieved the same for the elastic scattering
on light targets, i.e., nuclear-dominated collisions [24]. The
present paper focuses on the extension of these corrections to
nuclear breakup at low energies.

The semiclassical correction, already proven successful for
the elastic scattering of one-neutron halo nuclei [24], aims to
improve the deflection of the projectile by the target. It re-
places the impact parameter by the complex distance of clos-
est approach of the corresponding classical trajectory [23].
Although its generalization to breakup reactions is straightfor-
ward, it tends to deteriorate the accuracy of the eikonal model.
Interestingly, we have shown that for these nuclear-dominated
reactions, the dynamics of the projectile has little effects on
both elastic-scattering and breakup observables.

Another way to better simulate the deflection of the
projectile by the target is to use the exact continued S-
matrix correction [25–27]. It consists in the first term of
the exact correspondence between the partial-wave expansion
and the eikonal model, derived by Wallace in the case of
structureless nuclei [25]. As for the semiclassical correc-
tions, previous work [27] has demonstrated its efficiency

for the elastic scattering of one-neutron halo nuclei. In the
present paper, we have generalized it to breakup reactions,
but unfortunately this correction brings only a small accuracy
gain in the description of nuclear breakup at the eikonal
approximation.

These two corrections, focusing on the deflection of the
projectile by the target, extend the validity of the eikonal
model only for the elastic scattering and not for breakup
down to energies reachable by HIE-ISOLDE and ReA12. We
therefore believe that to improve the eikonal description of
breakup observables, another flaw of the model should be
tackled, which might be the underestimation of the couplings
between the angular momenta, caused by the neglect of the
second-order derivatives in the Schrödinger equation. Using a
perturbative approach to account for these missed couplings
could solve this issue.
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