
PHYSICAL REVIEW C 98, 044320 (2018)
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The density-dependent finite-range Gogny force has been used to derive the effective Hamiltonian for the
shell-model calculations of nuclei. The density dependence simulates an equivalent three-body force, while
the finite range gives a Gaussian distribution of the interaction in the momentum space and hence leads to
an automatic smooth decoupling between low-momentum and high-momentum components of the interaction,
which is important for finite-space shell-model calculations. Two-body interaction matrix elements, single-
particle energies, and the core energy of the shell model can be determined by the unified Gogny force. The
analytical form of the Gogny force is advantageous to treat cross-shell cases, while it is difficult to determine the
cross-shell matrix elements and single-particle energies using an empirical Hamiltonian by fitting experimental
data with a large number of matrix elements. In this paper, we have applied the Gogny-force effective shell-model
Hamiltonian to the p- and sd-shell nuclei. The results show good agreements with experimental data and other
calculations using empirical Hamiltonians. The experimentally known neutron drip line of oxygen isotopes
and the ground states of typical nuclei 10B and 18N can be reproduced, in which the role of three-body force
is non-negligible. The Gogny-force-derived effective Hamiltonian has also been applied to the cross-shell
calculations of the sd-pf shell.
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I. INTRODUCTION

Though modern ab initio methods based on realistic nu-
clear forces can give more fundamental understandings of
strongly interacting nuclear systems, calculations with phe-
nomenological or empirical interactions are still popular and
useful, particularly for large-scale calculations of nuclei.
Among various nuclear structure calculations, the shell model
is a fundamental and powerful theoretical tool, which can
describe the properties of both ground and excited states
through the configuration mixing.

In shell-model calculations, an initial and important task is
to build the effective Hamiltonian for a truncated model space.
There have been several approaches to obtain the effective
interactions. One common method is to start from a realistic
nuclear force and use perturbation approximations to derive
interaction matrix elements [1,2]. However, such calculation
is complicated, and quantitative descriptions would require
the inclusion of high-order correlations. Another one is an
empirical method in which interaction two-body matrix ele-
ments (TBMEs) are derived first from a realistic force and
modified by fitting experimental data [3–5]. However, when
the model space contains two or more major shells (i.e.,
cross-shell cases), the fitting process becomes fairly tiring due
to a large number of TBMEs. Additionally, the cross-shell
single-particle energies (SPEs) are not easy to be obtained
experimentally because it is difficult to distinguish single-
particle excitations and collective core excitations in cross-
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shell cases. Usually, SPEs are input quantities in empirical
shell-model calculations.

There is another way to obtain the effective shell-model
Hamiltonian, that is, to use a phenomenological interaction to
evaluate the TBMEs. Such calculations have been done using
δ-type phenomenological interactions, e.g., the surface-δ in-
teraction [6] and the Skyrme force [7,8]. However, the δ-type
force gives a constant distribution of the interaction strength
in momentum space. This means that the zero-range δ-type
phenomenological interactions do not provide a natural cutoff
in momentum space, which has been commented in Ref. [9].
The finite-range Gogny force [10,11] gives a Gaussian distri-
bution of the interaction in the momentum space, and hence
provides a natural cutoff. The natural cutoff gives a good
physics ground for the shell-model truncation in which only
low-momentum components of the interaction are contained.
The Gogny force has been widely used in various mean-field
calculations of nuclear structure, and recently applied to the
configuration-mixing approach [12,13]. The parameters of the
Gogny force were determined by mean-field calculations fit-
ting to the experimental data of finite nuclei and the properties
of infinite nuclear matter [14,15]. The effect of the three-body
force is taken into account in both the Skyrme and Gogny
forces through a density-dependent term, which is essential
to describe various properties of nuclei and nuclear matter. In
addition, phenomenological interactions can self-consistently
give the SPEs, which are needed as an input of the shell-model
calculation.

In the following sections, we give the detailed derivation
of the shell-model effective Hamiltonian from the Gogny
force. Using the effective Hamiltonian, we have made shell-
model calculations for the p- and sd-shell nuclei, focusing
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on nuclear binding energies, excitation spectra and electric
quadrupole transitions. Some cross-shell nuclei in the sd-pf
space have been investigated. The calculations are compared
with experimental data and other shell-model calculations
with empirical or realistic-interaction Hamiltonians.

II. EFFECTIVE SHELL-MODEL HAMILTONIAN
BASED ON THE GOGNY FORCE

In the shell-model calculation with a core, the effective
Hamiltonian can be written as the sum of one- and two-body
operators [4,16],

H =
∑

a

ean̂a +
∑

a≤b,c≤d

∑
JT

VJT (ab; cd )T̂JT (ab; cd ), (1)

where the notation is standard. ea and n̂a are the energy
and particle-number operator for the single-particle orbit a,
respectively, with the quantum numbers (na, la, ja ) being the
node of the radial wave function, orbital, and total angular
momenta, respectively.

T̂JT (ab; cd ) =
∑
JzTz

A
†
JJzT Tz

(ab)AJJzT Tz
(cd ) (2)

is the two-body density operator for the nucleon pair in the
orbits (a, b) and (c, d) with the coupled angular momentum
J and isospin T . A

†
JJzT Tz

or AJJzT Tz
is the creation or annihi-

lation of the nucleon pair. The establishment of the TBMEs,
VJT (ab; cd ) = 〈ab|VNN,12|cd〉, is a key step for shell-model
calculations. As mentioned above, in the present paper we use
the finite-range Gogny force [10,11],

VNN,12 =
2∑

i=1

e−(�r1−�r2 )2/μ2
i

× (Wi + BiP
σ − HiP

τ − MiP
σP τ )

+ t3δ(�r1 − �r2)(1 + x0P
σ )

[
ρ

( �r1 + �r2

2

)]α

+ iW0δ(�r1 − �r2)(�σ1 + �σ2) · �k′ × �k, (3)

where P σ = 1
2 (1 + �σ1 · �σ2) and P τ = 1

2 (1 + �τ1 · �τ2) are the
spin- and isospin-exchange operators, respectively, with �σi

and �τi being the spin and isospin matrix vectors, respec-
tively. ρ is the density of the nucleus at the center-of-mass
(COM) position of the two interacting nucleons. The first
term, with μi = 0.7 and 1.2 fm simulating two ranges of the
force, gives a finite-range attraction between nucleons. The
density-dependent term originates from the three-body force,
generating a proper repulsive effect. The last term of Eq. (3)

is the spin-orbit coupling, where �k =
−→∇1−−→∇2

2i
and �k′ =

←−∇1−←−∇2
2i

are the relative wave vectors of two nucleons, acting on the
right and left sides, respectively. There have been five sets of
the Gogny-force parameters, which were determined by fitting
experimental data and are currently used in the mean-field
calculations. In the present calculations, D1S as one of the
most popular Gogny interactions is used, given in Table I.

As mentioned already in Sec. I one of the motivations
to use the Gogny force is the natural convergence when the
model space increases. If we make a Fourier transformation

for the finite-range term from the coordinate space to the
momentum space, e−(�r1−�r2 )2/μ2

i becomes e−�k2μ2
i /4, with �k being

the relative momentum of the two interacting nucleons. The
Gaussian distribution makes the interaction vanish rapidly
at high relative momentum. The natural decoupling between
low- and high-momentum components of the interaction is
important for the convergence of nuclear shell-model calcu-
lations in which the low-momentum component is dominant.
The effect of three-body force is included in the form of two-
body matrix elements by the density-dependent term. Earlier
works using the density-dependent zero-range Skyrme force
were done by Sagawa et al. [7] and Gomez et al. [8].

When the force is density dependent, a question arises
in the diagonalization of the Hamiltonian. The shell-model
calculation concerns both ground and exited states, and in
principle each state corresponds to a different density. Differ-
ent densities in form lead to different interactions. However, it
is not desired to have a different interaction for each state.
In shell-model calculations based on the density-dependent
Gogny force, we take the density of the ground state in the
calculations of TBMEs. Such approximation has already been
taken in Refs. [7,8] using the Skyrme force. In the practical
calculation, the density is determined by the numerical iter-
ation, which is similar to that in mean-field calculations. We
start with harmonic-oscillator (HO) single-particle wave func-
tions, and construct the trial configuration in which nucleons
occupy the lowest HO orbits. This gives a trial density for the
initial calculations of TBMEs. With the initial TBMEs, the
shell-model Hamiltonian is diagonalized in the model space,
and a new density of the ground state can be obtained. With
the new density, we reevaluate TBMEs and diagonalize again
the Hamiltonian. Such process is repeated until a converged
solution is obtained. It has been tested that different starting
densities always give the same result after iteration. A good
trial density gives fast convergence.

The density ρ in the Gogny force describes the probability
of finding a nucleon at the COM position of the two interact-
ing nucleons. In the COM coordinates, it actually relates to a
local one-body density. By the definition, the local one-body
density operator in an A-body Hilbert space is written as [18]

ρ̂(�r ) =
A∑

k=1

δ3(�r − �rk ) =
A∑

k=1

δ(r − rk )

r2

∑
lm

Y ∗
lm(r̂k )Ylm(r̂ ),

(4)

where r̂ is the unit vector of �r , and Ylm(r̂ ) is the spherical
harmonic function. The density operator in the second quanti-
zation representation within the HO basis can then be written
as

ρ̂(�r ) =
∑
K

∑
n′l′j ′

∑
nlj

∑
jz

Rn′l′ (r )Rnl (r )
−Y ∗

K0(r̂ )√
2K + 1

×
〈
l′

1

2
j ′||YK ||l 1

2
j

〉
〈j ′jzj − jz|K0〉

× (−1)j+jza
†
n′l′j ′jz

anljjz
, (5)
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TABLE I. The D1S parameters for the Gogny force [17].

μi (fm) Wi (MeV) Bi (MeV) Hi (MeV) Mi (MeV) W0 (MeV) t3 (MeV) x0 α

i = 1 0.7 −1720.30 1300.00 −1813.53 1397.60 130 1390.60 1 1/3
i = 2 1.2 103.64 −163.48 162.81 −223.93

with〈
l′

1

2
j ′||YK ||l 1

2
j

〉
= 1√

4π
ĵ ′ ĵ l̂′ l̂(−1)j

′+ 1
2 〈l′0l0|K0〉

×
{

j ′ j K

l l′ 1
2

}
, (6)

where Rnl (r ) is for the standard HO radial wave functions, and
K denotes the order of multipole expansions for the density ρ.
Because we are dealing with a spherically symmetric system
(K = 0), the one-body density operator becomes,

ρ̂(�r ) =
∑
n′n

∑
ljjz

[
Rn′l (r )Rnl (r )

4π

]
a
†
n′ljjz

anljjz
. (7)

With Eq. (7) the density distribution of the ground
state (a mixed configuration) can be obtained by ρ( �R) =
〈�0|ρ̂( �R)|�0〉 with �R = (�r1 + �r2)/2 for the COM position of
the two interacting nucleons..

A. Two-body matrix elements

The Gogny force is written in the relative coordinate (�r1 −
�r2) and center-of-mass coordinate (�r1 + �r2)/2. Therefore, it
is natural to derive TBMEs in the relative and center-of-
mass coordinates. This can be done by using the Moshinsky
transformation with the basis wave functions [19,20],

|(nalama )(nblbmb )λμ〉 =
∑
nlNL

Mλ(nlNL; nalanblb )

× |(nlm)(NLM )λμ〉, (8)

where λ denotes the total orbital angular momentum and μ
is its z component. Mλ(nlNL; nalanblb ) is the transformation
coefficient called the Moshinsky bracket [19,20]. The trans-
formation transforms the relative motion (nlm) and center-
of-mass motion (NLM) of the two-particle system into two
independent HO motions.

The two-body antisymmetric wave functions that we are
dealing with are in the j -j coupling scheme, therefore we
need to transform the L-S coupling into the j -j scheme by
using the following transformation [21],

|(nalaja )(nblbjb )JJz〉 =
∑
λS

∑
μSz

γ
(J )
λS (jala; jblb )〈λμSSz|JJz〉

× |(nalama )(nblbmb )λμ〉|SSz〉, (9)

with

γ
(J )
λS (jala; jblb ) =

√
(2ja + 1)(2jb + 1)(2S + 1)(2λ + 1)

×

⎧⎪⎨
⎪⎩

la 1/2 ja

lb 1/2 jb

λ S J

⎫⎪⎬
⎪⎭, (10)

where J and Jz are the total angular momentum and its z
component, respectively, and |SSz〉 is the two-particle spin
eigenstate with S being the total intrinsic spin and Sz its z

component, respectively. The coefficient γ
(J )
λS is the transfor-

mation coefficient from the L-S to j -j schemes. The notation
is standard [21,22], including the 9j coefficients and Clebsch-
Gordan coefficients.

With Eqs. (8) and (9), a two-particle configuration in the
laboratory coordinate, which couples to the quantum numbers
(JJzT ), can be written as

|(nalaja )(nblbjb )JJzT 〉

=
∑
nlNL

∑
mM

∑
μSz

∑
λS

γ
(J )
λS (jala; jblb )

1 − (−1)S+T +l√
2(1 + δnanb

δla lb δjajb
)

×Mλ(nlNL; nalanblb )〈lmLM|λμ〉〈λμSSz|JJz〉
× |nlm〉|NLM〉|SSz〉|T 〉, (11)

where |T 〉 is the two-particle isospin eigenstate with a total
isospin T . Then, the TBMEs in the basis given by Eq. (11) are
obtained by

〈(nalaja )(nblbjb )JJzT |VNN,12|(nclcjc )(ndldjd )JJzT 〉
=

∑
n′l′N ′L′

∑
nlNL

∑
m′M ′

∑
mM

∑
μ′S ′

z

∑
μSz

∑
λ′S ′

∑
λS

× γ̃
(J )
λ′S ′ (jala; jblb )γ̃ (J )

λS (jclc; jd ld )

×Mλ′ (n′l′N ′L′; nalanblb )Mλ(nlNL; nclcnd ld )

×〈l′m′L′M ′|λ′μ′〉〈λ′μ′S ′S ′
z|JJz〉〈lmLM|λμ〉〈λμSSz|JJz〉

× 〈T |〈S ′S ′
z|〈N ′L′M ′|〈n′l′m′|VNN,12|nlm〉|NLM〉|SSz〉|T 〉,

(12)

with γ̃
(J )
λS (jala; jblb ) = 1−(−1)S+T +l√

2(1+δnanb
δla lb

δja jb
)
γ

(J )
λS (jala; jblb ),

where symbols with prime represent that they are for the left
vector. Inputting the Gogny force into Eq. (12), we can give
more detailed derivation of TBMEs. Since the Gaussian terms
of the Gogny force given in Eq. (3) only involve the relative
coordinate �r = �r1 − �r2, spin- and isospin-exchange operators,
we simply need to calculate 〈n′l′m′S ′S ′

zT
′|V |nlmSSzT 〉,

where V indicates either of the two terms in the summation
of Eq. (3). In the three-dimensional polar coordinates (r , θ ,
φ), we have

〈n′l′m′S ′S ′
zT |V |nlmSST 〉 =

∫∫∫
r2sinθ〈n′l′m′S ′S ′

zT |�r〉
×V 〈�r|nlmSSzT 〉drdθdφ. (13)
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To compute the matrix elements, the HO wave functions
are needed,

〈�r|nlm〉 = RnlYlm(r̂ )

=
√

2l−n+2(2ν)l+1.5(2l + 2n + 1)!!√
π [(2l + 1)!!]2n!

rle−νr2

×
n∑

x=0

(−1)x2x n!(2l + 1)!!

x!(n − x)!(2l + 2x + 1)!!

× (2νr2)xYlm(r̂ ), (14)

where Rnl is the radial component of the HO wave function,
and Ylm(r̂ ) is the angular component. r̂ is the unit vector of �r
and r = |�r|. ν = mμω

2h̄
is the HO size parameter, and mμ is the

reduced mass of the two interacting nucleons. For spherical
harmonics, the following orthogonality relation is applied:∫∫

sin θ Y ∗
l′m′ (r̂ )Ylm(r̂ ) dθ dφ = δl′lδm′m. (15)

For spin and isospin parts, we have

〈S ′S ′
z|P σ |SSz〉 = 〈S ′S ′

z|
1 + �σ1 · �σ2

2
|SSz〉

= δS ′SδS ′
zSz

(S2 + S − 1), (16)

and

〈 T |P τ |T 〉 = 〈T |1 + �τ1 · �τ2

2
|T 〉

= T 2 + T − 1, (17)

Finally, we obtain the matrix elements of the Gaussian term,

〈n′l′m′S ′S ′
zT |V | nlmSSzT 〉

= δl′lδm′mδS ′S

2∑
i=1

n′∑
x=0

n∑
y=0

(
2ν + 1

μ2
i

)−x−y−l′−1.5

×
√

22l′−n′+3.5νl′+1.5(2l′+2n′+1)!!n′!(2x + 2y + 2l′ + 1)!!

×
√

22l−n+3.5νl+1.5(2l + 2n + 1)!!n!(−1)x+y2−l′−2+x+y

× 1

(n′ − x)!x!

1

(n − y)!y!

1

(2l′ + 2x + 1)!!

1

(2l + 2y + 1)!!

× [Wi + Bi (S
2 + S − 1) − Hi (T

2 + T − 1)

−Mi (S
2 + S − 1)(T 2 + T − 1)]. (18)

The above derivations have been cross checked with calcu-
lations using partial-wave decompositions up to L = 4 [23].
The TBMEs calculations of the density-dependent and spin-
orbit coupling terms are similar to those in Refs. [7,8] using
the Skyrme force. However, Refs. [7,8] did not perform the
shell-model iteration for a self-consistent density, while a
Hartree-Fock density [7] or an approximate HO density [8]
was used.

To test the feasibility of using the Gogny interaction to de-
scribe the shell-model effective interaction, we have compared
the Gogny-D1S TBMEs with other frequently used effective
interactions. In the p shell, the TBMEs of the Gogny D1S
[17] are compared with the empirical PWT interaction by

FIG. 1. Comparison of the Gogny D1S, empirical PWT and
realistic-force HM two-body matrix elements in j -j scheme (A =
12). The abcd orbits are labeled by 1 = p1/2, 3 = p3/2.

Warburton [3] and the realistic-force HM matrix elements by
Hauge and Maripuu [24]. Figure 1 displays the 15 TBMEs of
the D1S, PWT, and HM interactions in 12C for two isospin
channels, showing good agreements in the three interactions.

In the sd shell, the 63 matrix elements of the Gogny D1S
interaction are compared with the empirical USDB interaction
by Brown [4,16] and the realistic-force RGSD interaction by
Hjorth-Jensen [25], shown in Fig. 2. The USDB interaction
is obtained by using a linear-combination method iteratively
(starting from RGSD) to reach a best fit towards experimental
data [4]. RGSD is derived by applying G-matrix and folded
diagrams to the Bonn-A NN potential. In Fig. 2, we see the
Gogny TBMEs are similar to both USDB and RGSD with the
rms deviations of 333 keV and 322 keV, respectively.

B. Single-particle energies

In addition to TBMEs, the SPEs in the model space are
also important quantities for the shell-model calculation with
a core. In the present paper, we calculate the SPEs by [26]

ej = tj + 1

2(2j + 1)

∑
j c

∑
JT

(2J + 1)(2T + 1)

×〈jj cJT |V |jj cJT 〉, (19)

FIG. 2. Comparison of two-body matrix elements (A = 18):
(a) D1S and USDB, (b) D1S and RGSD.
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where j stands for a valence-particle orbit (with the standard
quantum numbers n, l, j ) and j c for an orbit in the core. Here,
SPE is considered to be the sum of the valence-particle kinetic
energy and its interaction with all the nucleons in the core.

Actually, for most effective interactions in a single shell,
the SPEs are either determined by fitting data along with
TBMEs or straightly taken to be experimental values. How-
ever, in cross-shell or heavy-mass case, it is difficult to deter-
mine the values of SPEs because single-particle excitations
are often submerged by collective core excitation and it is
hard to gain sufficient experimental data. With Eq. (19),
the present method can overcome the above problems and
provide an alternative way to determine the SPEs for any
given model space. Another advantage of employing Eq. (19)
is that the same Gogny force is used for the calculations
of single-particle energies. Such unified treatment provides a
self-consistent way to obtain binding energies.

For the sd shell, the 17O experimental SPEs are
−4.14,−3.27, and 0.94 MeV for d5/2, s1/2, and d3/2 [4], re-
spectively, while for D1S the A = 17 SPEs are −8.51,−4.89,
and 1.23 MeV. The 39Ca experimental single-hole energies are
−15.47,−18.11, and −23.41 MeV for d3/2, s1/2, and d5/2 [4],
respectively, while D1S gives −15.62,−17.63, and −23.35
MeV.

C. Ground-state energies

The ground-state energy of a nucleus can be written as

Eg.s. = Eν + ECoul − tCOM + Ec, (20)

where Eν stands for the valence-particle energy given by
the shell-model diagonalization with the TBMEs and SPEs
obtained above. ECoul is the Coulomb energy and tCOM = 3

4 h̄ω
is the center-of-mass kinetic energy. Ec represents the energy
of the core. Note that, as usual, the Coulomb interaction is not
included in the calculation of the shell-model Hamiltonian,
to keep the isospin symmetry. It has been known that the
Coulomb effect on the excitation spectrum of a nucleus is
small [27]. However, the Coulomb energy is needed in the
calculation of nuclear binding energy [4,28].

In shell-model calculations with empirical interactions, the
core energy usually takes the experimental energy of the core
nucleus and does not change with the mass number A. In the
present calculation, the core energy is calculated by

Ec = tc + Vc, (21)

with the core kinetic energy by

tc =
∑
j c
a

(2T + 1)(2J + 1)
〈
j c
a

∣∣t̂∣∣j c
a

〉
, (22)

and the core potential by

Vc =
∑
j c
a�j c

b

∑
JT

(2T + 1)(2J + 1)

× 〈
j c
a j

c
bJT

∣∣V ∣∣j c
a j

c
bJT

〉
. (23)

j c
a , j c

b stands for orbits in the core and t̂ is the single-particle
kinetic energy operator. Note that the interaction V here is
taken to be the same Gogny force as in TBMEs. Due to the

FIG. 3. 20Ne ground-state energy as a function of h̄ω, calculated
by the shell model with the Gogny force.

density dependence of the Gogny force, the core energy is
smoothly A dependent, which has been discussed in Ref. [8]
where the density-dependent Skyrme force was used. In fact,
the A-dependent core energy is crucial to reproduce experi-
mental binding energies for a whole chain of isotopes.

The TBMEs, SPEs, and core energy are calculated by the
unified Gogny interaction in a HO basis at certain h̄ω. There-
fore, the calculation would be h̄ω dependent, which has been
commented in Ref. [8]. In no core shell model [29] or other
shell models (e.g., shell model based on the Skyrme force [8]),
the h̄ω value, which minimizes the binding energy, is used.
In the shell-model calculation with an empirical interaction,
usually the empirical h̄ω = 45A−1/3–25A−2/3 [26] is adopted.
We find that in the present calculations the h̄ω parameter
determined by minimizing the binding energy is close to the
value given by the empirical formula. The two choices of the
h̄ω values give similar binding energies. Figure 3 shows an
example of the calculation for 20Ne. The empirical h̄ω value
gives a good description of nuclear radii. In the present paper,
we adopt the empirical h̄ω [26].

D. Center-of-mass correction

When the model space involves two or more HO major
shells, the COM correction must be considered. The COM
motion can produce a nonphysics spurious excitation with a
h̄ω excitation energy or higher. In the HO basis, the spurious
COM excitation can be removed using the Lawson method
[30] by adding a multiplied COM Hamiltonian, βHCOM =
β( (

∑A
i=1 pi )2

2Am
+ 1

2
mω2

A
(
∑A

i=1 ri )2 − 3
2 h̄ω), into the shell-model

Hamiltonian, given H ′ = HSM + βHCOM, where β is the mul-
tiplying constant. The Lawson method actually pushes up the
COM excitation energy. If the constant β takes a large enough
value, the spurious COM excitation can be separated from the
intrinsic low-lying states of interest.
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FIG. 4. Calculated ground-state energies (dot lines) for oxygen,
fluorine, and neon isotopes. Experimental data (squares) are taken
from Ref. [31]. The present shell-model calculations based on the
Gogny force is indicated by “Gogny”.

III. GROUND-STATE ENERGIES AND
EXCITATION SPECTRA

Figures 4 and 5 present the ground-state energies and
two-neutron separation energies for the O, F, and Ne iso-
topic chains of the sd shell, respectively. It shows that the
Gogny-force shell model can well reproduce the experimental
ground-state energies. For 27−29F and 28−30Ne, since their neu-
tron numbers are close to N = 20, the coupling with the pf
shell may not be negligible. For these isotopes, we calculated
in the sd + pf space with a truncation of 2h̄ω excitations.
Indeed, the inclusion of the pf shell brings 0.5–0.7 MeV
additional binding energies in 27−29F and 0.1–0.2 MeV in
28−30Ne. Further details of the cross-shell calculations will be
discussed later.

FIG. 5. Calculated two-neutron separation energies (dot lines)
for oxygen, fluorine, and neon isotopes. Experimental data (squares)
are taken from Ref. [31].

FIG. 6. Excitation spectra for 10B and 18N, calculated by Gogny
(D1S) and the empirical interactions (PWBP, WBP), compared with
experimental data [31].

The experimentally known neutron drip-line position of the
oxygen chain is reproduced, which is at 24O. In experiment,
25O is the first unbound nucleus behind the neutron drip-line
nucleus, 24O. In our calculation, the energy of 25O is about
0.5 MeV unbound with respect to 24O. For fluorine isotopes,
we reproduce the unbound nature of 28F with an unbound
energy of 0.4 MeV above the threshold of neutron emission.
26O and 29F are bound against one-neutron emission. While in
Fig. 5 the negative values of two-neutron separation energies
indicate that both of them are unbound with two-neutron
emission. As for neon isotopes, 30Ne is still well bound and
the drip line of the neon chain should be behind the sd
shell. There have already been many shell-model calculations
for the sd-shell mass region, e.g., with a monopole-based
interaction [28]. In this paper, we focus on how well the
Gogny force is applied to the shell-model calculations.

In Refs. [32,33], it was pointed out that empirical two-body
interactions (e.g., the monopole-based interaction [28]) or
ab initio interaction with three-body force may describe the
drip line of oxygen isotopes, whereas ab initio interactions
without three-body force fails. In empirical interactions, we
may assume that the effect of the three-body force is par-
tially included in the matrix elements that are determined by
fitting data. In the present calculation, the density-dependent
term of the Gogny force provides a repulsion, while other
terms mainly contribute to the attraction. It is the density
dependence (an equivalent three-body force) that prevents
the ground-state energies of isotopes from endless dropping
down with increasing neutron number and gives a reasonable
description of the drip line. It has been known that the em-
pirical WBP [3] and WBT [3] interactions cannot correctly
give the spins of the 10B and 18N ground states. In Ref. [34],
it was proved that the ab initio calculation with three-body
force can well describe the ground states of 10B and 18N.
Figure 6 shows the calculated spectra of 10B and 18N by the
Gogny force, compared with experimental data as well as the
common empirical interactions. We see that with the inclusion
of the three-body effect through the density dependence,
the Gogny-force calculations give the correct ground-state
properties of the two nuclei. We have tested calculations by
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FIG. 7. Energy levels for 7Li, 10Be, 11B, calculated with the
Gogny (D1S) interaction, compared with experimental data [31] and
the shell-model calculations based on the empirical PWT interaction.

simply removing the density-dependent term from the Gogny
interaction without refitting parameters. The results show that
the calculations without including the density-dependent term
cannot give correct ground states for 10B and 18N. The 10B
ground state obtained is a 1+ state instead of the 3+ state
determined experimentally, and the 18N has a 2− ground state
instead of the 1− ground state experimentally.

In the present paper, we have performed the Gogny-force
shell-model calculations for the p and sd shells. Figure 7
presents the energy levels of 7Li, 10Be, and 11B in the p shell.
The shell-model calculations using the Gogny force are in
good agreements with data and those using the empirical PWT
[3] interaction. Figure 8 shows the spectra of 20−27Ne in the sd
shell. The agreement between calculations and data is fairly
good.

The electromagnetic transition between levels is another
important observable in nuclear spectroscopy. In the shell
model with the Gogny force, the electric quadrupole transi-
tional probability B(E2) between the ground state and the
first 2+ in even-even nuclei has been calculated. In shell-
model calculations, the model-space effective charges for the
proton and neutron are usually used, which considers effects
from the core polarization and excluded space. We use stan-
dard effective charges ep = 1.5 and en = 0.5 for the sd-shell
nuclei. Figure 9 shows the calculated B(E2; 0+ → 2+) for
Ne isotopes using the Gogny interaction. For comparison,
experimental data as well as calculated B(E2) values by the
USDB interaction are included. Note that the same effective
charges ep = 1.5 and en = 0.5 have been used for both Gogny
and USDB interactions, for comparison. In fact, the USDB
interaction has its own refined effective charges, which are
ep = 1.36(5) and en = 0.45(5) [36]. Using the USDB itself
effective charges can reduce the overestimates of the USDB
B(E2) calculations shown in Fig. 9. It is clear that the ten-
dency of B(E2) along the Ne isotopic chain is in agreement
with data for both the Gongy and USDB calculations. To see
the systematics, we have also plotted the energies of the first
2+ excited states of the Ne isotopes in Fig. 10. The large 2+

1
excitation energies at 24Ne and 26Ne indicate neutron subshell
closures at N = 14 and 16 in the neutron-rich neon isotopes.
A larger B(E2) value implies more collective.

FIG. 8. Energy levels for 20−27Ne, obtained in the Gogny (D1S)
interaction, compared with experimental data [31].

One of the advantages using a phenomenological inter-
action is that the shell model can easily go to cross-shell
calculations, while it is difficult to obtain TBMEs and SPEs
in the empirical method by fitting data. Using the unified
Gogny force, we can simultaneously calculate both TBMEs

FIG. 9. B(E2) values calculated for Ne isotopes with the Gogny
and USDB interactions, compared with experimental data [35].
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FIG. 10. The energies of the first 2+ excited states in Ne isotopes,
calculated with Gogny and USDB interactions, compared with exper-
imental data [35].

and SPEs for a cross-shell space, which contains two or more
major shells. Nuclei locating the N ∼ 20 “island of inversion”
are in one of the typical cross-shell regions [37]. The nuclei
around this region own many anomalous properties, such
as remarkably low E(2+

1 ) and large B(E2) [38–41], which
indicates probably the quenching of the N = 20 shell gap
and the intrusion of the pf neutron orbits. In this situation,
the single-shell shell-model calculation is no longer applica-
ble [42], and cross-shell calculations should be needed. For
example, the large-scale shell model by Caurier et al. [43]
and Monte Carlo shell model by Utsuno et al. [44] have
been performed. To explain the recent experiment on the β
decays of the N ∼ 20 island of inversion nuclei [45], we
performed some calculations using the Gogny force for the
nuclei in the mass region. The results are in good agreement
with the experimental data [45] and the calculations using
the SDPF-M interaction [46,47]. In the present paper, we
calculate excitation spectra for the neutron-rich neon isotopes
in and around the N ∼ 20 island of inversion. The main
purpose of the paper is to give the detailed formulation and
test the general feasibility of the shell model with the Gogny
force.

The model space is protons in the sd shell and neutrons in
the sd-pf (f7/2p3/2) shell, which is frequently used [48,49].
In practical calculations, we keep the neutron d5/2 shell occu-
pied fully. This is to reduce the model dimension and is rea-
sonable because the d5/2 orbits are bound deeply. The effect
from the d5/2 excitation should be less important for lowly
excited states. Figure 11 shows the low excitation spectra
of the nuclei, 28Ne, 30Ne, 32Ne, 34Ne, compared with data
and the calculations with the empirical WBMB interaction
[50]. The WBMB interaction includes the sd-shell TBMEs by
Wildenthal [16], the pf -shell TBMEs by McGory [51], and a
modified Millener-Kurath [52] interaction for the cross-shell
matrix elements. The Gogny calculation gives lower energies
for the excited states than WBMB, which indicates stronger
mixtures in cross-shell configurations. For higher-energy ex-
cited states, one needs to increase the configuration space with

FIG. 11. Cross-shell calculations for the excitation spectra of
even-even 28−34Ne isotopes, by the phenomenological Gogny and
empirical WBMB interactions, compared with experimental data
[31].

the neutron d5/2 shell unfrozen. The spurious center-of-mass
excitation has been treated using the Lawson method [30] that
has been described above. Our β-decay calculations for the
sd-pf region can be found in the recent experimental paper
[45].

IV. SUMMARY

We have derived an effective shell-model Hamiltonian
based on the finite-range density-dependent Gogny force. The
detailed formulation is given in the paper. The finite range
gives a natural cutoff of the interaction between low momen-
tum and high momentum. The density dependence, which
originates from the three-body force, plays a crucial role in
predicting nuclear drip lines and describing the property of
the ground states of 10B and 18N. The density distribution that
appears in the interaction is determined self-consistently by
employing the iteration with the shell-model diagonalizing.
In a given model space, single-particle energies and effective
two-body matrix elements are calculated using the unified
Gogny interaction.

The Gogny force allows us to calculate the energy of the
core. The A-dependent core energy is crucial in describing the
binding energies of isotopes of the whole chain and predicting
the drip lines. We have applied the Gogny-force shell model to
the p-shell and sd-shell nuclei. The model can well describe
the excitation spectra and the electric quadrupole transitional
probabilities of the nuclei. The binding energies of oxygen,
fluorine, and neon isotopes are well reproduced.

The phenomenological Gogny force provides an easy
way to calculate cross-shell interaction matrix elements and
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single-particle energies, which is difficult in the empirical
method by fitting data. As example, we have investigated
some neutron-rich neon isotopes in the sd-pf shell. Satisfac-
tory results are obtained. Further calculations will be done in
future papers.
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