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Damped transient response of the giant dipole resonance in the lead region
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We analyze thoroughly the statistical properties of the 1− spectrum in energy interval 9.5–18.5 MeV for
206Hg, 204,206,208Pb, and 210Po nuclei. To this aim we use the Skyrme interaction SLy4 and the volume pairing
interaction, treated in the BCS approximation, as our model Hamiltonian to create a single-particle spectrum
and to analyze excited states. The excited states are obtained in the quasiparticle random phase approximation
taking into account the coupling between one- and two-phonon states. The obtained spectra (studied by means
of the nearest-neighbour spacing distribution, �3–statistics and the Porter-Thomas distribution) indicate on the
onset of statistical properties close to those of the Gaussian Orthogonal Ensembles. The comparison of the
results, obtained with the aid of the coupling calculated microscopically and by means of the Gaussian random
distribution, demonstrates a close similarity in the description of the spreading widths of the Isovector Dipole
Giant Resonanse of the considered nuclei. Furthermore, we show that employing the random distribution for the
coupling between microscopic one-phonon states and two-phonon states, generated by the Gaussian Orthogonal
Ensembles distribution, a good agreement is also obtained with the microscopic description of the decay widths.
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I. INTRODUCTION

Many spectral properties of doubly magic nuclei 208Pb are
relatively well understood in terms of nuclear shell model. A
number of high-resolution experiments demonstrate, however,
that fluctuation properties of energy spectra of 208Pb could
be interpreted as well in terms of the Random Matrix Theory
(RMT). In particular, recent analysis of 151 experimental nu-
clear levels up to excitation energy of Ex = 6.2 MeV in 208Pb
indicates that the spectral properties are described already by
the Gaussian orthogonal ensembles (GOE), even though there
is a small admixture of regular dynamics brought about by the
low-lyings states (e.g., Refs. [1,2]). We recall that, nowadays,
the RMT is a well established theoretical approach [3], often
used for analysis of regular and chaotic aspects of nuclear
structure (e.g., Refs. [4–9]).

Naturally, one would expect that chaotic component of
intrinsic structure of a finite many-body quantum system,
exhibited in its spectral properties at low excitation energy,
may transform from the secondary constituent to the dominant
one in basic characteristics of the considered system with
increase of the excitation energy. This might be primarily
true in the description of radiative decay of nuclear giant
resonances (GRs), highly excited collective states which cen-
troids are located above the neutron threshold [10]. From this
point of view, the isovector giant dipole resonance (IVGDR),
for example, in 208Pb, i.e., the most studied case (e.g.,
Refs. [11–14], to name just a few), provides a prosperous
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platform for study of chaotic and regular features of heavy
nuclei.

Indeed, on the one hand, the IVGDR is essentially excited
by an external field through a one-body interaction. It is,
therefore, natural to describe such a mode as a collective
one-particle-one-hole (1p-1h) state. Its centroid is empiri-
cally given by Ec ≈ 31.2A−1/3+20.6A−1/6 [15]. On the other
hand, in general, once excited, the GR progresses to a fully
equilibrated system via direct particle emission and by cou-
pling to more complicated configurations (2p-2h, 3p-3h, etc.).
In other words, the wave function of this collective mode is
not an eigenstate of the nuclear Hamiltonian, but it rather
spreads over many eigenstates that are characterized by the
same quantum nunbers such as the angular momentum and
the parity: Jπ = 1−. The former mechanism gives rise to an
escape width (�↑). It is expected that the decay evolution
along the hierarchy of more complex configurations to com-
pound states determines a spreading width (�↓). Together,
with Landau damping (�L), the above-mentioned components
form the decay width � = �↓ + �↑ + �L. It would be of
undoubted interest to answer the question: how important are
chaotic constituents for the formation of the decay width of
the IVGDR in 208Pb and nuclei of its closed neighborhood?

Conceptually, a description of the decay width represents
a fundamental problem which is, however, difficult to solve
due to the existence of many degrees of freedom for many-
body quantum system. As a rule, the escape width (�↑) is
not included in any calculation with a discrete basis. While
the description of spreading width in mesoscopic systems is
based on the study of the electromagnetic strength distribution
(strength function) [16] in some energy interval. This interval
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should be large enough to catch hold of basic features of
a GR under investigation. Note that in deformed quantum
many-body systems the experimental widths are systemati-
cally larger and may develop a two- or three-peak structure. In
this paper we consider only spherical or near-spherical nuclei
around 208Pb. Consequently, we remove additional effects due
to deformation to highlight a generic nature of the decay width
� ≈ �↓ + �L of the IVGDR in heavy nuclei.

To gain an insight into fragmentation of high-lying states
over complex configurations, observed as the IVGDR spread-
ing, we have to introduce various approximations or a realistic
nuclear structure model, which validity depends on a primal
feasibility. It should be based on the microscopic many-body
theory, where the effects of the residual interaction on the
statistics must be studied in a large model space. In particular,
the description of a near-spherical nucleus requires the con-
sideration of pairing forces. Although these forces increase
drastically the model configuration space, an enlarged set of
corresponding states provide favourable conditions for appli-
cations of the RMT. Note that among other things, introducing
a residual interaction in general implies a transition to the
GOE-properties above some excitation energy [17,18].

Nuclear shell model may be used to analyze spreading
widths of GRs. However, the complexity of the calculations
increases rapidly with the size of the configuration space.
This fact severely restricts the feasibility of shell model
calculations for heavy and super-heavy nuclei. In addition,
even for a medium 48Ca isotope the state-of-art shell model
calculations [19], which operate with the Hamiltonian matri-
ces of a huge dimension, produce questionable results for the
dipole GR. Although these calculations reproduce reasonably
well its peak position and peak width, the enhancement of
the classical Thomas-Reiche-Kuhn (TRK) sum rules is too
overestimated. As a result, the number of shell model studies,
in particular, dipole GRs in heavy and super-heavy nuclei are
limited and rather focused on details of the low-energy region
(e.g., Ref. [20]).

The quasiparticle-phonon model (QPM) [21] offers an
attractive framework for such studies. We will use the mod-
ern development of the QPM, a finite rank separable ap-
proximation (FRSA) [22,23]. That approach employs the
Skyrme forces to calculate the single-particle spectrum and
the residual interaction in a self-consistent manner to avoid
any artefacts [24]. We will discuss the FRSA in some details in
Sec. II.

The success of the RMT, based on universal features in
spectra of complex quantum systems (e.g., Refs. [25–27]),
gives hope to shed light on the spectral properties and the
distribution of transition-strength properties of the IVGDR,
when specific details become not of a primary importance.
As is well known, the RMT assumes only that a many-body
Hamiltonian belongs to an ensemble of random matrices that
are consistent with the fundamental symmetries of the sys-
tem such as parity, rotational, translational and time-reversal
symmetries. We believe that it is quite suitable for our main
goal which is to answer to the basic question: Could the
RMT provide a practical and useful recipe for description
of the IVGDR decay? To proceed, we analyze first spectral
properties of the IVGDR within the RMT in Sec. III.

Some limiting analytical estimates for the IVGDR strength
function were obtained by considering the random cou-
pling of one structureless doorway state to chaotic back-
ground [28,29]. Evidently, the extension of the wave function
to more complex configurations might increase the fragmenta-
tion of the one-phonon strength over many excited states (see
discussion in Ref. [30]). Although it would allow to discuss
fine structure of GRs, it shall require more cumbersome
numerical calculations, without crucial insight to our analysis
focused on their gross structures. In our preliminary stud-
ies [31] we have shown that the microscopic phonon-phonon
coupling (PPC) [i.e., the microscopic matrix elements V

1ph
2ph

between the one-phonon (1ph) and the two-phonon (2ph) con-
figurations] describes reasonably well the gross structure of
spreading widths of giant monopole, dipole, and quadrupole
resonances in the doubly magic heavy nuclei. Further, in the
form of the random coupling of the one-phonon with the
two-phonon states, gross structure of the strength distributions
of giant multipole resonances are obtained and have been
compared with the microscopic PPC results. Therefore, we
named our approach as the damped transient response.

The basic idea of our approach (to use the random cou-
pling) raised, however, doubts about its fairness [32]. We
demonstrated evidently in Ref. [33] that the Comment [32]
fails to provide plausible arguments against the description of
the gross structure with the aid of the random matrix theory.
Below we will discuss all pros and cons of our approach,
focusing only on the decay width of the IVGDR in the lead
region. We will also present the description of these widths in
terms of a simple random matrix model, comparing the results
with the microscopic ones in Sec. IV. Summary will be given
in Sec. V.

II. BASIC ELEMENTS OF THE
MICROSCOPIC APPROACH

A. Mean field

The starting point of our microscopic approach consists in
the Hartree-Fock (HF)+BCS calculation of the ground state
based on the Skyrme energy density functional (EDF) [34].
Spherical symmetry is imposed on the quasiparticle wave
functions. The continuous part of the single-particle spectrum
is discretized (see details in Ref. [35]) by diagonalizing the
Skyrme HF Hamiltonian on a basis of 12 harmonic oscillator
shells. We use the SLy4 EDF [36] in the p-h channel. The
parameters of the SLy4 EDF have been adjusted to reproduce
nuclear matter properties, as well as nuclear charge radii,
binding energies of doubly magic nuclei.

The pairing correlations are generated with the aid of a
density-dependent zero-range force,

Vpair(r1, r2) = V0

[
1 − η

ρ(r1)

ρ0

]
δ(r1 − r2), (1)

where ρ(r1) is the particle density in a coordinate space, with
ρ0 being the nuclear matter saturation density. Here, the pa-
rameters η = 0 and η = 1 correspond to a volume interaction
and a surface-peaked interaction, respectively. To limit the
pairing single-particle space, we have used the smooth cutoff
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FIG. 1. (a) Binding energies of the even-even Pb isotopes as
a function of neutron number, compared with experiment and ex-
trapolated energies (filled circles) from the AME2016 atomic mass
evaluation [39]. Results of the calculations within the HF+BCS
with the SLy4 EDF are shown by filled triangles. (b) The neutron
skin thickness �Rnp of the Pb isotopes calculated within the same
approach (filled triangles). Experimental data of the neutron skin
thickness are taken from the analysis of: (i) proton elastic scattering
at 295 MeV [40] (filled squares); (ii) the E1 strength distribution [41]
(filled circles).

at 10 MeV above the Fermi energies [23,37,38]. The strength
V0 = −280 MeV fm3, taken at η = 0, is fitted to reproduce the
experimental pairing gaps of 206Hg, 206Pb, and 210Po obtained
by means of the three-point formula [23].

The HF+BCS with the SLy4 EDF describes correctly the
binding energies of even-even Pb isotopes [see Fig. 1(a)].
Indeed, the results of calculations and experimental data for
202−212Pb are in a good agreement, the deviations being less
than 0.2%.

We also compare the calculated neutron skin thickness
�Rnp, defined as

�Rnp=
√

〈r2〉n −
√

〈r2〉p, (2)

with the experimental data for 204,206,208Pb [see Fig. 1(b)]. The
proton-neutron root-mean square (rms) differences become
larger with the increase of the neutron number. The available
experimental data are reasonably well reproduced. In the case
of 208Pb, the theoretical “model-averaged” estimate for �Rnp

is 0.168 ± 0.022 fm [42].

B. Configuration mixing of collective states

The residual particle-hole interaction is obtained as the
second derivative of the EDF with respect to the particle
density. Namely, the residual interaction in the p-h channel

is consistently derived from the Skyrme forces, while the
residual interaction in the particle-particle (p-p) channel is
obtained from the zero-range pairing forces [43].

By means of the standard procedure [34] we obtain the
familiar equations of the quasiparticle random phase approx-
imation (QRPA). The cutoff of the discretized continuous
part of the single-particle spectra is taken at the energy of
100 MeV. This is sufficient to exhaust practically all the
sum rules. The eigenvalues of the QRPA equations are found
numerically as the roots of a relatively simple secular equation
within the FRSA [22,23]. The QRPA solutions are treated
as quasi-bosons with quantum numbers λπ . Among these
solutions there are one-phonon states ωλi corresponding to
collective GRs and pure two-quasiparticle states.

Using the basic QPM ideas in the simplest case of the
configuration mixing [21], we construct the wave functions
from a linear combination of one-phonon and two-phonon
configurations states as

�ν (λμ) =
{∑

i

Ri (λν)Q+
λμi

+
∑

λ1i1λ2i2

P
λ1i1
λ2i2

(λν)
[
Q+

λ1μ1i1
Q+

λ2μ2i2

]
λμ

}
|0〉, (3)

where λ denotes the total angular momentum and μ its z-
projection in the laboratory system. The ground state is the
QRPA phonon vacuum |0〉. The unknown amplitudes Ri (λν)
and P

λ1i1
λ2i2

(λν) are determined from the variational principle,
which leads to a set of linear equations [44,45]

(ωλi − Eν )Ri (λν) +
∑

λ1i1λ2i2

U
λ1i1
λ2i2

(λi)P λ1i1
λ2i2

(λν) = 0,

(4)∑
i

U
λ1i1
λ2i2

(λi)Ri (λν) + 2(ωλ1i1 + ωλ2i2 − Eν )P λ1i1
λ2i2

(λν) = 0.

(5)

The rank of the set of linear Eqs. (4) and (5) is equal to the
number of one- and two-phonon configurations included in
the wave function Eq. (3). Its solution requires computing the
Hamiltonian matrix elements of the coupling between one-
and two-phonon configurations:

U
λ1i1
λ2i2

(λi) = 〈0|QλiH
[
Q+

λ1i1
Q+

λ2i2

]
λ
|0〉. (6)

Our approach is similar to the particle-vibration coupling
(PVC) model based on Green’s function method (see for a
recent review Ref. [46]) that has been used in the study of
the monopole [47] and the quadrupole [48] GR widths in
208Pb with the aid of the Skyrme forces. Note that the PPC
includes as well the coupling of one-phonon state with two-
particle two-hole states (important in the PVC model) as a
particular case (see Ref. [49] and discussion in Chapter 4.3
of the textbook [21]). However, a consistent realization of
the QPM as well as the PVC model (which closely follows
the concept of the “conserving approximation” introduced
by Baym and Kadanoff [50]) is very difficult to implement
numerically. In particular, to let the two-phonon components
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of the wave functions Eq. (3) obey the Pauli principle the exact
commutation relations between the phonon operators should
be taken into account [21]. As a result, this would lead to the
“dressed” two-phonon energies, here not accounted for. As
we will see below, the random matrix approach enables us to
avoid this problem effectively.

To construct the wave functions Eq. (3) of the 1− states, in
the present study we take into account all two-phonon terms
that are built from the phonons with different multipoles
λπ = 0+, 1−, 2+, 3−, 4+ coupled to 1−. Tentative estimates
for the position of the resonance centroids Ec and the
spreading width � are defined by means of the energy-
weighted moments mk = ∑

B(Eλ) Ek: (i) Ec = m1/m0;
(ii) � = 2.35

√
m2/m0 − (m1/m0)2 (see, for example,

Ref. [51]). Note that the coefficient 2.35 has its roots to
the experimental definition of the width (full width at half
maximum) related to the variance of the Gaussian (see, for
example, Ref. [52]).

One of the basic ingredients for the fitting protocol of the
SLy4 EDF is the enhancement factor of the TRK sum rule:
1 + κ=1.25. Taking into account this fact, we construct vari-
ous combinations of two-phonon states ωλ1i1 + ωλ2i2 to define
the energy interval for location of the resonance width of fixed
quantum number λπ , taking 95% of the energy-weighted sum
rule symmetrically around the centroid’s position (Ec). It is
noteworthy that for all the E1 distributions, considered in
the present paper, the matrix elements for direct excitation of
two-phonon components from the ground state are about two
orders of magnitude smaller relative to ones for the excitation
of one-phonon configurations. However, the density of these
complex configurations is much higher than the one-phonon
density, and contributes essentially to statistics of the final
states.

We start our discussion of the spreading width of the
IVDGR, recapitulating our results for the spherical 208Pb
nucleus [31]. We recall, that the (�↑) width is not included
in any calculation of giant resonances with a discrete basis.
To mimic the missed mechanisms and to compare different
results, we use a typical for various calculations smoothing
parameter value 1 MeV (e.g., Refs. [53–56]) to calculate the
strength distribution with the aid of the Lorentzian smearing.
The coupling (the PPC) of the one-phonon states with an inter-
mediate complex background of the two-phonon states yields
a strong redistribution of the one-phonon dipole strength in the
region of the IVDGR (see Fig. 1(c) in Ref. [31]). It suppresses
the high-lying one-phonon strength near 17 MeV and pushes
this strength down (see also Ref. [11]). As a result, we obtain a
reasonably well description of the dipole strength distribution
over the resonance localization region (compare Figs. 1(a)
and 1(b) in Ref. [31]). It appears that the presence of the
two-phonon components in our wave function, in addition
to the one-phonon ones, already enables us to describe the
gross strength distribution of the typical dipole response in the
heavy spherical nucleus 208Pb. Similar conclusions have been
drawn on the basis of shell-model calculations for the states
above 8 MeV in Ref. [20].

To test further the validity of our microscopic approach
we compare the results of the E1 strength distributions,

FIG. 2. Photoabsorption cross section (σabs) for 206Pb (a) and
206Hg (b). The experimental photoabsorption cross section for 206Pb
deduced from Ref. [57] (filled circles) and from Ref. [58] (open
squares). The dotted and solid lines correspond to the results obtained
by means of the microscopic and the random coupling matrix ele-
ments between the one- and two-phonon configurations, respectively.
The dashed line connects the QRPA (one-phonon) results. The
smoothing parameter 1 MeV is used for the strength distribution
described by the Lorentzian function.

obtained by means of the PPC (when the neutron pairing is
taken into account), with experimental data available for 206Pb
[see Fig. 2(a)]. The photoabsorption process is well studied
experimentally in this case (e.g., Refs. [57,58]). We find that
the total energy-weighted E1 strength calculated in the QRPA
with the SLy4 EDF exhausts 92.8% of the TRK sum rule
value in the energy region 9.5–18.5 MeV. The inclusion of
the two-phonon terms results in the decrease of the integrated
energy-weighted E1 strength by 0.8%. The PPC increases
the decay width from 4.6 MeV to 4.9 MeV The IVGDR
shapes obtained by means of the PPC are rather close to those
observed in experiment.

Keeping in mind the feasibility of experimental study of
the IVGDR in the considered region, we calculate also the
strength distribution in 206Hg, 204,206,208Pb, and 210Po nuclei
(see Table I). For the sake of illustration, the strength dis-
tribution in 206Hg, where proton pairing is switched on, is
shown on Fig. 2(b). We found very close correspondence in
the dipole response, when the pairing channel switched from
neutron to proton constituent (see Fig. 2). In general, although
the PPC affects the strength distribution in all considered
nuclei (see Table I), the difference between the RPA and the
PPC results is of order ∼5% for the decay widths. It appears
that in the considered cases the basic mechanism of the
decay widths is Landau damping, while the PPC (spreading)
produces the visible redistribution.

044319-4



DAMPED TRANSIENT RESPONSE OF THE GIANT DIPOLE … PHYSICAL REVIEW C 98, 044319 (2018)

TABLE I. Characteristics of the GDR for 206Hg, 204,206,208Pb, and 210Po nuclei: centroid energies Ec and the spreading widths � calculated
with the QRPA and QRPA plus phonon-phonon coupling with the microscopic (PPC) and random distribution of coupling matrix elements
(Random) are compared with available experimental data [15,57]. The values of Ec and � have been computed in the energy region
9.5–18.5 MeV. For comparison the centroid energy and width values from the empirical systematics (Syst.) are presented [15,59].

Ec (MeV) � (MeV)

Expt. Syst. QRPA Theory Random Expt. Syst. QRPA Theory Random
PPC PPC

206Hg 13.76 14.1 14.1 13.8 4.16 4.6 5.0 5.0
204Pb 13.79 14.3 14.3 14.1 4.17 4.7 4.8 4.9
206Pb 13.59 13.76 14.2 14.1 14.0 3.85 4.16 4.6 4.9 4.9

13.7 3.75
208Pb 13.43 13.73 14.0 14.0 13.8 4.07 4.15 4.6 4.9 4.8

13.6 3.78
210Po 13.70 14.2 14.1 13.9 4.15 4.7 4.9 5.0

III. SPECTRAL STATISTICS

To elucidate a question of the statistical relationship among
regular and chaotic constituents in the 1− spectra, obtained
within our model, we employ two typical RMT measures: the
nearest-neighbor spacing distribution (NNSD) and spectral
rigidity of Dyson and Metha, the �3 statistics [60]. The RMT
enables us to study the statistical laws governing fluctuations
that, in general, can have very different origins.

For a regular system the probability for the NNSD is known
as the Poisson distribution,

P (s) = e−s . (7)

Here, the spacing si = xi+1 − xi is defined for the unfolded
spectrum obtained by the mapping xi = S(Ei ) (see details in
Ref. [61]). For a classically chaotic system, that quantum-
mechanically is described by the GOE [62], the NNSD is
approximately given by the Wigner surmise

P (s) = (π/2)s exp[−πs2/4]. (8)

In practical calculations �̄3(L) can be easily calculated from
the number statistics, n(L), which is the number of levels in
an energy interval of length L,

�̄3(L) = 2

L4

∫ L

0

(
L3 − 2L2r + r3)�2(r )dr, (9)

where

�2(r ) = 〈[n(r ) − 〈n(r )〉]2〉 (10)

is the second moment of n(L), and 〈n(r )〉 = r . For an uncor-
related spectrum one has

�̄3(L) = L/15, (11)

while for the GOE it is

�̄3(L) ≈ 1

π2
(ln L − 0.0687), (12)

in the L � 1 limit.
The analysis of the PPC results for the 204,206,208Pb isotopes

exhibits properties inbetween regularity and chaos for the

NNSD [see Figs. 3(a), 3(d) and 3(g)] for all nuclei. Similar
result is observed for the �̄3 statistics. Alike behavior is
also found for N=82 isotones [see Figs. 4(a), 4(b) 4(d), and
4(e)]. It appears that the microscopic coupling between the
one- and two-phonon components indicates only the basic
trend towards the GOE limit in the spectral properties. It is
expected, however, that the inclusion of higher complexity
configurations would manifest the growth of randomness of
spectral properties. Evidently, the latter procedure will in-
crease the density of states that will enforce the statistical
properties. We will return to this point in Sec. IV.

Another useful signature of chaos is the statistical fluc-
tuations of the B(E1)-transition intensities that probe the
system’s wave functions (see, e.g., Ref. [63] and references
therein). To study the fluctuation properties of the transition
rates, it is necessary to divide out any secular variation of the
average strength function versus the energy. For that purpose
we define an average intensity

y(xk ) =
∑

n B(E1; 0+
gs → 1−

n ; xn) exp[−(xk − xn)2]/2γ 2∑
n exp[−(xk − xn)2]/2γ 2

(13)

around the corresponding unfolded energy xk . The Gaussian
width γ should be chosen properly [64]. In the present calcu-
lations we use γ = 2.0.

We renormalize the actual intensities by dividing out their
smooth part,

y(xk ) = B(E1; 0+
gs → 1−

k ; xk )/y(xk ), (14)

and we construct their distribution using bins that are equally
spaced in log10 y. The choice of log10 y as the variable allows
us to display the distribution of the weak transitions over
several orders of magnitude [65]. The magnitude of y will
differ for different final states and, hence, one can construct
the density function, P (y), of y such that P (y)dy is the
probability to locate the transition strength in the interval dy
around y. Then, the interpolating function for P (y) is a χ2
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FIG. 3. Spectral and B(E1) intensity fluctuations for the 204,206,208Pb isotopes. Left column: the nearest-neighbor spacing distribution P (S ).
Middle column: the �̄3(L) statistics of the Dyson and Metha. Right column: the B(E1) intensity distribution P (log10 y ) where the dashed
lines are the fit to χ 2 distributions with the quoted ν degrees of freedom. In the left and middle columns the solid-circle lines describe the
Poisson statistics and the solid-square lines are the GOE limit. The dashed and solid lines correspond to the results obtained by means of the
microscopic and the random coupling matrix elements between the one- and two-phonon configurations, respectively.

distribution in ν degrees of freedom [65]:

Pν (y) = 1

y

(
νy

2〈y〉
)ν/2 exp[−νy/2〈y〉]

�(ν/2)
, (15)

and is fitted to the histogram, through a least squares fitting, to
find the best value of ν. When ν = 1, the interpolating func-
tion reduces to the Porter-Thomas distribution [66], which is

FIG. 4. Similar to Fig. 3, for 206Hg and 210Po.
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the GOE limit

Pν=1(y) = 1√
y

(
1

2π〈y〉
)1/2

exp[−y/2〈y〉], (16)

while small ν-values are expected for a regular system.
The analysis of the PPC results for the 204,206,208Pb isotopes

exhibits the transition from regular to chaotic features [see
Figs. 3(c), 3(f) and 3(i)] with the decrease of the neutron
number. Surprisingly, the statistical fluctuations of the B(E1)-
transition intensities (that probe the system’s wave functions)
indicate on the strong presence of chaotic components. The
B(E1) strength distributions for the 204,206Pb isotopes alike to
those for the N = 82 isotones [compare Figs. 3(c) and 3(f)
with Figs. 4(c) and 4(f)]. In these cases the distribution is
close to the GOE limit. Note, however, that for the closed-shell
nucleus 208Pb the B(E1) distribution manifests less degree of
chaoticity, which might be related to less degree of statistics.
Indeed, the inclusion of the pairing correlations increases the
density of states for the open-shell nuclei, which affects the
statistical properties.

Summarizing, we notice that the traditional spectral corre-
lations indicate only on a weak blow-up GOE regime within
the considered microscopic model. In other words, the cou-
pling of the one- and two-phonon components not allows
to make an unambiguous conclusion on the dominance of
chaotic features in spectral properties of the IVGDR in heavy
nuclei around 208Pb. It is rather a soft chaotic behavior, which
is partially due to insufficient statistics. However, the wave
function analysis indicates on the dominance of the chaotic
properties in the strength distribution of the dipole transitions.

Could we conclude that the RMT would be uninformative
for the description of the spreading width in this situation?
The answer on this question is addressed in the next section.

IV. RANDOM MATRIX TREATMENT OF THE
FRAGMENTATION STRENGTH

We recall that the QRPA calculations imply a fragmen-
tation of the IVGDR strength on several one-phonon states
(Landau damping). While the PPC given by Eq. (6) pro-
vides the increase in the fragmentation of the strength.
As it was mentioned above, in principle, the coupling
might include more complicated states, three-phonon states,
four-phonon states, etc., with an increasing computational
difficulty. Since the IVGDR strength appears at high excita-
tion energies (around 14 MeV for nuclei in the lead region),
the considered one- and two-phonon states are surrounded by
a large amount of states, that are of the type n-phonon states
with n > 2. Including the coupling to these complex states
is expected to produce a chaotic mixing, since the IVGDR
centroids are in an energy region far beyond the location of
neutron resonances (e.g., Refs. [4,8]). In this region energies
and matrix elements are found to fluctuate obeying rather the
GOE-statistics. This motivates a statistical description of the
IVGDR fragmentation using ideas from the RMT, as was
briefly described in Ref. [31]. We utilize the microscopic
calculations of the one-phonon states while the coupling ma-
trix elements between the one-phonon and two-phonon states
are replaced by random matrix elements of the GOE-type.

The one-phonon states are thus considered as doorway states
to the fragmentation of E1-strength on background states.
Thus, our aim is to describe microscopically the one-phonon
IVGDR states, and attempt a random matrix inspired treat-
ment of the coupling to complex surrounding states, here
viewed as two-phonon states. The quality of the random
treatment can then be studied by comparing results with the
microscopic PPC model predictions.

In Sec. IV A the model is presented, and in Sec. IV B we
describe how the coupling strength is determined. An alterna-
tive way to generate the two-phonon (background) energies
is to assume the GOE distributed states, as is discussed in
Sec. IV C.

A. Doorway model for the fragmentation

Let us describe the IVGDR coupling to various back-
ground and ground states by a doorway Hamiltonian (cf.
Refs. [16,31]),

H = Hd + Hb + V, (17)

Here, the Hamiltonian

Hd =
Nd∑
i

ωiQ
+
i Qi, (18)

is characterized by energies ωi obtained from the microscopic
QRPA-calculations of the dipole phonon states, and the Nd

one-phonon states constitute the doorway states. Correspond-
ing eigenstates are |d; ωi〉. Transition matrix elements be-
tween the ground state and the one-phonon state are obtained
from the QRPA calculation as

Bi = 〈d; ωi |M1−|0〉, (19)

where |0〉 is the QRPA ground state, and M1− is the E1 dipole
operator for 1− transitions.

The Nb background states are described by the Hamilto-
nian

Hb =
Nb∑
k

�ka
+
k ak, (20)

with eigenstates |b; �k〉 and corresponding energies �k . The
number of background states is much larger than the number
of doorway states, Nb � Nd . The E1 matrix element between
the ground state and all background states is zero,

0 = 〈b; �k|M1−|0〉. (21)

We shall investigate two different ways to obtain the en-
ergies �k , corresponding to two levels of approximation in
setting up our random matrix model:

(1) The two-phonon states are obtained by coupling the
angular momenta of two one-phonon states to a 1−
states, [Q+

λ1
Q+

λ2
]
1− . Each one-phonon state is micro-

scopically calculated in the QRPA model, with ener-
gies ωλ1 and ωλ2 , respectively, and the energies of the
background state is then �k = ωλ1 + ωλ2 .

(2) A higher level of approximation is also considered in
this paper, where the background states are randomly

044319-7



SEVERYUKHIN, ÅBERG, ARSENYEV, AND NAZMITDINOV PHYSICAL REVIEW C 98, 044319 (2018)

FIG. 5. Distribution of coupling matrix elements between the one- and two-phonon QRPA configurations for 206Hg, 204,206Pb, and 210Po.
The solid line denotes the PPC distribution, the dot-dashed denotes the Gaussian distribution. The Gaussian distributions are calculated with
the same rms value σ = 20(a); 20(b); 24(c); 24(d) keV (to reproduce the spreading widths of the IVGDR in accordance with the PPC results).

generated following the GOE distribution. This is dis-
cussed in Sec. IV C.

The coupling, V , between the doorway (one-phonon) states
|d; ωi〉, and the background states, |b; �j 〉 is taken as

V =
∑
i,k

Vdi ,bk
(Q+

i ak + Qia
+
k ), (22)

with

Vdi,bk
= 〈d; ωi |V |b; �k〉. (23)

Notice that there is no coupling between individual one-
phonon states, and no coupling between the background
states. In the PPC model the matrix elements are microscop-
ically obtained from Eq. (6). With the motivation above, we
assume that these coupling matrix elements can be replaced
by a random interaction where the matrix elements Vdi,bk

, are
Gaussian distributed random numbers,

P
(
Vdi,bk

) = 1

σ
√

2π
exp

(
−V 2

di ,bk

2σ 2

)
, (24)

with the witdh or strength

σ =
√〈

V 2
di ,bk

〉
, (25)

and fulfilling

Vdi,bk
= Vbk,di

. (26)

At this point a few comments are in order. This assump-
tion is well justified due to the following reasons. In our
microscopic model the distribution of all the phonon-phonon
coupling matrix elements (the PPC) is well reproduced by
a (truncated) Cauchy distribution. However, it was shown
in Refs. [31,33] that the PPC matrix elements, following a
Gaussian distribution (see Figs. 5) or a truncated Cauchy
distributions (see Fig. 6), produce the same final spreading of
the B(E1) strength in the doorway model, providing the rms-
value of the matrix elements are the same. More importantly
is the fact, that with this rms-value σ , the chaotic properties
of the spectra are exhibited in NNSD and �̄3(L) statistics
(see Figs. 3 and 4). To elucidate the chaotic properties of the
spectrum we determine the best fit of the distribution P (s) in
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FIG. 6. Similar to Fig. 5, for the distribution obtained within
RPA in case of 206Pb. The dashed line denotes the truncated Cauchy
distribution. The Cauchy and Gaussian distributions are calculated
with the same rms value σ = 38 keV.

terms of the parameter q, to the Brody mixing function [4],

f (s; q ) = A(q + 1)sq exp(−Asq+1), (27)

where

A =
[
�

(
q + 2

q + 1

)]q+1

. (28)

The limits q = 0 and q = 1 imply the Poisson and the GOE
statistics, respectively. In particular, in case of 208Pb we obtain
for the PPC results the value q ≈ 0.2 for the NNSD. Once
we use the rms-value σ obtained from the truncated Cauchy
distribution, and construct the final spectrum by means of
the random coupling Eq. (24), the Brody mixing function
yields the value q ≈ 0.9. In other words, with the aid of
this recipe we mimic the coupling of the one-phonon states
with higher complexity configurations (i.e., the onset of the
randomization).

At this stage we are ready to discuss the wave functions
of the doorway model. Solving the eigenvalue problem for
the total doorway Hamiltonian, Eq. (17), by a numerical
diagonalization,

H |μ〉 = Eμ|μ〉, (29)

one obtains the total wave functions as a mixture between the
one-phonon states and background states,

|μ〉 =
Nd∑
i=1

c
μ
i |d; ωi〉 +

N∑
k=Nd+1

c
μ
k |b; �k〉. (30)

Such wave functions yield a fragmentation of the GDR
strength on all N states, where N = Nb + Nd is the total
number of states considered in the model. If there is no
interaction between the one-phonon states and the background
states (σ = 0), the dipole strength distribution is concentrated
on the one-phonon states. With the introduced coupling, the
strength is spread over all μ = 1. . .N states with matrix

elements given by

Pμ = 〈μ|M1− |0〉 =
Nd∑
i=1

c
μ
i Bi, (31)

where Eqs. (19) and (21) are used. The dipole matrix elements
are thus distributed over the energy scale as

P (E) =
N∑

μ=1

Pμδ(E − Eμ), (32)

and the total dipole strength distribution becomes

b(E1; E) =
N∑

μ=1

|Pμ|2δ(E − Eμ). (33)

Subsequently, the photoabsorption cross section is obtained as

σabs(E) = 16π3

3

N∑
μ=1

E|Pμ|2δ(E − Eμ). (34)

The total dipole strength distribution and the photoabsorption
cross section distribution are finally averaged over many
realisations of the random interaction (ensemble averaging).
Usually the result is presented with a Lorentzian smoothing
of the δ functions.

Results for the nuclei 206Pb and 206Hg, based on the ran-
dom matrix model with the assumption 1 for the background
states, are shown in Figs. 2 and 7 for the photoabsorption
cross-section distribution and the dipole strength distribution,
respectively. Although the random distribution provides less
details of fragmentation in the considered cases, the RMT
approach yields the decay width values that are in a good
agreement with the PPC results (cf. Table I).

It is noteworthy that the inclusion of the pairing forces does
not affect the dipole strength distribution (compare the QRPA
and RPA results in Fig. 7). This behavior can be understood
from the following arguments. Assume that the two-phonon
states have a constant level spacing d. For example, for the
QRPA results we have d ≈ 2.5 keV, while for the RPA case
d ≈ 7.9 keV. The strength function, calculated in the limit
N → ∞ as the average over the distribution of the coupling
matrix elements, is defined as (see Ref. [16])

b(E) = 1

2π

�↓

(E − Ec )2 + (1/4)(�↓)2
. (35)

The average strength function (normalized to unity) has
Lorentzian shape, while the spreading width is �↓ = 2πσ 2/d.
Evidently, the density of states and the strength of coupling
matrix elements are changed due to the pairing [cf. Figs. 5(b)
and 6]. However, the ratio σ 2/d remains approximately the
same, and this explains the results displayed on Fig. 7.

B. Determination of the coupling constant

The variable σ [Eq. (25)] determines the coupling strength
between the one- and two-phonon (background) states. It can
be obtained from the PPC calculations as the rms-value of the
coupling matrix elements given by Eq. (6). We denote this
microscopically determined strength value as σc.
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FIG. 7. Comparison of the results for the dipole strength dis-
tribution of 206Pb, obtained by means of: (a) the one-phonon ap-
proximation; (b) the PPC approach; (c) the random coupling matrix
elements between the one- and two-phonon configurations. The solid
and dotted lines correspond to the calculations within the RPA and
the QRPA, respectively. The smoothing parameter 1 MeV is used for
the strength distribution described by the Lorentzian function.

If the variable σ is treated as a parameter, one may study
how the chaotic properties of the spectrum emerge as a func-
tion of the coupling strength in the following way. First, the
energy spectrum {E}N is obtained by means of the eigenvalue
problem, Eq. (29), for a given parameter value. Next, with the
aid of the unfolding procedure, we construct the NNSD, i.e.,
the distribution P (s) (see for details Ref. [61]).

We observe that with an increasing value of the variable
σ the spectrum becomes increasingly chaotic (see Fig. 8).
The exact value q = 1 is difficult to obtain in the numerical
simulations. Therefore, we consider chaos to appear at q ≈
0.95. It is quite astonishing that the strength σrand, that implies
the onset of chaos, is approximately equal to σrand ≈ σc, i.e.,
to the coupling strength obtained in the microscopic calcula-
tions. Consequently, without performing the full microscopic
calculations of the coupling matrix elements, the coupling
strength, σc can be approximately obtained from the value
where chaos sets in.

FIG. 8. The Brody mixing parameter, q versus the coupling
strength, σ , for eigenenergies of the Hamiltonian Eq. (17) [see also
Eq. (29)]. The different curves show the transition to the GOE
statistics with q→1. The PPC values σc are indicated by circles on
the corresponding curves.

C. GOE-generated two-phonon energies

As was mentioned in Sec. IV A the energies of the back-
ground states may be obtained in another way than as the
sum of two microscopically calculated phonon energies. We
thus construct an energy stretch fulfilling GOE-statistics, and
then unfold to energies with the same density of states as for
two-phonon energies.

The staircase function N (E) of the two-phonon energies
can be described by the following level density:

ρ(E) ∝ (E − E0)β. (36)

The staircase function of two-phonon 1− energies for 206Pb
calculated with RPA and QRPA is shown in Fig. 9. We find
that β = 2.64(3.31) for the QRPA(RPA) calculations. Notice
that in the Fermi-gas model with equidistant single-particle
states the exponent is 2n − 1 for the density of np-nh exci-
tations, and the value β = 3 for 2p-2h excitations, which is
quite close to the fitted values of β.

The GOE spectrum is now generated with the aid of the
GOE matrix, unfolded to have average energy distance equal
to one, and then folded again with the level density given by
Eq. (36). This procedure yields the energy spectrum with all
GOE properties, and characterized by the level density ρ(E).
In the doorway model these energies are then used as the
background energies, {�}Nb

[Eq. (20)].
The comparison of the B(E1) strength distribution of

206Pb, obtained by means of the coupling between one-phonon
states with two-phonon states that are: (i) the GOE generated;
(ii) calculated microscopically, – is shown in Fig. 10. There
is a remarkable agreement between the results for the cases
(i) and (ii). Thus, we have formulated the model to obtain the
fragmentation of the E1 strength, that operates only the QRPA
calculated one-phonon states. These ideas can subsequently
be extrapolated to couplings to more complex underlying
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FIG. 9. The staircase function N (E) of the two-phonon 1− en-
ergies of 206Pb. The two-phonon energies (solid lines) are calculated
within the RPA (top) and the QRPA (bottom). The dotted line denotes
the N (E) function obtained with the level density.

states like 3-phonon states, 4-phonon states, etc., all with a
quite easy computational efforts.

V. SUMMARY

With the aid of the microscopic model based on the Skyrme
interaction we have analyzed the strength distribution of 1−
states in the region of the IVGDR, calculated for 206Hg,
204,206,208Pb, and 210Po nuclei. To simulate the mean field we
have used the SLy4 Skyrme interaction and the volume pairing
interaction, treated in the BCS approximation. To analyze the
1− excitations we take into account all QRPA states with
λπ = 0+, 1−, 2+, 3−, 4+. Within the QRPA approach the
centroid location of the IVGDR is found at E∼14 MeV for
all considered nuclei. We have demonstrated that the PPC
(the microscopic coupling) between the one- and two-phonon
terms in the wave functions of excited states is important for
the interpretation of the strength distribution of the IVGDR
in the energy interval Ex ≈ 9.5–18.5 MeV. The results of the
calculated transition-strength distribution are generally in a
reasonable agreement with available experimental data. Based
on this agreement we predict the characteristics of a few
nuclei (see Table I), which might be a subject of experimental
studies.

The obtained spectra are analyzed with the aid of the RMT
correlation functions. Namely, the nearest-neighbour spacing
distribution, �̄3(L) statistics and the Porter-Thomas distribu-
tion, have been used to ascertain the chaotic properties of the
IVGDR for the considered nuclei. The RMT measures related
to the spectral properties display a weak transition towards the

FIG. 10. B(E1) strength distribution of 206Pb: the comparison
of the results obtained by means of the random coupling matrix
elements between the one- and two-phonon configurations. Results
of the calculations with the energies ωλ1i1 + ωλ2i2 (solid line) and
with random GOE-generated two-phonon energies (dotted line) are
shown. Both random strength distributions are obtained by ensemble
averaging over 100 realisations. The one- and two-phonon energies
are calculated within the RPA (top) and the QRPA (bottom). The
smoothing parameter 1 MeV is used for the strength distribution
described by the Lorentzian function.

GOE limit. We speculate that the inclusion of the coupling of
the one-phonon states with higher complexity configurations
could manifest much stronger degree of the randomization,
i.e., the transition to the GOE limit. In fact, the results of
the analysis of the probability B(E1) distribution demonstrate
evidently the tendency to reach the Porter-Thomas limit,
characteristic for the GOE statistics, indeed.

Guided by this analysis, we exploit further the ideas
borrowed from the RMT: the coupling between one-phonon
and two-phonon states is generated by means of the random
distribution of coupling matrix elements Eq. (24). As a result,
we have obtained a remarkable agreement on the spreading
widths between the full microscopic calculations with the PPC
and the random coupling, at the condition σrand ≈ σc. The
vitality of the obtained results enables to us to extend the
validity of our approach to the next level of simplifications.
Namely, considering the microscopic one-phonon states cou-
pled randomly to the two-phonons energies generated from
the GOE distribution, we reproduce with a good accuracy
the gross structure of decay widths obtained microscopically.
It appears that this approach might simplify essentially the
description of the IVGDR decay widths, at least, in heavy
nuclei. Evidently, further systematic experiments would be
helpful providing more precise data to test these theoretical
ideas.
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