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Behavior of the collective rotor in wobbling motion
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The behavior of the collective rotor in wobbling motion is investigated within the particle-rotor model for
the nucleus 135Pr by transforming the wave functions from the K representation to the R representation. After
reproducing the experimental energy spectra and wobbling frequencies, the evolution of the wobbling mode
in 135Pr, from transverse at low spins to longitudinal at high spins, is illustrated by the distributions of the
total angular momentum in the intrinsic reference frame (azimuthal plot). Finally, the coupling schemes of the
angular momenta of the rotor and the high-j particle for transverse and longitudinal wobbling are obtained from
the analysis of the probability distributions of the rotor angular momentum (R plots) and their projections onto
the three principal axes (KR plots).
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I. INTRODUCTION

As a quantum-mechanical complex many-body system,
an atomic nucleus can possess a wide variety of shapes in
its ground and excited states. The shapes may range from
spherical to deformed (quadrupole, octupole, etc.) and even
more exotic shapes, such as superdeformed and tetrahedral
are possible. At the same time, the atomic nucleus can exhibit
various modes of collective excitations. Obviously, the modes
of collective motion are strongly correlated with the nuclear
shapes. For example, only a nucleus with triaxial deformation
can possibly have chiral rotation [1] or wobbling motion [2].

The wobbling motion was first proposed by Bohr and
Mottelson in the 1970s [2]. It occurs in the case when the
rotation of a triaxial nucleus about the principal axis with
the largest moment of inertia (MoI) is quantum mechanically
disturbed by rotations about the other two principal axes, and
hence it precesses and wobbles around the axis with the largest
MoI. The energy spectra related to the wobbling motion are
called wobbling bands, and these consist of sequences of
�I = 2 rotational bands built on different wobbling-phonon
excitations [2].

The excitation spectrum of the wobbling motion is char-
acterized by the wobbling frequency. For the originally pre-
dicted wobbler (a triaxial rotor built up by an even-even
nucleus) [2], the wobbling frequency increases with spin. For
an odd-mass nucleus, the triaxial rotor is coupled with a high-
j quasiparticle, and in this case two different wobbling modes
were proposed by Frauendorf and Dönau [3]. One of them
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is called longitudinal wobbling, in which the quasiparticle
angular momentum is parallel to the principal axis with the
largest MoI. The other one is named transverse wobbling,
since the quasiparticle angular momentum is perpendicular to
the principal axis with the largest MoI. According to Ref. [3]
using the frozen alignment approximation, the wobbling
frequency
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of a longitudinal wobbler increases, while that of a transverse
wobbler decreases with increasing spin I . In Eq. (1), Jk are
the three principal MoIs, and j is the angular momentum of
the aligned particle. The short axis in the transverse wob-
bling and the intermediate axis in the longitudinal wobbling
are named as the one-axis. Note that transverse wobbling
occurs in a situation when the particle angular momentum
is aligned along the (short) one-axis, which is perpendicular
to the axis with the largest MoI J2, with the two-axis being
of intermediate length. Transverse wobbling can be realized
since the additional particle can invert the ordering of the
effective MoIs of the one- and two-axes. This property is
obtained from microscopic calculations using random phase
approximation (RPA) in Refs. [4,5], an analysis in the particle-
rotor model [3,5], and the collective Hamiltonian method [6].

Wobbling bands have been reported in the mass region
A ≈ 160 for the isotopes 161Lu [7], 163Lu [8,9], 165Lu [10],
167Lu [11], and 167Ta [12], in the mass region A ≈ 110 for
112Ru [13] and 114Pd [14], and recently in the mass region
A ≈ 130 for 135Pr [15] and 133La [16].

Interestingly, the isotope 135Pr does not only possess the
transverse wobbling mode, but also exhibits a transition from
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transverse to longitudinal wobbling [15]. Hence, 135Pr is an
excellent candidate for understanding the wobbling motion
and has attracted a lot of theoretical attention. These studies
can be briefly summarized as follows:

(i) In Refs. [3,15], the tilted axis cranking (TAC) model
with Strutinsky shell corrections and the particle-rotor
model (PRM) were employed to confirm the wob-
bling nature of the experimental energy spectra and
the electromagnetic transition probabilities.

(ii) In Ref. [17], the multi-quasiparticle triaxial projected
shell model (TPSM) approach was used to extract the
probabilities of various projected configurations in the
wave functions of the yrast and the wobbling states.

(iii) In Ref. [6], a collective Hamiltonian method based
on the TAC approach was applied to reveal the mi-
croscopic mechanisms underlying the variation of the
wobbling frequency with spin and the transition from
transverse to longitudinal wobbling.

(iv) In Ref. [18], the Holstein-Primakoff boson expansion
was applied to the PRM to examine the stability of the
wobbling motion.

(v) In Ref. [19], a time-dependent variational method,
with coherent angular momentum states as variational
states, was adopted to treat the PRM (specialized to a
high-j quasiparticle aligned rigidly with one principal
axis) and to obtain analytical solutions for the energy
spectra and electromagnetic transition probabilities.

However, still no attempt has been made to investigate the
detailed structure of wave functions of the collective rotor in
wobbling states. Taking 135Pr as an example, we investigate
in this paper the behavior of the collective rotor angular
momentum in wobbling motion using the PRM.

For this purpose, one has to express the PRM wave func-
tion in terms of the weak-coupling basis [2,20], in which
both R (rotor angular momentum quantum number) and KR

(projection on a principal axis) are good quantum numbers.
This transformation gives the R representation. From the
corresponding probability distributions one can derive (by
summation) the R plot and the KR plots.

Usually, the PRM wave functions are formulated in terms
of the strong coupling basis [2,20], where the projection of the
total spin onto the three-axis of the intrinsic frame is a good
quantum number, denoted by K . In this K representation,
R and KR do not appear explicitly. Therefore, in order to
obtain the R plot and the KR plots, one has to transform
the PRM wave function from the K representation to the R
representation. This technique has been applied for a long
time to take into account R-dependent MoIs [2,21–26] or
shape fluctuations of the rotor [27,28] in the description of
rotational spectra, or to calculate decay widths of proton
emitters [29–32]. The probability distributions of the rotor
angular momentum were also obtained before in an analysis of
the rotational spectra of axially symmetric nuclei [23]. Here,
it is employed for the first time to investigate the detailed
wave function structure of the collective rotor in the wobbling
motion of a triaxial nucleus.

II. THEORETICAL FRAMEWORK

A. Particle-rotor Hamiltonian

The total Hamiltonian of the PRM takes the form [2,20]

ĤPRM = Ĥcoll + Ĥintr (2)

with Ĥcoll the collective rotor Hamiltonian

Ĥcoll =
3∑

k=1

R̂2
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=
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, (4)

where the index k = 1, 2, 3 denotes the three principal axes
of the body-fixed frame. Here, R̂k and Îk are the angular
momentum operators of the collective rotor and the total
nucleus, and ĵk is the angular momentum operator of a valence
nucleon. Moreover, the parameters Jk are the three principal
MoIs. When calculating matrix elements of Ĥcoll, the R rep-
resentation is most conveniently used for its form in Eq. (3),
while Eq. (4) is preferable in the K representation.

The intrinsic Hamiltonian Ĥintr describes a single valence
nucleon in a high-j shell
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where ± refers to a particle or a hole state. The angle γ serves
as the triaxial deformation parameter and the coefficient C is
proportional to the quadrupole deformation parameter β. We
take in the present work the same form of C as in Ref. [33].

B. Basis transformation from K representation
to R representation

As mentioned in the Introduction, the PRM Hamiltonian
(2) is usually solved by diagonalization in the strong-coupling
basis (K representation) [2,20]

|IMKj�〉 =
√

2I + 1

16π2

[
DI

MK (ω)|j�〉

+ (−1)I−jDM−K (ω)|j − �〉], (6)

where I denotes the total angular momentum quantum num-
ber of the odd-mass nuclear system (rotor plus particle) and M
is the projection onto the three-axis of the laboratory frame.
Furthermore, � is the three-axis component of the particle
angular momentum j in the intrinsic frame, and DI

MK (ω)
are the usual Wigner functions, depending on three Euler
angles ω = (ψ ′, θ ′, φ′). Under the requirement of the D2

symmetry of a triaxial nucleus [2], K and � take the values:
K = −I, . . . , I , � = −j, . . . , j , K − � � 0 and even; and
if K − � = 0, K = � > 0.

As seen in the K representation (6), the rotor angular
momentum R does not appear explicitly. In order to obtain the
wave function of the rotor in the R representation, one has to
transform the basis. The details of this transformation can be
found in Refs. [26,30]. Here, we outline the main ingredients.
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The wave function of the total nuclear system in the
laboratory frame can be expressed in the R representation as

|IMjRτ 〉 =
∑
m,MR

〈jmRMR|IM〉 |jm〉 ⊗ |RMRτ 〉, (7)

where m and MR are the projections of j and R on the
three-axis of the laboratory frame. Obviously, the appearance
of Clebsch-Gordan coefficients requires M = m + MR , and
the values of R must satisfy the triangular condition |I − j | �
R � I + j of angular momentum coupling. At the moment,
the additional quantum number τ , related to the projection
of R on a body-fixed axis, is not yet specified. Now we
perform the transformation from the R representation to the
K representation.

In the K representation, the quantum number τ is identified
with the projection KR of R on a principal axis. Making use
of Wigner functions, the wave functions of the particle and the
rotor in Eq. (7) can be written as

|jm〉 =
j∑

�=−j

D
j
m�(ω)|j�〉, (8)

|RMRKR〉 =
√

2R + 1

16π2(1 + δKR0)

× [
DR

MRKR
(ω) + (−1)RDR

MR−KR
(ω)

]
, (9)

where KR is an even integer ranging from 0 to R, with KR = 0
is excluded for odd R. Both restrictions come from the D2

symmetry of a triaxial nucleus [2]. Note that for an axially
symmetric nucleus, R can only take even integer values since
KR must be zero.

Substituting Eqs. (8) and (9) into Eq. (7), one obtains

|IMjRKR〉 =
∑
K,�

AIK
j�,RKR

|IMKj�〉 (10)

with the expansion coefficients,

AIK
j�,RKR

=
√

2R + 1

2I + 1
〈j�RKR|IK〉√1 + δKR0, (11)

determined by Clebsch-Gordan coefficients (hence K =
KR + �).

Obviously, the transformation between the K representa-
tion and the R representation is an orthogonal transformation,
and therefore the expansion coefficients satisfy∑

K,�

AIK
j�,RKR

AIK
j�,R′K ′

R
= δRR′δKRK ′

R
, (12)

∑
R,KR

AIK
j�,RKR

AIK ′
j�′,RKR

= δ��′δKK ′ . (13)

Due to this orthogonality property, the inverse transformation
follows immediately as

|IMKj�〉 =
∑
R,KR

AIK
j�,RKR

|IMjRKR〉. (14)

To this end, we have successfully transformed the PRM basis
functions from the K representation to R representation.

Equation (14) allows us also to calculate the matrix ele-
ments of the collective rotor Hamiltonian in the K representa-
tion as

〈IMK ′j�′|Ĥcoll|IMKj�〉
=

∑
R,KR,K ′

R

AIK ′
j�′,RK ′

R
〈IMjRK ′

R|Ĥcoll|IMjRKR〉AIK
j�,RKR

=
∑

R,KR,K ′
R

AIK ′
j�′,RK ′

R

(∑
i

cRi
K ′

R
ERic

Ri
KR

)
AIK

j�,RKR
, (15)

where the energies ERi and corresponding expansion coef-
ficients cRi

KR
(i labels the different eigenstates) are obtained

by diagonalizing the collective rotor Hamiltonian Ĥcoll in the
basis |RMRKR〉 introduced in Eq. (9):

Ĥcoll|RMRi〉 = ERi |RMRi〉, (16)

|RMRi〉 =
∑
KR

cRi
KR

|RMRKR〉. (17)

In such a calculation, R-dependent MoIs can be easily imple-
mented in the PRM to obtain a better description of high spin
states [2,21–24,26]. The main focus of the present work is on
the probability distributions of the rotor angular momentum
derived from the transformation (14).

C. R plot and KR plot

With the above preparations, the PRM eigenfunctions can
be expressed as

|IM〉 =
∑
K,�

dK,�|IMKj�〉 (18)

=
∑
K,�

dK,�

∑
R,KR

AIK
j�,RKR

×
∑
m,MR

〈jmRMR|IM〉|RMRKR〉|jm〉, (19)

where the (real) expansion coefficients dK,� are obtained by
solving the total PRM Hamiltonian Ĥcoll + Ĥintr in Eq. (2).
Hence, the probabilities for given R and KR are calculated as

PR,KR
=

(∑
K,�

dK,�AIK
j�,RKR

)2

, (20)

and they satisfy the normalization condition∑
R,KR

PR,KR
= 1. (21)

The R plot consists of the summed probabilities

PR =
∑
KR

PR,KR
, (22)

whereas in the KR plot the probabilities are summed differ-
ently

PKR
=

∑
R

PR,KR
. (23)
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Moreover, the expectation value of the squared angular mo-
mentum operator R̂2

3 follows as

〈IM|R̂2
3 |IM〉 =

∑
R,KR

K2
RPR,KR

. (24)

D. Azimuthal plot

In this work, we want to illustrate the angular momentum
geometry of the wobbling motion by a profile on the (θ, ϕ)
unit sphere, called azimuthal plot [34,35]. Here, (θ, ϕ) are
the orientation angles of the angular momentum vector I
(expectation value with M = I ) with respect to the intrinsic
frame. The polar angle θ is the angle between I and the three-
axis, whereas the azimuthal angle ϕ is the angle between the
projection of I on the 12-plane and the one-axis. The profiles
can be obtained by relating the orientation angles (θ, ϕ) to
the Euler angles ω = (ψ ′, θ, π − ϕ) [1,34], where the z axis
in the laboratory frame is chosen along I . The profiles are
calculated from the PRM eigenfunctions (18) as

P (θ, ϕ)

= 2π
∑
�p

∣∣∣∣∣
∑
K,�

dK,�

√
2I + 1

16π2

[
DI

IK (ψ ′, θ, π − ϕ)δ�p,�

+ (−1)I−jDI
I−K (ψ ′, θ, π − ϕ)δ�p,−�

]∣∣∣∣∣
2

, (25)

where the factor 2π comes from the integral over ψ ′. Note that
DI

IK (ψ ′, θ ′, ϕ′) ∼ e−iIψ ′
, and therefore the right-hand side of

Eq. (25) is ψ ′ independent. The profiles P (θ, ϕ) fulfill the
normalization condition∫ π

0
dθ sin θ

∫ π

−π

dϕ P (θ, ϕ) = 1. (26)

Due to the combination of Wigner functions required by
the D2 symmetry in Eq. (25), P (θ, ϕ) fulfills the follow-
ing relations: P (θ, ϕ) = P (θ,−ϕ) = P (θ, π − ϕ) = P (π −
θ, ϕ). Therefore, the complete information is contained in the
angle ranges 0 � θ � π/2 and 0 � ϕ � π/2.

III. NUMERICAL DETAILS

In our calculation of the wobbling bands in 135Pr, the
configuration of the proton is taken as π (1h11/2)1. Following
Refs. [3,6,15], the quadrupole deformation parameters of this
configuration have the values β = 0.17 and γ = −26.0◦.
With this assignment of γ , the one-, two-, and three-axes
are the short (s), intermediate (i), and long (l) axes of the
ellipsoid, respectively. The principal MoIs are taken as J1,
J2, J3 = 13.0, 21.0, 4.0 h̄2/MeV [3,6]. In this case, the i axis
is the axis with the largest MoI.

IV. RESULTS AND DISCUSSION

A. Energy spectra of wobbling bands

In Fig. 1(a), the energy spectra of the yrast and wobbling
bands calculated in the PRM are compared with the experi-
mental data [15]. A similar figure has been given in Ref. [6],

FIG. 1. Energy spectra of the yrast (zero phonon) and wobbling
bands (one phonon) (a) and the corresponding wobbling frequency
(b) in 135Pr as functions of the total spin I calculated without pairing
(labeled as PRM) and with pairing (labeled as PRM*) in comparison
to the experimental data of Ref. [15].

where the collective Hamiltonian method has been used. For
both approaches, good agreement between the theoretical
calculations and the data can be obtained.

From the energy spectra, the wobbling frequencies Ewob(I )
of the theoretical calculation and the data are extracted (as dif-
ferences) and shown in Fig. 1(b) as a function of spin I . In the
region I � 14.5h̄, both the theoretical and experimental wob-
bling frequencies decrease with spin, which provides evidence
for transverse wobbling motion. At higher spin (I � 14.5h̄),
the experimental wobbling frequency shows an increasing
trend, which indicates that the wobbling mode changes from
transverse to longitudinal [15]. The PRM calculations can
reproduce this transition well. Here, one should note that
the ratio of J1 and J2 is essential for the existence of the
transverse wobbling mode [3,5]. We fix J2 = 21 h̄2/MeV and
J3 = 4 h̄2/MeV and change J1 in steps of 1 h̄2/MeV around
13 h̄2/MeV, until the transverse wobbling band ends at 16.5h̄
and 12.5h̄, which leads to J1 = 14 h̄2/MeV and 11 h̄2/MeV.

In order to show the effects of pairing correlations on
the energy spectra and the wobbling frequency, the results
labeled as PRM* are included in Fig. 1. In the calculation,
the pairing gap is taken according to the empirical formula
� = 12 MeV/

√
A. It is seen that the results without and with

paring are very similar in the spin region I � 13.5h̄. Hence,
the calculated wobbling frequencies at I � 12.5h̄ do not
change much. With the inclusion of the pairing correlation,
the transverse wobbling band ends 2h̄ earlier than the data.
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FIG. 2. Energy expectation values of the collective rotor (a) and
the valence proton (b) calculated in the PRM for the yrast and
wobbling bands in 135Pr, together with their differences �E and the
full wobbling frequency (c) as functions of the spin I .

Therefore, the subsequent discussion is focused on the results
without pairing correlations.

In Fig. 2, the separated energy expectation values Ecoll and
Eintr of the collective rotor Hamiltonian Ĥcoll and the intrinsic
single-proton Hamiltonian Ĥintr as calculated in the PRM for
the yrast and wobbling bands in 135Pr are shown as functions
of the spin I , together with the differences �E in the two
bands and the wobbling frequency.

It is seen that Ecoll increases with the spin, and apparently,
the yrast band has lower Ecoll than the wobbling band. The
difference of Ecoll in the wobbling and yrast band decreases
up to I = 12.5h̄, and then it increases rapidly.

In the region I � 11.5h̄, the values of Eintr in the yrast
and wobbling bands do not vary much, which implies that
the alignment of the proton particle along the s axis remains
almost unchanged. This is a specific feature of the wobbling
mode in contrast to the signature-partner mode, where the
alignment of the single particle varies with the spin [8,36]. The
values of Eintr in the yrast band are a bit smaller than those in
the wobbling band, but their differences stay almost constant.
As a consequence, the decrease of the wobbling frequencies
originates mainly from the decrease of the Ecoll differences.

However, from I = 13.5h̄ upward, Eintr of the yrast band
increases rapidly, which is caused by the change of alignment
of the proton particle from the s axis towards the i axis, driven
by the Coriolis interaction. As revealed by the azimuthal
plots (discussed later), this corresponds to a change of the

FIG. 3. Root mean square expectation values of the proton angu-
lar momentum components along the s, i, and l axes as functions of
the spin I calculated without (a) and with (b) pairing correlations.

rotational mode from along a principal axis (s axis) to a planar
rotation (with I lying in the si plane). This rearrangement
leads to much larger values of Eintr in the yrast band than in
the wobbling band, and hence their difference decreases to
negative value for I � 12.5h̄.

To understand clearly the behaviors of Eintr , the root mean
square expectation values of the proton particle angular mo-
mentum components along the s, i, and l axes as functions of
spin are shown in Fig. 3(a). It is seen that the proton particle
is mainly aligned along the s axis in the region I � 13.5h̄,
such that j is approximately perpendicular to the i axis. From
I = 13.5h̄ upward, the proton particle shows a clear trend to
align towards the i axis, corresponding to the increase of Eintr .

In addition, the components of j in the signature partner
band are shown in Fig. 3(a) by open symbols connected with
dashed lines. It can be seen that they are totally different
from those of the yrast and wobbling bands. This illustrates
the picture that the particle changes its direction of alignment
from the yrast band to its signature partner band.

In Fig. 3(b), the analogous results with pairing correlations
including are given. It is seen that the alignments of the proton
in the yrast and wobbling bands are similar for I � 11.5h̄.
Due to the pairing correlations, the alignment along the i axis
becomes more pronounced and thus the transverse wobbling
motion ends earlier. Nevertheless, in both cases, the angular
momentum components of proton particle behave very dif-
ferently in the signature partner band in comparison to yrast
and wobbling bands. Therefore, the signature partner band
can be distinguished on the basis of these angular momentum
components. Here, we should also mention that in the current
PRM calculations, the band-head energy of the signature
partner band is overestimated by about 900 keV (without
pairing correlations) and 500 keV (with pairing correlations)
in comparison to the experimental data. This deficiency has
also occurred in Refs. [3,15].

B. Azimuthal plot

The successful reproduction of the energy spectra in the
yrast and wobbling bands for 135Pr suggests that the PRM
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FIG. 4. Azimuthal plots (i.e., distributions of the orientation of the angular momentum) calculated at I = 5.5, 9.5, 13.5, and 17.5h̄ for the
yrast band and at I = 6.5, 10.5, 14.5, and 18.5 h̄ for the wobbling band in 135Pr.

calculation describes well the wave functions underlying the
experimental states. Let us now investigate the angular mo-
mentum geometry of the system in detail.

In Fig. 4, the obtained profiles P (θ, ϕ) for the orientation
of the angular momenta I in the θϕ plane are shown at spin
I = 5.5, 9.5, 13.5, and 17.5h̄ for the yrast band, and at I =
6.5, 10.5, 14.5, and 18.5h̄ for the wobbling band in 135Pr. We
remind the reader that θ is the angle between the I and the l
axis, and ϕ is the angle between the projection of I onto the
si plane and the s axis.

One observes that the maximum of P (θ, ϕ) is always
located at θ = 90◦. This is because the l axis carries the
smallest MoI, and in order to lower the energy the angular
momentum prefers to lie in the si plane. Note that due to
the D2 symmetry, P (θ, ϕ) is an even function of ϕ. For the
states in the yrast band, the ϕ coordinates of the maxima
gradually deviate from zero with increasing spin. As a result,
the number of maxima changes from one to two. This implies
that the rotational mode in the yrast band changes from a
principal axis rotation at the low spins (I = 5.5 and 9.5 h̄) to
a planar rotation at high spins (I = 13.5h̄). By examining the
profiles P (θ, ϕ) for all yrast states, we find that I = 13.5h̄ is
the critical spin at which the rotational mode changes (with
ϕ 
 ±5◦ at the maxima). At I = 17.5h̄, the ϕ coordinates
of the maxima of P (θ, ϕ) approaches ±90◦. In this case,
the rotational mode changes from a planar rotation back to
a principal axis rotation about the i axis. These features are
similar to the behavior of the minima of the total Routhian
surface as a function of the rotational frequency, calculated by
TAC in the Refs. [6,37]. Both PRM and TAC present the same
physics picture: a principal axis rotation about the s axis at
low spins, a transition to planar rotation at intermediate spins,
and a return to principal axis rotation about the i axis at high
spins.

In the lower part of Fig. 4, the distributions P (θ, ϕ) exhibit
a different behavior in the wobbling band. With one-phonon
excitation (wobbling motion), the profiles P (θ, ϕ) have two

maxima for all spins. At low spins (I � 12.5h̄), the excitation
is transverse wobbling about the s axis. This is reflected by
the larger ϕ values of the maxima of P (θ, ϕ) in wobbling
states (with spin I ) compared to those of the corresponding
yrast states (with spin I − 1). Note that for the zero-phonon
states (with I � 11.5h̄) the underlying wave functions are
symmetric and peaked at ϕ = 0◦ (s axis), whereas for one-
phonon states (I = 6.5h̄, 8.5h̄, etc.) they are antisymmetric
and have a node at ϕ = 0◦. At high spins (I � 17.5h̄), the
excitation from the yrast band into the wobbling band is
longitudinal wobbling about the i axis. This is in accordance
with the fact that the ϕ coordinate of the maxima of P (θ, ϕ)
in the wobbling states (with spin I ) are smaller than those in
the yrast states (with spin I − 1). Moreover, the zero-phonon
state (I = 17.5h̄) is peaked at ϕ = ±90◦ (i axis), while the
one-phonon state (I = 18.5h̄) has a node there. These features
are similar to the properties obtained with wave functions
calculated from a collective Hamiltonian in Refs. [6,37].

Therefore, we have confirmed that with the increasing spin,
the wobbling mode varies from the transverse at low spins
to longitudinal at high spins, which is consistent with the
evolution of the wobbling frequency in Fig. 1. In fact, this
variation is mainly driven by the collective rotor (cf. Fig. 2).

C. R plots

According to the above analysis, the collective rotor plays
an essential role in the wobbling motion. Therefore, we inves-
tigate in the following the probability distribution of the rotor
angular momentum (R plots) as well as the its projections onto
each principal axis (KR plots).

In Fig. 5, the probability distributions PR of the rotor angu-
lar momentum (R plots) calculated by Eq. (22) are displayed
for the yrast and wobbling bands in 135Pr. For a given spin I ,
the integer R takes values from |I − j | to I + j , excluding
R = 1. It is found that for all I the probability PR almost
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FIG. 5. The probability distributions for the angular momentum of rotor (R plots) for the yrast and wobbling bands in 135Pr.

vanishes for large R. Therefore, the R plots are restricted in
Fig. 5 to small R.

For the yrast band, PR has a pronounced peak at Rmin =
|I − j |, except for I = 5.5h̄ (the band head), where the
maximal weight occurs at R = |I − j | + 2 = 2h̄. For the
wobbling band, PR has two peaks of similar height, which
are located at R = |I − j | and |I − j | + 1. An exception
is again the band head I = 6.5h̄, where the peaks lie at
R = |I − j | + 1 and |I − j | + 3. The R plots indicate that
R is an asymptotic good quantum number in the yrast band
(I � 7.5h̄), but not in the wobbling band. This is different to
the wobbling motion of a pure triaxial rotor, where R is a good
quantum in all bands [2,38]. However, it should be noted that
the admixture of the states with R = |I − j | and R = |I −
j | + 1 in the wobbling band is important as it provides the
possibility for the (quantum mechanical) wobbling transition.
This admixture causes that the average value of R in the
wobbling band Rwobb(I ) at spin I is larger than |I − j | and
leads to Rwobb(I ) − Ryrast(I − 1) > 1h̄, so that the rotor in the
wobbling band with spin I has to wobble to increase its spin
by only 1h̄ with respect to the yrast band (with spin I − 1).

D. KR plots

In the following the probability distributions for the projec-
tions (KR = Rl , Rs , and Ri) of the rotor angular momentum
onto the l, s, and i axes (KR plots) will be investigated. For
the triaxiality parameter γ = −26◦, the l axis is the designated
quantization axis. The distributions with respect to the s and i
axes are obtained by taking γ = 146◦ and 266◦, respectively.
These γ values correspond to the equivalent sectors such that
the nuclear shape remains the same, but only the principal
axes are interchanged [20].

In Fig. 6, the probability distributions for the projection of
the rotor angular momentum onto the l axis PRl

as calculated
in the PRM, are shown for the yrast and wobbling bands in
135Pr. For both the yrast and wobbling bands, PRl

has two
peaks at Rl = 0 and 2 h̄, indicating that the rotor angular
momentum has only very small components along the l axis,
to which a very small MoI is associated. This is consistent
with the azimuthal plots shown in Fig. 4. At the same time,
the distributions of PRl

for the yrast and the wobbling bands
do not change much as the spin I increases, indicating that the

FIG. 6. Probability distributions for the projection of the rotor angular momentum onto the l axis for the yrast and wobbling bands in 135Pr.
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FIG. 7. Same as Fig. 6, but for the projection onto the s axis.

rotor angular momentum component along the l axis remains
almost constant. For the yrast band, PRl

at Rl = 0h̄ is much
larger than PRl

at Rl = 2h̄, while for the wobbling band, the
situation is opposite. There, PRl

at Rl = 2h̄ is larger than PRl

at Rl = 0h̄.
The probability distributions PRs

of the component Rs are
displayed in Fig. 7 for the yrast and wobbling bands in 135Pr.
In the region I � 13.5h̄, the distributions PRs

for states in
the yrast band (with I − 1) and the wobbling band (with I )
show a similar behavior. This indicates that the rotor angular
momenta of states in the yrast (with I − 1) and wobbling
(with I ) bands have similar components along the s axis due to
the transverse wobbling motion. For neighboring states with
I − 2 and I , the distance between the peaks of PRs

is 2h̄. In
the region I � 14.5h̄, where the transverse wobbling motion
disappears, the distributions PRs

are spread over many Rs

values. The average value of Rs is about 4h̄ for the yrast band
and about 6h̄ for the wobbling band.

In Fig. 8, the probability distributions PRi
of the component

Ri are shown for the yrast and wobbling bands in 135Pr.

In comparison to PRl
and PRs

, the distributions PRi
reveal

stronger admixtures of the various values of Ri , which origi-
nates from the wobbling motion of the rotor towards the i axis.
One also observes that PRi

of the yrast and wobbling bands
behavior differently. In the region I � 13.5h̄, the probability
PRi

at Ri = 0h̄ has a finite value in the yrast band, while it
vanishes for the wobbling band. This is a characteristic of
the one-phonon excitation of the wobbling motion. Namely,
the underlying wave function for a zero-phonon state (yrast
band) is even under Ri → −Ri , whereas for a one-phonon
state (wobbling band) it is odd. This picture is also consistent
with the features displayed in the azimuthal plots (cf. Fig. 4).
The peak position of the distribution PRi

increases by about
2h̄ from a state in the yrast band (with I − 1) to a state
in the wobbling band (with I ). This increment is caused by
the wobbling motion from the s axis towards the i axis. For
neighboring states with I − 2 and I , the average value of Ri

differs by about 1h̄. This means that Ri for the state I in the
yrast band is about 1h̄ smaller than for the state I − 1 in the
wobbling band.

FIG. 8. Same as Fig. 6, but for the projection onto the i axis.
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In the region I � 14.5h̄, the distributions PRi
for the yrast

band show a clear peak at Ri = |I − j | = R (cf. Figs. 5 and
8), indicating that the rotor has aligned with the i axis. For the
wobbling band one observes two peaks of similar height at
Ri = |I − j | − 1 and |I − j | + 1, which gives an increment
of Ri by about 1h̄ from the yrast state (with I − 1) to the
wobbling state (with I ). This behavior is different from the
transverse wobbling region, where the increment is about 2h̄.

E. Angular momentum coupling schemes

From the above analysis of energy expectation values of
the intrinsic Hamiltonian Ĥintr, azimuthal plots P (θ, ϕ) of the
total angular momentum, and the R plots and three KR plots
for the rotor angular momentum, one can deduce the following
features in the transverse wobbling region:

(i) the single-particle (angular momentum) is aligned
with the s axis;

(ii) the average rotor angular momentum is more than 1h̄
(and less than 2h̄) longer in the wobbling band with
spin I + 1 than in the yrast band with spin I ;

(iii) the projection of the rotor angular momentum onto
the l axis is very small;

(iv) the rotor angular momenta in yrast states (with I ) and
wobbling states (with I + 1) have similar components
along the s axis. For neighboring states with I − 2
and I , the component Rs differs by about 2h̄;

(v) the component Ri increases by about 2h̄ from an yrast
state I to a wobbling state I + 1. In addition, Ri in the
yrast state I is about 1h̄ smaller than its value in the
wobbling state I − 1.

Combining these features, a schematic illustration of the
coupling scheme of the angular momenta j and R, of the
high-j particle and the rotor, for transverse wobbling in an
yrast state I and two wobbling states I ± 1 is shown in Fig. 9.

On the other hand, for longitudinal wobbling one finds the
following features:

(i) the proton particle (angular momentum) is aligned
with the i axis;

(ii) the average value of Rs is about 4h̄ in the yrast band
and about 6h̄ in the wobbling band.

(iii) the increment of Ri from an yrast state with I − 1 to
a wobbling state with I is about 1h̄.

Again combining these features, a schematic illustration of
the coupling scheme of j and R for the longitudinal wobbling
motion in an yrast state with I and two wobbling states with
I ± 1 is shown in Fig. 10. This coupling scheme differs from
that for transverse wobbling, shown in Fig. 9. One can clearly
see that the rotor angular momentum is much longer than the
single particle angular momentum. It should be noted that a
schematic illustration of the longitudinal wobbling motion has
also been given in Refs. [8,36], but there the MoI belonging to
s axis was assumed to be the largest. In that case, the angular
momenta of the rotor and the particle both align with the s
axis in the yrast band.

FIG. 9. Schematic illustration of the coupling scheme of the
angular momenta j and R of the high-j particle and the rotor for
the transverse wobbling in an yrast state with I and two wobbling
states with I ± 1. The total angular momentum is I = R + j .

V. SUMMARY

In summary, the behavior of the collective rotor for the
wobbling motion of 135Pr has been investigated in the PRM.
After successful reproduction of the experimental energy
spectra and the wobbling frequencies, the separate contribu-
tions from the rotor and the single-particle Hamiltonian to
the wobbling frequencies have been analyzed. It is confirmed
that the collective rotor motion is responsible for the decrease
of the wobbling frequency in transverse wobbling, and its
increase in longitudinal wobbling found in Refs. [3,5,6].

The evolution of the wobbling mode in 135Pr from trans-
verse at low spins to longitudinal at high spins has been
illustrated by the distributions P (θ, ϕ) of the total angular
momentum in the intrinsic frame (azimuthal plots). According
to the analysis of the probability distributions of the rotor
angular momentum (R plots) and their projections onto the
three principal axes (KR plots), different schematic coupling
schemes of the angular momenta j and R of the rotor and
the high-j particle in the transverse and longitudinal wobbling
have been obtained.

FIG. 10. Similar as Fig. 9, but for the longitudinal wobbling
motion.
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In perspective, the R plots and KR plots presented in this
work can be used to examine the fingerprints of electromag-
netic transitions (E2 or M1) between wobbling bands, or can
be extended to investigate, e.g., the behavior of the collective
rotor for chiral rotation [1].

Finally, we would like to discuss the B(M1) values in
the PRM. With inclusion of pairing correlations, the B(M1)
values can be reduced by a factor of 2–3 compared to those
without pairing correlations. However, this B(M1) values still
overestimate the experimental ones by a factor of 3–10. This
problem has been interpreted in Ref. [39] as follows: the
wobbling motion is not a pure orientation vibration of the
rigid quadrupole mass tensor with respect to the angular mo-
mentum vector, but includes also a coupling to vibrations of
the proton and neutron currents against each other. However,
this scissor mode is not taken into account in the PRM and
hence leads an overestimation of B(M1). The scissor mode
does not have any obvious influence on the energy spectra
and interband B(E2) values. In order to cure this problem,

a quenched g factor was used in Ref. [18] to reproduce the
data in the wobbling bands of 135Pr. A satisfactory solution of
this problem in the PRM with separated proton and neutron
rotors requires more efforts.
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