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A systematic analysis of giant quadrupole resonances is performed for several nuclei, from 30Si to 208Pb, within
the subtracted second random-phase-approximation (SSRPA) model in the framework of the energy-density-
functional theory. Centroid energies and widths of the isoscalar giant quadrupole resonances are compared
with the corresponding random-phase-approximation (RPA) values. We find lower SSRPA centroid energies
compared to the RPA values leading, in general, to a better agreement with the experimental data. As far as
the widths are concerned, we observe for both SSRPA and RPA cases a global attenuation of the single-particle
Landau damping going from lighter to heavier nuclei, and we obtain, systematically, larger widths in the SSRPA
model compared to the RPA case. For some selected nuclei for which high-resolution (p, p′) experimental data
are available, namely 40Ca, 90Zr, 120Sn, and 208Pb, the theoretical strength distributions are directly compared
with the experimental spectra. We observe a significant improvement, with respect to RPA results, in the
description of the spreading widths and of the fragmentation of the obtained spectra, due to the coupling between
one-particle–one-hole and two-particle–two-hole configurations.
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I. INTRODUCTION

The emergence of collective excitations is one of the
most interesting features of many-body systems. In atomic
nuclei the most collective excitations are the so-called giant
resonances (GRs) [1,2] which are macroscopically interpreted
as nuclear vibrations in which many nucleons take part
coherently. The random-phase-approximation (RPA) model
provides a microscopic description of the GRs constructed
as superpositions of one-particle–one-hole (1p1h) configura-
tions. This approach is able to provide the gross features of
GRs such as the centroid energy, the total strength, and the
corresponding energy-weighted sum rule (EWSR). However,
other properties such as the GR’s fine structure, the damping
mechanism, and the decay width cannot be properly described
in such a model based on the overlap of individual degrees of
freedom. The total width of an excited mode is composed of
three different contributions: (i) the so-called Landau damp-
ing, corresponding to the fragmentation over 1p1h configu-
rations; (ii) the escape width due to the direct particle emis-
sion; and (iii) the spreading width, generated by the coupling
between 1p1h configurations and, for instance, collective or
multiparticle-multihole degrees of freedom. The interplay
among these different contributions makes the description of
the total width a very challenging task. Several microscopic
approaches have been introduced in recent decades to describe
the widths and the damping properties of collective excita-
tions. Some illustrations are the quasiparticle-phonon model
[3–6], particle-phonon (or quasiparticle-phonon) coupling
models [7–11], particle-phonon coupling models based on
the so-called time-blocking approximation [12,13], and, more

recently, the relativistic quasiparticle time-blocking approxi-
mation [14,15]. In particular, the second RPA (SRPA) model
is a natural extension of RPA allowing for a more general
description of the nuclear excitations and providing a valuable
tool for the prediction of spreading widths and fine structure
properties due to the introduction of two-particle–two-hole
(2p2h) configurations (see, for instance, Refs. [16–25]).

A recent implementation of the SRPA model was illus-
trated in Refs. [26,27], based on a subtraction procedure. This
procedure, initially introduced for particle-vibration coupling
models [13] and discussed more recently for extensions of
the RPA [28], is designed to handle the problem of the dou-
ble counting of correlations within energy-density-functional
(EDF) theories. Such a double counting arises because the
parameters of the effective interactions employed in EDF
theories are adjusted in most cases to observables calculated at
the mean-field level. The use of the same interactions in more
sophisticated models intended to overcome the mean-field
approximation may produce an overcounting of correlations,
which is canceled by the subtraction procedure. In addition,
such a procedure guarantees that the Thouless theorem is
valid in any extensions of the RPA model [28], and this is
essential to ensure the validity of the stability conditions,
related to the use of the Hartree-Fock ground state. Finally,
the ultraviolet divergence occurring in all SRPA calculations
done with zero-range forces and induced by the inclusion of
2p2h configurations is removed by the subtraction of the zero-
energy self-energy [26]. This means that all the drawbacks
and the limitations of the SRPA model formulated in the
EDF framework are cured by the subtraction procedure, even
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if zero-range effective interactions are used. The subtracted
SRPA (SSRPA) model thus represents a robust and stable
theoretical tool for a beyond-mean-field description of the
excitation spectra of many-body systems.

Recently, we performed the first SSRPA calculations
within a fully self-consistent scheme, by including in the
residual interaction all the terms appearing in the effective
interaction used for the description of the ground state [29].
The use of the subtraction procedure in a fully self-consistent
scheme led to a satisfactory description of the low-lying
dipole spectrum (below 10 MeV) and of the giant dipole
resonance (GDR) for the nucleus 48Ca [29]. A remarkable
improvement was found in the low-energy spectrum with
respect to previous SRPA calculations, where the subtraction
procedure was not yet used and some terms were still missing
in the residual interaction [23], in the comparison with (γ, γ ′)
results of Ref. [30]. Especially the values of the transition
probabilities were strongly upgraded, leading to a satisfactory
agreement with the experimental data. In addition, an impor-
tant improvement with respect to RPA calculations was found
for the GDR of 48Ca, in the comparison with a recent measure-
ment done at RCNP Osaka with the (p, p′) reaction at forward
angle [31]. The SSRPA model provided a much more realistic
description of the spreading width of the GDR. The most
important advantage of SRPA-based models, with respect to
RPA, is indeed the possibility to describe the width and the
fragmentation of the excited states, owing to the beyond-
mean-field coupling between 1p1h and 2p2h configurations.

In this article, we apply the SSRPA model based on Skyrme
interactions to perform a systematic study of the centroids and
the widths of the the isoscalar (IS) giant quadrupole resonance
(GQR) for several nuclei, from medium mass to heavy. In
addition, we analyze the strength distributions for some se-
lected nuclei for which high-energy resolution measurements
are available. For these cases, we compare the theoretical
predictions with RPA results and experimental spectra.

The article is organized as follows. We provide in Sec. II a
brief overview of the SSRPA formalism. We discuss in Sec. III
the systematic trends obtained for the centroids and the widths
in the SSRPA model. We illustrate detailed comparisons with
RPA results for the centroids and the widths. Centroid ener-
gies are also compared with the available experimental data.
We present in Sec. IV a description of the strength distribu-
tions for the nuclei 40Ca, 90Zr, 120Sn, and 208Pb, and we illus-

trate the comparison with RPA results and with experimental
spectra. We show in Sec. V in an illustrative case the indepen-
dence of the obtained results from the chosen energy cutoff in
the 2p2h configurations. Conclusions are drawn in Sec. VI.

II. BRIEF OVERVIEW OF THE SSRPA MODEL

All the details of the SRPA model implemented with a
subtraction procedure may be found in Ref. [26]. We provide
here the main equations. It is well known that the SRPA
equations can be put in the same compact form as the RPA
equations, that is( A B

−B∗ −A∗

)(X ν

Yν

)
= ων

(X ν

Yν

)
, (1)

where the matrices have different expressions compared to
the RPA case, and the eigenvalues ω and eigenvectors (X ,Y)
define the excitation energies and the wave functions of the
excited states, respectively. Let us take as an illustration the
matrix A. In the standard SRPA model this matrix can be
written as a block of matrices,

A =
(

A11′ A12

A21 A22′

)
,

where “1” and “2” stand for 1p1h and 2p2h. The A11′ matrix
is the usual RPA matrix A. It is possible to write the SRPA
equations as RPA-like equations with energy-dependent A11′

and B11′ matrices. In this case, the A11′ (ω) matrix reads

A11′ (ω) = A11′ +
∑
2,2′

A12(ω + iη − A22′ )−1A2′1′

−
∑
2,2′

B12(ω + iη + A22′ )−1B2′1′ , (2)

where the first term is the standard RPA matrix and the last
one has to be included only in cases where density-dependent
effective interactions are used (rearrangement terms) [32].
Denoting by E11′ (ω) the energy-dependent part of A11′ (ω),
the subtraction procedure proposed by Tselyaev consists in
replacing A11′ (ω) by a subtracted matrix AS

11′ (ω) written as

AS
11′ (ω) = A11′ (ω) − E11′ (0). (3)

Coming back to an energy-independent form for the equa-
tions, the SSRPA matrix A reads

AS
D =

(
A11′ + ∑

22′ A12(A22′ )−1A2′1′ + ∑
22′ B12(A22′ )−1B2′1′ A12

A21 A22′

)
. (4)

In the calculations presented in this work such a matrix
is fully computed and the diagonal approximation is not em-
ployed in the 2p2h sector A22′ , in spite of the huge numerical
effort required to treat medium-mass and heavy nuclei. The
subtractive term is instead calculated by using the diagonal
approximation for the matrix A22′ that has to be inverted. We
showed in Ref. [26] that this approximation does not have
a strong impact on the obtained excitation spectra, allowing

at the same time for a substantial reduction of the implied
numerical effort.

III. SYSTEMATIC STUDY FOR THE IS GQR: CENTROID
ENERGIES AND SPREADING WIDTHS

From the experimental point of view, the IS GQR was
extensively analyzed since its discovery more than 40 years
ago [33–35]. The first measurements were summarized in the
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1980s in a review on giant resonances [36] and in a systematic
study dedicated to the giant monopole resonance (GMR) and
to the GQR for several medium-mass and heavy nuclei, up
to 208Pb [37]. The IS GQR and GMR could be identified and
distinguished from each other using inelastic α scattering at
small angles. Measurements for 48Ca [38], 90Zr [39], and Sn
and Sm nuclei [40,41] are also available, based on inelastic
scattering of α particles. Data taken on unstable nuclei were
recently published: a measurement was first done on 56Ni,
based on the reaction 56Ni(d, d ′) [42] and, more recently, a
measurement was perfomed on 68Ni using inelastic α and
deuteron scattering [43].

High-resolution experiments based on proton inelastic
scattering have been performed at iThemba LABS to investi-
gate the fine structure of GQR excitations for 40Ca [44], 58Ni,
90Zr, 120Sn, and 208Pb [45].

In this work, we extract the experimental data for the
centroid energies from Ref. [37] for almost all nuclei, with
the exception of 48Ca [38], 112Sn, 114Sn, 148Sm, 150Sm, and
152Sm [40]. Data on the IS GQR are also available for Sn
isotopes in Ref. [41]. The centroid energies of Ref. [41]
are in rather good agreement with the values obtained in
other measurements. On the other side, the widths reported in
Ref. [41] are much larger (double) compared to those obtained
with other measurements [37,40]. Due to these ambiguities,
we decided to show a systematic comparison with the exper-
imental data only for the centroid energies. As far as width,
fine structure, and fragmentation are concerned, we dedicate
a more focused discussion in Sec. IV, where we select only
nuclei for which high-precision (p, p′) data are available. A
comparison between theoretical and experimental results is
done only for these selected cases.

We analyze thirteen spherical-expected medium-mass and
heavy nuclei: 30Si, 34Si, 36S, 40Ca, 48Ca, 56Ni, 68Ni, 90Zr,
114Sn, 116Sn, 120Sn, 132Sn, and 208Pb. We perform RPA and
SSRPA calculations with the SLy4 parametrization [46] of the
Skyrme interaction. The single-particle space is chosen large
enough to assure that the EWSR are preserved within 1%. For
the 2p2h space in the SSRPA calculations, we use a cutoff of
60 MeV for medium-mass nuclei (30Si, 34Si, 36S, 40Ca, 48Ca,
56Ni, and 68Ni) and of 50 MeV for the heavy ones (90Zr, 114Sn,
116Sn, 120Sn, 132Sn, and 208Pb). We checked that these cutoff
values provide stable results.

Centroid energies Ec and widths � are usually estimated
by using the moments of the strength m0, m1, and m2, namely

Ec = m1

m0
(5)

and

� =
√

m2/m0 − (m1/m0)2. (6)

However, this estimation turns out to be reasonable only in
those cases where the strength is well concentrated around a
main peak (which is typically the case for RPA calculations
done for spherical nuclei) and when the spectrum contains
more than a single dominant peak. Now, it turns out that in
SRPA-based models the strength may be strongly fragmented.
In these cases, such a procedure for extracting the centroids
and the widths may alter the results, reducing in an artificial

way the estimated value for the width. On the other side, also
for those RPA spectra where there is only a single significant
peak this procedure is not adequate, the resulting width being
artificially too large.

To make more realistic estimations, centroids and widths
of the IS GQRs were computed here in a similar way as in
Ref. [47], that is by fitting a Lorentzian distribution. This ad-
justment was done on curves obtained by folding the discrete
spectra with narrow Lorentzian distributions. In the SSRPA
case, the folding done with very narrow distributions follows
fairly well the extremely dense SSRPA spectra and no arti-
ficial effects induced by the performed folding are observed
when the Lorentzian distribution is fitted. On the other side,
in those RPA cases where there is a unique dominant peak,
the width extracted in this way turns out to be equal to the
width of the folding Lorentzian. We used in these cases very
narrow folding Lorentzian (100 keV width) to not induce any
artificial spreading effect.

The systematic trend provided by the SSRPA model for
the centroids is shown in Fig. 1, where SSRPA results (blue
diamonds) are compared with the corresponding RPA results
(magenta triangles) and with the experimental data (black
circles) represented in the figure with the corresponding error
bars. Nuclei for which a comparison between our theoretical
predictions and the corresponding experimental data may
be done are identified in the figure by vertical dotted red
lines. We observe that the SSRPA centroids are systematically
located at lower energies than the RPA values. It is known
that the centroid energies of the IS GQR are strongly related
to the effective mass (see for example two recent reviews,
Refs. [48,49]). A discussion on this aspect and on the related
impact on the modification of the effective mass beyond the
mean-field approximation is done in a dedicated work [50].

For most of the cases where the experimental centroids
are available, we observe that the SSRPA energies are in
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FIG. 1. Centroids of the IS GQR. The experimental data are
displayed as black circles (with their associated error bars) and are
extracted from Refs. [37,38,40,42]. SSRPA (RPA) predictions are
plotted as blue diamonds (magenta triangles). At A = 48, there are
two experimental measurements, for 48Ti and for 48Ca. The exper-
imental point corresponding to 48Ca is the highest one. Theoretical
calculations are performed for the nuclei 30Si, 34Si, 36S, 40Ca, 48Ca,
56Ni, 68Ni, 90Zr, 114Sn, 116Sn, 120Sn, 132Sn, and 208Pb.

044313-3



O. VASSEUR, D. GAMBACURTA, AND M. GRASSO PHYSICAL REVIEW C 98, 044313 (2018)

40 60 80 100 120 140 160 180 200 220
A

0

1

2

3

4

W
id

th
s 

(M
eV

) SSRPA
RPA

FIG. 2. Theoretical widths calculated with the fit of a Lorentzian
distribution within RPA and SSRPA models.

better agreement with the experimental values than the RPA
centroids, which in general overestimate the data, as can be
seen in Fig. 1.

We expect that the description of the widths is strongly
modified in the SSRPA model, compared to the RPA case,
because an additional spreading effect is explicitly taken into
account (in addition to the single-particle Landau damping
which is already present in RPA) owing to the coupling
between 1p1h and 2p2h configurations. Figure 2 displays
the SSRPA and RPA widths. We specify once more that our
predictions of the total widths contain the Landau-damping
effect (RPA and SSRPA) and the spreading contribution
(SSRPA). The escape width is missing. Even if the escape
width is expected to be less important than the spreading
width, it may modify some of our predictions, especially
for light nuclei. We observe that the SSRPA widths are, as
expected, systematically larger than the RPA ones. Figure 2
indicates also another interesting trend: globally, both in RPA
and in SSRPA, the widths are reduced going from lighter
to heavier nuclei, implying that there is a more important
fragmentation in lighter than in heavier nuclei. Since this
effect is observed already at the RPA level, we deduce that
the higher fragmentation for lighter nuclei is produced by
a stronger Landau damping, which is an effect taken into
account both in RPA and in SSRPA models. The importance
of such a single-particle fine-structure effect in lighter nuclei
was already discussed in Refs. [44,51,52]. In particular, the
authors of Refs. [51,52] compared the cases of 40Ca and 208Pb
and illustrated the differences in the damping mechanism
arising for the two nuclei of different mass, the lighter one
being more affected by the single-particle Landau damping.
Although this trend indicating a Landau-damping attenuation
is observed globally also in our results, we notice that, for
the nucleus 40Ca, we do not find any important effect related
to the Landau damping, the RPA width being particularly
small in this case. For this nucleus, the beyond-mean-field
effects coming from the mixing with 2p2h configurations are
particularly important and produce a strong increase of the
width going from RPA to SSRPA.
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FIG. 3. (a) RPA strength distributions calculated for the nucleus
40Ca. (b) Experimental spectrum [44] for the IS GQR for 40Ca. (c)
SSRPA strength distributions calculated for the nucleus 40Ca. For the
cases of the RPA and SSRPA discrete spectra, units are e2 fm4. For
the SSRPA folded case, units are e2 fm4 MeV−1.

IV. DETAILED ANALYSIS FOR 40Ca, 90Zr, 120Sn, AND 208Pb

High-resolution (p, p′) spectra are available for the IS
GQRs of the nuclei 40Ca, 90Zr, 120Sn, and 208Pb. Energy res-
olutions of ∼40 keV could be achieved and the fine structure
of the excitation spectra could be examined.

We present in Fig. 3(c) the SSRPA strength distribution
(violet bars) for the nucleus 40Ca. To better compare it with the
corresponding experimental spectrum (b), a folded curve is
also plotted (black solid line and grey area), obtained by fold-
ing the discrete distribution with a Lorentzian of width equal
to 40 keV, which corresponds to the experimental energy res-
olution. We observe that the folded curve follows well the fine
structure provided by the discrete spectrum. The RPA strength
distribution is also shown in Fig. 3(a). A single significant
peak is found in this case. This is the only case shown in Fig. 1
where the SSRPA centroid energy is slightly underestimated
compared to the experimental value. The RPA centroid is in
better agreement with it. However, the significant advantage
of using the SSRPA model instead of RPA is clearly indicated
by Fig. 3. Our RPA prediction displays a unique dominant
peak, whereas the SSRPA strength distribution is much more
fragmented and extends over a larger energy region where
the experimental data are spread. Figure 4 shows the same
quantities as in Fig. 3 but for the nucleus 90Zr. In this case, the
RPA centroid is larger by more than 1 MeV compared to the
experimental value (Fig. 1). The SSRPA prediction is located
at lower energies, in better agreement with data. Again, a
relevant improvement with respect to RPA is observed in the
strength fragmentation (unique dominant peak in RPA). The
same comments bay be extended to Figs. 5 and 6, where
results for 120Sn and 208Pb are presented.

In general, all the SSRPA centroids are slightly shifted
downwards compared to RPA. In almost all cases (with the
exception of 40Ca) this leads to a better agreement with
experimental data. As far as fragmentation and fine structure
are concerned, we observe a substantial improvement in the
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FIG. 4. Same as in Fig. 3 but for the nucleus 90Zr. The experi-
mental data are this time extracted from Ref. [45]. For the cases of
the RPA and SSRPA discrete spectra, units are e2 fm4. For the SSRPA
folded case, units are e2 fm4 MeV−1.

SSRPA results compared to RPA where, for the four cases
under consideration here, the strength distribution is charac-
terized by a single dominant peak. The SSRPA strength distri-
bution is spread over a much larger window, where the exper-
imental response is located. We observe that the comparison
with the experimental fine structure shows a qualitative global
agreement in the sense that our model provides a fragmented
response in the same energy region. We note, however that, in
all cases, the energy window where the experimental strength
is distributed is broader than the range where the SSRPA
response is located. This is probably related to missing effects
in our theoretical model, such as the inclusion of higher-
order configurations (three-particle–three-hole, etc.) and of
spreading effects induced by the coupling with the continuum,
not taken into account here.

We also notice that our theoretical predictions are qual-
itatively and quantitatively different from those published
in Ref. [44] and compared to the high-precision spectrum
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FIG. 5. Same as in Fig 4 but for the nucleus 120Sn. For the cases
of the RPA and SSRPA discrete spectra, units are e2 fm4. For the
SSRPA folded case, units are e2 fm4 MeV−1.
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FIG. 6. Same as in Fig. 5 but for the nucleus 208Pb. For the cases
of the RPA and SSRPA discrete spectra, units are e2 fm4. For the
SSRPA folded case, units are e2 fm4 MeV−1.

of 40Ca. Those theoretical results (both RPA and SRPA)
are based on a potential derived from a realistic interaction
with the unitary correlation operator method (UCOM) and
provide (i) a more fragmented (than ours) RPA spectrum, (ii)
a strongly overestimated RPA centroid, (iii) a SRPA spectrum
strongly shifted downwards with respect to RPA and not
corrected from instabilities, and (IV) a SRPA spectrum which
is much less dense than ours in the strength distribution. These
differences (apart from the fact that, in any case, no subtrac-
tion procedures are used in SRPA calculations of Ref. [44])
may probably be ascribed to the use of a potential derived
from a realistic interaction (Argonne V18) which generates,
at the Hartree-Fock level, a single-particle spectrum with very
large interlevel spacings. This is the reason why the RPA
centroid is located so high in energy. And this is probably
also the reason why the coupling with 2p2h configurations
in the SRPA model is not able in that case to produce a
dense strength distribution, in spite of the huge number of
elementary 2p2h configurations.

V. STABILITY OF THE RESULTS WITH RESPECT
TO THE ENERGY CUTOFF

The subtraction procedure was not designed to remove
the ultraviolet divergence generated by the use of zero-range
forces in SRPA-based models. Nevertheless, the stability of
the obtained results with respect to the energy cutoff in
the 2p2h configurations was already noticed in Ref. [26].
It turns out that the subtraction of the zero-energy self-
energy removes the divergent contribution leading to cutoff-
independent results.

To further underline the robustness of the SSRPA model
in this respect we show in Fig. 7 an illustrative case. Figure 7
displays the discrete strength distributions obtained for the nu-
cleus 40Ca with four cutoff values in the 2p2h configutations,
from 40 to 70 MeV. We definitely notice that the independence
of the results from the cutoff is achieved. Centroid energies are
stable. For instance, going from 60 to 70 MeV the centroid
energy is shifted from 16.74 to 16.86 MeV. This extremely
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FIG. 7. Strength distributions obtained for the nucleus 40Ca with
four different cutoff values for the 2p2h configurations: 40 (a), 50
(b), 60 (c), and 70 (d) MeV.

weak modification of the centroid, less than 1 %, indicates that
the cutoff dependence induced by the ultraviolet divergence is
removed by the subtractive term.

VI. CONCLUSIONS

IS GQRs are studied using the SSRPA model in the
framework of EDF theories for thirteen spherical-expected

medium-mass and heavy nuclei. The SSRPA predictions for
the centroids are compared with RPA results and experimental
data. The comparison between the SSRPA and RPA widths is
also presented and discussed.

SSRPA centroids are slightly shifted downwards with re-
spect to RPA values and are, globally, in better agreement with
experimental data. SSRPA widths are systematically larger
than the RPA ones, as expected. An attenuation of the single-
particle Landau damping is also observed both in SSRPA and
RPA results going from medium-mass to heavier nuclei.

For 40Ca, 90Zr, 120Sn, and 208Pb the theoretical strength
distributions are compared with the experimental response.
For these nuclei, high-resolution (p, p′) experimental data
are available. A significant improvement of the description
of the spreading width is found in SSRPA compared to RPA
(where a single dominant peak is predicted) and fragmented
strengths are obtained. However, they do not extend over the
whole energy region where the experimental data are located.
This is probably due to missing effects such as higher-order
correlations or continuum coupling. In spite of this, a clear
important improvement with respect to the mean-field based
RPA model is found.
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