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Background: The positions of diffraction minima of Coulomb form factors |FC (q )|2 are important landmarks
for electron scattering experiments, which are sensitive to the nuclear size. For the isotopic chain, previous
studies show the minima of |FC (q )|2 have an outward shift as the target nucleus moves to the proton-rich side.
Purpose: Based on previous studies, the Coulomb form factors of Xe isotopes are further investigated by the
deformed relativistic mean-field (RMF) model and distorted wave Born approximation (DWBA) method.
Method: First, the nuclear charge density distributions are calculated by the constrained calculations of deformed
RMF model. Next, the axially deformed density distributions are expanded into multipole components. With the
charge density multipoles, the Coulomb form factors of Xe isotopes are calculated by the DWBA method.
Results: For the nucleus with deformation, there are differences on the Coulomb form factors calculated from
the spherical and deformed RMF models. For the Xe isotopic chain, the changing trend of |FC (q )|2 from the
deformed RMF model is different from the results from the spherical RMF model at high momentum transfers.
Conclusions: The minima of |FC (q )|2 of isotopes are directly influenced by the nuclear deformation parameter
β2, not just the charge radius RC . For the studies of electron scattering, the nuclear deformation should be taken
into account, especially in high momentum transfers.
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I. INTRODUCTION

As an effective method of studying nuclear electromag-
netic structure, elastic electron scattering is widely used in
nuclear physics [1–6]. Compared with other methods, there
is only electromagnetic force between electron and nuclei,
which makes the method of electron scattering more clear
and precise. In past decades, a large number of experimental
results of stable nuclei have been obtained and analyzed
under the assumption that nuclei are spherically symmetric
[7]. In order to interpret the experimental scattering data,
different theories of elastic electron scattering have been
developed, including the plane-wave Born approximation
(PWBA) [3,4], the eikonal approximation [8], and phase shift
analysis method [9–11]. Among these methods, the eikonal
approximation and phase shift analysis method are described
as distorted-wave Born approximation (DWBA) because the
nuclear Coulomb distortion effects are taken into account.

With the development of radioactive nuclear beam facili-
ties [12], nuclear physicists began to study short-lived nuclei
in 1980s. It became a popular issue because a lot of new
properties were discovered on unstable nuclei [13–20], such
as the neutron halo, the neutron skin, and the bubble nuclei.
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The research of electron scattering on unstable nuclei is very
valuable, which has aroused widespread attention. However, it
is difficult to make targets from unstable nuclei. For this pur-
pose, new-generation radioactive isotope (RI) beam facilities
are built at RIKEN [19–21], and GSI [15,16]. With the new
facilities, more exotic nuclei that is far from the β-stable line
can be studied by electron scattering and the internal structure
of unstable nuclei will be obtained.

To study the Coulomb form factors |FC (q )|2 of exotic
nuclei theoretically, one valid scattering model is combining
the mean-field model and DWBA method. With this scattering
model, the |FC (q )|2 of many nuclei have been calculated to
reflect their nuclear structure [22–28], such as the neutron halo
and the proton halo of light nuclei. Although this method has
achieved considerable success, there is still a problem that the
target nuclei were mainly studied with spherical symmetry,
and the effects of nuclear deformation were neglected. It has
been confirmed experimentally and theoretically that most nu-
clei are deformed [29–32]. The influences of nuclear deforma-
tion on electron scattering are first discussed in Refs. [33,34].
In recent papers, the authors study the electron scattering off
deformed nuclei by the deformed scattering model, which
combines the deformed relativistic mean-field (RMF) model
and DWBA method [35,36]. With this scattering model, the
Coulomb form factors of deformed even-even nuclei and
odd-A nuclei are investigated. Comparing with the Coulomb
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form factors from the spherical scattering model, the results
calculated by the deformed scattering model coincide with
the experimental data better. Therefore, it is reasonable to
investigate the nuclear structure by combining the deformed
RMF model and DWBA method.

In this paper, we further extend the research of elastic
electron scattering off deformed nuclei to the exotic nuclei. In
a recent paper [21], the experimental Coulomb form factors
of 132Xe have been measured. It is the first electron scatter-
ing experiment performed successfully at the self-confining
radioactive-isotope ion target (SCRIT) facility, which solves
the problem of making targets from short-lived nuclei. There-
fore, we choose xenon isotopes as the candidates to theoret-
ically study the elastic electron scattering off exotic nuclei.
In this paper, we first calculate the Coulomb form factors
of 132Xe from the spherical and deformed scattering models,
and the results are compared with the new experimental data.
Second, we discuss the changing trends of |FC (q )|2 of the
Xe isotopic chain, which are calculated by the spherical and
deformed scattering models, respectively. It can be seen that
the changing trend of the diffraction minima of Coulomb form
factors is not only related to the nuclear charge radii RC but
also to the nuclear deformation parameter β2. Finally, the
constrained calculations of the RMF model are calculated to
disentangle the effects of RC and β2 on |FC (q )|2. The rela-
tion between the nuclear deformation β2 and the diffraction
minima of |FC (q )|2 of Xe isotopic chains is discussed for the
first time, which can be used as a useful guide for the coming
experiments on the Xe exotic deformed nuclei.

This paper is divided into four parts: In Sec. II, the theoret-
ical framework of deformed RMF model and DWBA method
is provided. In Sec. III, the numerical results and discussions
are presented. Finally, in Sec. IV, a summary is given.

II. THEORETICAL FRAMEWORK

In this section, the theoretical framework for studying the
Coulomb form factors of deformed nuclei is presented. The
starting point is the effective Lagrange density of the RMF
model [37,38]:
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where the nonlinear ω-ρ coupling term is
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(
g2

ρ �ρ μ �ρμ

)(
g2
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)
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Applying the effective Lagrange density to the Euler-
Lagrange equation, the motion equations of nucleons are

obtained. For axially deformed nuclei, the single-particle
wave functions can be described by the series expansion of
eigenfunctions of the axially deformed harmonic-oscillator
potential in cylindrical coordinates. On the basis of the no-
sea approximation and mean-field approximation, the Dirac
equation of nucleons can be written as

{−iα · ∇ + β[M − S(r)] + U (r)}ψi (r) = εiψi (r), (3)

where S(r) is the scalar potential and U (r) is the vector po-
tential. Using the same method, the Klein-Gordon equations
for mesons are obtained. After many iterative computations,
the precise density distributions of proton and neutron can be
obtained. Neglecting any effect from the charge distribution
inside a finite-size neutron, the nuclear charge density can be
derived by folding the point proton density with the singe-
proton charge distribution [39],

ρC (r) =
∫

ρp(r′)ρp(|r − r′|)dr′, (4)

where ρp(r ) = Q3

8π
e−Qr with Q = 842.61 MeV.

The axially deformed charge density ρC (r, z) can be ex-
panded by the Legendre function [40]:

ρC (r, z) =
∑

k

ρk (R)Pk (cosθ )

= ρ0(R) + ρ2(R)P2(cosθ ) + · · · , (5)

where the multipole components are

ρk (R) = 2k + 1

2

∫ 1

−1
Pk (cosθ ) ρ(r, z) d(cosθ ). (6)

With the charge density multipoles, the Coulomb form
factors can be investigated. The derivation of this formula is
under the PWBA method, which is convenient for studying the
effects of each density multipole on Coulomb form factors. In
the PWBA method, the relationship between charge density
and Coulomb form factors is

FC (q ) = 1

Z

∫
ρC (r)eiq·r dr. (7)

Squaring FC (q ), the Coulomb form factors can be expanded
into several Coulomb multipoles [34]:

|FC (q )|2 =
2J∑

λ=0,2,...

|FCλ(q )|2. (8)

Owing to the elastic electron scattering, the initial and final
angular momentums J of the ground states of target nuclei
are the same. The Coulomb multipoles FCλ are related to the
intrinsic multipole FCλ,

FCλ = 〈Jkλ0|JλJk〉FCλ, (9)

where the k represents the total spin projection along the
nuclear symmetry axis. From this equation, the weights of
intrinsic multipoles to Coulomb multipoles are given. For
λ = 0, FC0 is considered as the contributions of the spherical
charge density distributions:

FC0 = 1

Z

∫
d3rρ0(r )j0(qr ). (10)
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And for λ � 2, FCλ represent the contributions of the de-
formed charge density multipoles:

FCλ = 4π

Z
√

2λ + 1

∫
r2ρλ(r )jλ(qr )dr. (11)

The results of PWBA method are not accurate because
the distorted effects on the electron waves are not taken
into account. In the following, we study the C0 multipole
of Eq. (8) by solving the Dirac equation with the spherical
Coulomb potential arising from ρ0(r ):

[α · p + βm + V (r )]�(r) = E�(r). (12)

The wave function �(r) can be expanded into the upper and
lower spherical spinors with definite angular momentum. At
large distances, the upper and lower spinors of the radial wave
function is determined with the phase shift δ with orbital
angular momentum l. By solving the Dirac equation (12),
the spin-up δ+

l and spin-down δ−
l can be calculated. With

the phase shifts, the direct scattering amplitude and spin-flip
scattering amplitude can be written as

f (θ ) = 1

2ik

∞∑
l=0

[(l + 1)(e2iδ+
l − 1) + (e2iδ−

l − 1)]Pl (cos θ ),

(13a)

g(θ ) = 1

2ik

∞∑
l=0

[e2iδ−
l − e2iδ+

l ]P 1
l (cos θ ), (13b)

where Pl and P 1
l are Legendre and associated Legendre

functions, respectively. With the scattering amplitude, the C0
multipole can be obtained,

FC0(q ) = (|f (θ )|2 + |g(θ )|2)/σMott, (14)

where σMott is the Mott scattering cross section.
For most nuclei, deformation is not very large, and the

spherical multipole C0 is the main part of the |FC (q )|2. The
higher multipoles Cλ, which are several orders magnitude
smaller than C0 multipole, can only influence the Coulomb
form factors at the diffraction minima. Therefore, the C0
multipole is calculated by DWBA method and the higher
multipoles Cλ are calculated by PWBA method. According to
Eq. (8), for the elastic 0+ → 0+ scattering from even-even Xe
isotopes, only the C0 multipole is contained in the |FC (q )|2.

III. NUMERICAL RESULTS AND DISCUSSION

With the formulas of Sec. II, the Coulomb form factors
of Xe isotopes are investigated in this section, where the
corresponding charge density distributions are calculated by
the spherical and deformed RMF models, respectively. First,
the theoretical |FC (q )|2 of 132Xe from both the spherical and
deformed scattering models are calculated and compared with
the experimental data. Second, we investigate the changing
trends of |FC (q )|2 for Xe isotopic chain from the deformed
scattering model. Finally, the results from the constrained
calculations are further discussed.

In Table I, we present the theoretical binding energies per
nucleon B/A (MeV), charge root-mean-square (rms) radii RC

TABLE I. Theoretical binding energies per nucleon B/A (MeV),
charge rms radii RC (fm), and deformation parameters β2 calculated
by the spherical and deformed RMF models with the NL3∗ parameter
set. The experimental data are taken from Refs. [30,41,42].

B/A(MeV) RC(fm) β2

Sphe. Defo. Expt. Sphe. Defo. Expt. Sphe. Defo. Expt.

126Xe 8.33 8.42 8.44 4.75 4.78 4.77 0.00 0.20 0.19
128Xe 8.34 8.43 8.44 4.76 4.78 4.78 0.00 0.19 0.18
130Xe 8.35 8.43 8.44 4.77 4.79 4.78 0.00 0.16 0.17
132Xe 8.36 8.42 8.43 4.78 4.79 4.79 0.00 0.12 0.14
134Xe 8.36 8.41 8.41 4.79 4.80 4.79 0.00 0.08 0.12
136Xe 8.36 8.40 8.40 4.80 4.80 4.80 0.00 − 0.02 0.12
138Xe 8.28 8.34 8.34 4.82 4.83 4.83 0.00 0.07
140Xe 8.21 8.28 8.29 4.84 4.86 4.86 0.00 0.14 0.11
142Xe 8.14 8.22 8.23 4.87 4.88 4.88 0.00 0.18

(fm), and deformation parameters β2 of Xe isotopes, which
are calculated by the spherical and deformed RMF models.
The NL3∗ parameter set [43] is used during the calculations.
The experimental data are also given for comparison. The
charge rms radii RC are calculated neglecting the effects of
neutrons in this paper. Considering the corrections on RC , the
correction equation can be written as [44–46]

R2
C = R2

p + r2
p + N

Z
r2
n + 3

4M2
+ 〈r2〉so, (15)

where the first two terms represent the effects of the protons,
which have already been considered from Eq. (4). The term
r2
n = −0.1161(22) fm2 is the mean-square charge radius of

the neutron. The third term 3
4M2 = 0.033 fm2 is the Darwin-

Foldy term. The 〈r2〉so represents the spin-orbit correction,
which has tiny influences [46,47]. There are no obvious
changes on RC when the last three terms are taken into
account in the calculation. Therefore, the charge rms radii RC

in this paper are calculated without corrections.
In Fig. 1, the B/A and RC are plotted as functions of

the mass number A. Combining the results in Table I and
Fig. 1, it can be seen that for the B/A and RC , the spherical
and deformed results both agree with the experimental data,
and the results from the deformed RMF model coincide with
the experimental data better. The deformed RC are larger
than spherical one, which is due to the relation between the

FIG. 1. Binding energies per nucleon B/A (MeV) and charge
rms radii RC (fm) for Xe isotopes calculated by the spherical and de-
formed RMF models with the NL3∗ parameter set. The experimental
data are taken from Refs. [41,42].
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FIG. 2. (a) Charge density multipoles of 132Xe from the de-
formed RMF model, which are calculated by Eqs. (5) and (6).
(b) Comparison of spherical part ρ0(r ) from the deformed RMF
model with charge density distributions ρ(r ) from the spherical RMF
model. The spherical and deformed RMF models are both calculated
with the NL3∗ parameter set.

spherical and deformed radius [48]

R2 = R2
sphe

(
1 + 5

4π
β2

2

)
. (16)

The Rsphe represents the spherical radius, which is propor-
tional to A1/3. Compared with the spherical radius Rsphe, the
deformed radius with β2 
= 0 is larger, which is same as the
results in Table I. The experimental quadrupole deformations
β2 in Table I are extracted from B(E2) ↑ measurements,
which are related to a stable quadrupole deformation in well-
deformed nuclei. For 126–132Xe in Table I, whose β2 are larger
than 0.12, these comparisons are acceptable. For 134–138Xe,
which have small deformations, the comparisons of theoreti-
cal results with experimental data might be questionable. We
further compare our results with other theoretical calculations,
such as the finite-range droplet macroscopic model [29]. The
results from the energy-deformation curves of RMF model
coincide with other theoretical results. Therefore, the theoret-
ical β2 of 134–138Xe in Table I with small deformations might
be reliable. Combining Fig. 1 and Table I, it can be seen
that the deformed RMF model can better describe the ground
properties of Xe isotopes compared with the spherical RMF
model.

The charge rms radii RC in Table I can reflect nu-
clear ground properties of Xe isotopes, but it is not pre-
cise enough, because different charge distributions can cor-
respond to the same RC . However, the Coulomb form factor
is unique for every charge distribution. Therefore, compared
with RC , the |FC (q )|2 can provide a more detailed description
for the electromagnetic properties of nuclei. In the following,
the Coulomb form factors of Xe isotopes are further studied
by the DWBA method.

A. Coulomb form factors of 132Xe

We first investigate the theoretical Coulomb form factors
of 132Xe from both the spherical and deformed scattering
models, and compare them with the experimental data. By de-
composing the charge density from the deformed RMF model
with Eqs. (5) and (6), the multipole moment charge density
distributions of 132Xe are obtained and presented in Fig. 2(a),
where the ρ0(r ) and ρ2(r ) represent the spherical distribution
and quadrupole distribution, respectively. It can be seen that

FIG. 3. Nuclear Coulomb form factors of 132Xe calculated by
DWBA method. The corresponding charge density distributions are
obtained from the spherical and deformed RMF models with the
NL3∗ parameter set. The experimental data are taken from Refs. [21].

for deformed charge density distributions, the values of the
higher multipoles decrease rapidly with the multipole order
k increasing. For k > 2, the multipole distributions ρk can
be neglected. To compare the charge density distributions
from the spherical and deformed RMF models, the spherical
parts ρ0(r ) from the deformed RMF model and ρ(r ) from
the spherical RMF model are given in Fig. 2(b). There is a
tiny difference between the spherical parts ρ0(r ) and ρ(r ) in
Fig. 2(b), which can be reflected in the Coulomb form factors
at the higher momentum transfer region.

With the charge density distributions in Figs. 2(a) and 2(b),
the Coulomb form factors |FC (q )|2 of 132Xe are calculated
and presented in Fig. 3. For comparison, the latest experimen-
tal data [21] are also given. In Fig. 3, it can be seen that the
|FC (q )|2 from the spherical and deformed scattering models
both agree with the experimental data well. At the higher mo-
mentum transfer region (q > 1.25 fm−1), the deformed and
spherical |FC (q )|2 have a deviation. For the even-even nucleus
132Xe, the |FC (q )|2 from the deformed scattering method only
has C0 multipole with Eq. (8), which is related to the ρ0(r ) in
Fig. 2(a). In Fig. 2(b), there is a tiny difference between the
ρ0(r ) and ρ(r ), which results in the corresponding difference
of |FC (q )|2 in Fig. 3.

B. Changing trends of |FC (q )|2 for the Xe isotopic chain

In this part, the changing trend of Coulomb form factors
|FC (q )|2 of the Xe isotopic chain is systematically inves-
tigated with the deformed scattering method. The charge
density distributions of 126Xe, 128Xe, and 130Xe are calculated
and presented in Fig. 4. The left three panels are charge
density multipoles from the deformed RMF model. The right
three panels are the comparisons of spherical parts ρ0(r ) from
the deformed RMF model with charge density distributions
ρ(r ) from the spherical RMF model. Owing to the existence
of ρ2(r ), there are deviations between ρ0(r ) and ρ(r ). The
deviations can be reflected in the changing trend of |FC (q )|2
at the high momentum transfer region.

With the charge density distributions of the spherical RMF
model in Fig. 4, we present the |FC (q )|2 of 126Xe, 128Xe, and
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FIG. 4. Charge density distributions of even-even Xe isotopes
(A = 126, 128, 130) from the spherical and deformed RMF models
with NL3∗ parameter set. The left three panels are the charge density
multipoles from the deformed RMF model. The right three panels
are the comparisons of spherical parts ρ0(r ) from the deformed RMF
model with charge density distributions ρ(r ) from the spherical RMF
model. The deformation parameters β2 from the deformed
RMF model are also given.

130Xe from the spherical scattering method in Fig. 5, and the
arrow shows the direction of the mass number A increasing.
It can be seen that the |FC (q )|2 of 126Xe, 128Xe, and 130Xe
in Fig. 5 are close to each other. With the mass number A
increasing, the diffraction minima of |FC (q )|2 have an inward
shift, which is the same as the studies in previous papers
[23–25].

In Fig. 6, we further present the |FC (q )|2 of 126Xe, 128Xe,
and 130Xe from the deformed scattering method. The corre-
sponding RC and β2 are also given. The arrows show the
directions of the mass number A and deformation parameter

FIG. 5. The changing trend of Coulomb form factors of 126Xe,
128Xe, and 130Xe, which are calculated by DWBA method. The corre-
sponding charge density distributions are obtained from the spherical
RMF model. The arrow shows the direction of the mass number A

increasing. The range of the momentum transfer in panel (a) is q =
2.6–3.6 fm−1. The range of the square frame (q = 3.4–3.6 fm−1) in
panel (a) is enlarged in panel (b).

FIG. 6. The changing trend of Coulomb form factors of 126Xe,
128Xe, and 130Xe, which are calculated by DWBA method. The
corresponding charge density distributions are obtained from the
deformed RMF model. The arrows show the directions of the mass
number A and deformation parameter β2 increasing.

β2 increasing. Compared with the |FC (q )|2 from the spherical
scattering method in Fig. 5, the diffraction minima of |FC (q )|2
of 126Xe, 128Xe, and 130Xe from the deformed scattering
method locate at different momentum transfers q, which is
due to the nuclear deformation. Besides, in Fig. 6, with the
mass number A increasing, the diffraction minima of |FC (q )|2
have an outward shift at the high momentum transfer region,
which is opposite from the results from the spherical scatter-
ing method in Fig. 5. With the values of β2 increasing, the
diffraction minima of |FC (q )|2 have an inward shift in Fig. 6.
The nuclear deformation has a significant influence on the
changing trend of |FC (q )|2 of Xe isotopic chain. Therefore,
the |FC (q )|2 are not only related to the charge radius RC but
also to the deformation parameter β2. This conclusion can
be used to guide the coming experiments on elastic electron
scattering off exotic nuclei.

For the electron scattering experiments of Xe isotopes in
the SCRIT of RIKEN, it is said in Refs. [49,50] that the
luminosity was estimated to be of order 1025 cm−2 s−1 for
the present RI rate of 107 atoms s−1, which is insufficient.
However, the electron-beam power will be upgraded by in-
creasing the electron gun current. The RI rate is increased to
the order of 108 atoms s−1 for Xe isotopes, and the luminosity
exceeds 1026 cm−2 s−1 [49,50]. Under these conditions, the
electron scattering by Xe isotopes becomes feasible. However,
the effects on |FC (q )|2 from the nuclear deformation in Fig. 6
mainly appear at high momentum transfers, which are small
and difficult to be observed experimentally at present. If the
electron scattering experiments at high momentum transfers
are carried out in the future, the effects from deformation in
Fig. 6 can be tested.

C. Disentangle the effects of RC and β2 on |FC (q )|2

From Figs. 5 and 6, one can see that the structure of the
Coulomb form factor |FC (q )|2 is not only affected by the
charge rms radius RC , but also by the deformation parameter
β2. In Fig. 6, the diffraction minima have an outward shift with
the RC increasing and β2 decreasing. However, it is not clear
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FIG. 7. Binding energies B of 132Xe as a function of the deforma-
tion parameter β2 from the constrained RMF calculations with NL3∗

parameter set.

what the dominant effect will be. They are quantities closely
related and their combined effect is not easy to disentangle. To
investigate the effects of RC and β2 on |FC (q )|2 conveniently,
we use the PWBA method to calculate the diffraction minima
of |FC (q )|2 of 132Xe. The corresponding ρC (r) of 132Xe are
computed by the constrained calculations of RMF model with
the NL3∗ parameter set.

The binding energies B of 132Xe from the constrained
calculations of RMF model are plotted as a function of the
deformation parameter β2 in Fig. 7. The minimum of binding
energy is located at β2 = 0.12, where the binding energy per
nucleon is same as the result in Table I. We choose the results
constrained with β2 = 0.0 and 0.4 to discuss the effects of
RC and β2 on |FC (q )|2. The charge density multipoles of
132Xe from the constrained calculations (β2 = 0.0 and 0.4)
are presented in Fig. 8. The corresponding |FC (q )|2 of 132Xe
calculated by PWBA method are also presented in Fig. 9.

With the constrained RMF calculations, we can study the
relationship between β2 and |FC (q )|2. In previous studies
[45,51], the charge rms radius RC and the first diffraction
minimum of |FC (q )|2 are found to be inversely proportional.
In Fig. 9, the diffraction minima of |FC (q )|2 with β2 =
0.0 and 0.4 locate at the same positions in low momentum
transfers. With the increase of q, the diffraction minima of
|FC (q )|2 with β2 = 0.4 have significant outward shifts at the
high momentum transfer region; however, its RC is larger than
that with β2 = 0.0. From Fig. 9, one can see that the nuclear
deformation can also affect the nuclear Coulomb form factor

FIG. 8. Charge density multipoles of 132Xe with β2 = 0.0 and
0.4 from the constrained RMF calculations. The constrained RMF
calculations are computed with the NL3∗ parameter set.

FIG. 9. The |FC (q )|2 of 132Xe for β2 = 0.0 and 0.4 calculated by
PWBA method, where the corresponding ρC (r) are obtained by the
constrained RMF calculations with the NL3∗ parameter set.

|FC (q )|2. Therefore, the relationship between |FC (q )|2 and
RC needs to be further improved by taking into account the
deformation parameter β2.

IV. SUMMARY

The elastic electron scattering of Xe isotopes are inves-
tigated systematically by the deformed scattering model in
this paper. By combining the deformed RMF model and
DWBA method, this paper aims to extend the research of
elastic electron scattering off deformed nuclei to the region of
exotic isotopes. For even-even Xe isotopes, there is only C0
multipole in their Coulomb form factors, which is related to
the spherical part ρ0(r ) from the deformed RMF model. The
quadrupole distribution ρ2(r ) leads to the difference between
ρ(r ) from the spherical RMF model and ρ0(r ). This difference
can be reflected in the Coulomb form factors.

The investigations are divided into three parts. First, the
theoretical Coulomb form factors |FC (q )|2 of 132Xe are calcu-
lated and compared with the experimental data. The |FC (q )|2
from the spherical and deformed scattering model both coin-
cide with the experimental data well. Second, we present the
changing trends of |FC (q )|2 of 126Xe, 128Xe, and 130Xe, where
the corresponding charge density distributions are calculated
by the spherical and deformed RMF models, respectively.
With the mass number A increasing, the diffraction minima
of |FC (q )|2 from the deformed scattering model have an
outward shift at the high momentum transfer region, which are
different from the results from the spherical scattering model.
For studies of electron scattering, the nuclear deformation
cannot be neglected, though its effects of deformation on
|FC (q )|2 are not large and hard to be observed experimentally
at present. Finally, we further disentangle the effects of RC

and β2 on |FC (q )|2 with the constrained RMF calculations.
For the same nucleus, the constrained RMF calculations with
larger β2 give the larger RC ; however, the corresponding
|FC (q )|2 have outward shifts at the high momentum transfer
region. From the constrained RMF calculations with different
β2, it is found that the |FC (q )|2 are not only related to the RC

but also to the β2. The studies of this paper can be served as a

044310-6



ELASTIC ELECTRON SCATTERING FORM FACTORS OF … PHYSICAL REVIEW C 98, 044310 (2018)

useful guide for the coming experiments on electron scattering
off the exotic deformed nuclei.
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