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The Tohsaki-Horiuchi-Schuck-Röpke (THSR) wave function has been successfully used for the studies of
gaslike nature of α clusters in various nuclei, including the so-called Hoyle state of 12C and four α states of 16O.
In standard α cluster models, however, each α cluster wave function has spin zero because of its spatial symmetry
and antisymmetrization effect. Thus the noncentral interactions do not contribute, and this situation is the same
in the THSR wave function. In this work, the spin-orbit contribution, which is found to be quite important
at short α-α distances, is taken into account in the THSR wave function by combing it with antisymmetrized
quasicluster model (AQCM). The application to 12C is presented. The multi-integration in the original THSR
wave function is carried out by using a Monte Carlo technique, which is called the Monte Carlo THSR wave
function. For the nucleon-nucleon interaction, the Tohsaki interaction, which contains finite-range three-body
terms and simultaneously reproduces the saturation properties of nuclear systems, the α-α scattering phase shift,
and the size and binding energy of 4He, is adopted.
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I. INTRODUCTION

The Tohsaki-Horiuchi-Schuck-Röpke (THSR) wave func-
tion has been widely used for the studies of gaslike states
of α clusters, including the so-called Hoyle state of 12C and
four α states of 16O [1,2]. In normal α cluster models, each α
cluster is described by Gaussian-type wave function, and the
positions of the α clusters are specified by Gaussian center
parameters. In the THSR framework, all of these Gaussian
center parameters are integrated out with a weight function,
which enables us to describe well-extended cluster states.
Also, by choosing a small range for the weight function, the
lowest configuration of the harmonic oscillator shell model is
described. Recently, a “container picture” has been proposed
for the description of nonlocalized clusters [3], and also the
framework has been applied even to nuclei such as 9Be, etc.,
which do not belong to 4N nuclei [4].

One of the problems of the traditional cluster models is
that the noncentral interactions, especially the spin-orbit in-
teraction, which is quite important in explaining the observed
magic numbers, do not contribute; they work neither inside
α clusters nor between α clusters. In cluster models, each α
cluster is often defined as a simple (0s)4 configuration at some
spatially localized point. In this case, the antisymmetriza-
tion effect automatically makes the α cluster a spin singlet
system where noncentral interactions do not contribute. To
include the spin-orbit contribution starting with the cluster
model, we proposed the antisymmetrized quasicluster model
(AQCM) [5–14]. This method allows us to smoothly trans-
form α cluster model wave functions to jj -coupling shell
model ones, and we call the clusters that feel the spin-orbit
effect after this treatment quasiclusters. In AQCM, we have

only two parameters: R representing the distance between α
clusters and � characterizing the transition of α cluster(s)
to quasicluster(s). It has been known that the conventional
α cluster models cover the model space of closure of major
shells (N = 2, N = 8, N = 20, etc.) of the jj -coupling shell
model. In addition, we have shown that the subclosure con-
figurations of the jj -coupling shell model, p3/2 (N = 6), d5/2

(N = 14), f7/2 (N = 28), and g9/2 (N = 50) that arise from
the one-body spin-orbit interaction of the mean-field can be
reasonably described by our AQCM [11].

For such calculations, which include both cluster and
shell features, we inevitably need a reliable nucleon-nucleon
interaction, not cluster-cluster interaction. It is quite well
known that the central part of the interaction should have
proper density dependence in order to satisfy the saturation
property of nuclear systems. If we just introduce a sim-
ple two-body interaction, for instance, the Volkov interac-
tion [15], which has been widely used in cluster studies,
we have to choose a proper Majorana exchange parameter
for each nucleus, and consistent description of two differ-
ent nuclei with the same Hamiltonian becomes almost im-
possible. Adding a zero-range three-body interaction term
helps to get better agreement with experiments; however, the
radius and binding energy of free 4He (α cluster) are not
well reproduced [16]. The Tohsaki interaction, which has
finite range three-body terms, has many advantages [5,17,18].
Although this is a phenomenological interaction, it gives
reasonable size and binding energy of the α cluster, and
α-α scattering phase shift is reproduced, while the satura-
tion properties of nuclear matter are also reproduced rather
sufficiently.
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In this paper, we combine the THSR wave function and the
idea of AQCM. It is worthwhile to show the applicability of
the combined method by numerical calculations. The THSR
wave function contains the multi-integration over the Gaus-
sian center parameters of α clusters, and this procedure can be
numerically performed using a Monte Carlo technique called
the Monte Carlo THSR wave function [19–23]. In the present
study, we calculate 12C (three α) as the first step. The ground
state of 12C corresponds to the subclosure configuration of
jj -coupling shell model, and breaking α clusters is quite
important. Recently various kinds of microscopic approaches
have shown the importance of the mixing of shell and cluster
components, and transition strengths, α-decay widths, and
scattering phenomena have been discussed [24–35]. Some
of these approaches are modern ab initio ones and even the
tensor and short-range correlations are included. Compared
with these, our approach is rather phenomenological, but here
we examine the natural extension of the THSR framework and
include the spin-orbit correlation.

II. FRAMEWORK

In this section, we summarize the essence of the THSR
wave function and AQCM, and the combination of these two
is newly introduced.

A. Brink model

The THSR wave function is based on the Brink model [36].
Each single-particle wave function of the Brink model is
described by a Gaussian,

φij =
(

2ν

π

) 3
4

exp[−ν(rj − Ri )
2]χj , (1)

where the Gaussian center parameter Ri shows the expecta-
tion value of the position of the ith α cluster. The index j
specifies four nucleons in this ith α cluster, and χj represents
the spin isospin part of the single-particle wave function. The
size parameter ν is chosen to be 0.25 fm−2, which reproduces
the observed radius of 4He.

The Slater determinant of the Brink model is constructed
from these single-particle wave functions by antisymmetriz-
ing them. Here, four single-particle wave functions with dif-
ferent spin and isospin sharing a common Gaussian center
parameter correspond to an α cluster:

�SD (R1, R2, . . . , RN ) = A{(φ11φ12φ13φ14)(φ21φ22φ23φ24)

· · · (φN1φN2φN3φN4)}. (2)

This is the case in which we have N α clusters and the mass
number A is equal to A = 4N .

B. THSR wave function

The idea of the THSR wave function [1] is that Gaussian
center parameters {Ri} are integrated over infinite space with
the weight functions {exp[−R2

i /σ
2]}. Thus the THSR wave

function �THSR is expressed using �SD in Eq. (2) as

�THSR =
∫

d R1d R2 · · · d RN �SD (R1, R2, . . . , RN )

× exp
[−(

R2
1 + R2

2 + · · · + R2
N

)
/σ 2]. (3)

Here σ is a control parameter, which governs the spatial
extension of the system. When σ is larger than 1/ν, the wave
function describes gaslike states of α clusters, and the lowest
configuration of the harmonic oscillator shell model can be
realized at the limit of σ → 0.

C. Monte Carlo THSR

In some cases of the original THSR wave function, the
analytic formula for the matrix elements for the Hamiltonian
is already obtained. However for heavier nuclei, it is useful to
introduce a Monte Carlo technique for the multi-integration in
the original THSR wave function [19–23]. We call this wave
function (�M-THSR) Monte Carlo THSR:

�M-THSR =
Nmax∑

k

P Jπ

�SD

(
Rk

1, Rk
2, . . . , Rk

N

)
. (4)

Here the multi-integration over the Gaussian center param-
eters in Eq. (3) is replaced with a summation of different
Slater determinants. The Slater determinants superposed have
different values of Gaussian center parameters {Rk

i } for N α
clusters, where k is a number to specify the set of the Gaussian
center parameters for the kth Slater determinant. The value of
the Gaussian center parameters are randomly generated, but
the distribution of the absolute value |Rk

i | for the ith α cluster
is introduced to be proportional to exp[−(Rk

i /σ )2], and its
angular part is isotropically generated. Thus the information
of the weight function in the original THSR wave function
is absorbed in the distribution of randomly generated {Rk

i }
values. The value of Nmax shows the number of Slater de-
terminants, which are superposed. The limit of Nmax → ∞
coincides with the original THSR wave function; however,
we approximate it with a finite number. In Eq. (4), P Jπ

shows the projection onto the eigenstates of parity and angular
momentum, and this is numerically performed.

D. AQCM

In the conventional cluster models, there is no spin-orbit
effect for the α clusters. Thus they are changed into quasiclus-
ters based on AQCM [5–14]. According to AQCM, when the
original position of one of the α clusters (the value of Gaus-
sian center parameter) is R, the Gaussian center parameter of
the lth nucleon in this cluster is transformed by adding the
imaginary part as

ζ l = R + i�espin
l × R, (5)

where espin
l is a unit vector for the intrinsic-spin orientation

of the lth nucleon in this α cluster. For the imaginary part
we introduce �, which is a real dimensionless parameter.
After this transformation, this α cluster is called a quasicluster.
The imaginary part, which is added, depends on the spin
direction of each nucleon, thus the α cluster is no longer a spin
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singlet system. The spin-orbit contribution can be taken into
account by this transformation, and the spin-orbit contribution
is attractive (negative in energy) when � is positive. We have
previously shown that the lowest configurations of the jj -
coupling shell model can be achieved by � = 1 and R → 0.

E. Monte Carlo THSR + AQCM

We propose a new framework by combining Monte Carlo
THSR and AQCM, which is applied to 12C. For 12C, we
introduce AQCM for all the three α clusters. Here the intrinsic
spins of the nucleons in the three α clusters are introduced to
have threefold symmetry. This is needed to include the low-
est configuration of the jj -coupling shell model (subclosure
configuration of p3/2) within a single Slater determinant. In
the first α cluster, each intrinsic-spin of the four nucleons is
spin-up (z direction) for a proton and a neutron and spin-down
(−z direction) for a proton and a neutron. The intrinsic-spin
orientations of the four nucleons in the second and third α
clusters are introduced by rotating the ones of the first α
cluster by 2π/3 and 4π/3 radians, respectively. These spin
orientations of the twelve nucleons are fixed in all Slater de-
terminants before angular momentum projection. While fixing
the intrinsic-spin orientations, at first we randomly generate
the center parameters of three α clusters based on Monte
Carlo TSHR and shift their sum to the origin,

∑
i

�Rk
i = 0.

Finally, imaginary parts of the Gaussian center parameters
are introduced based on AQCM as in Eq. (5), and angular
momentum projection and superposition of different Slater
determinants follow. Here the second step of shifting the
center of mass to the origin is quite important; the purpose
of AQCM treatment is to describe the single-particle motion
of each nucleon around the origin and take into account the
spin-orbit contribution, thus the center of the nucleus has
to coincide with the origin of the coordinate system before
giving the imaginary part.

F. Hamiltonian

The Hamiltonian (Ĥ ) consists of kinetic energy (T̂ ) and
potential energy (V̂ ) terms, and the kinetic energy term is
described as one-body operator,

T̂ =
∑

i

t̂i − Tcm, (6)

and the center of mass kinetic energy (Tcm), which is constant
given by the size parameter ν, is subtracted. The potential
energy has central, spin-orbit, and Coulomb parts. For the
central part, we introduce the Tohsaki interaction [17], which
has finite range three-body terms in addition to the two-
body nucleon-nucleon interaction terms. This interaction is
designed to reproduce both the saturation property and the
scattering phase shift of two α clusters. We use the F1 pa-
rameter set [17] in the present analysis, which was used in the
original THSR work for 12C.

For the spin-orbit part (V̂so), the spin-orbit term of G3RS
[37], which is a realistic interaction originally determined
to reproduce the nucleon-nucleon scattering phase shift, is
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FIG. 1. The 0+ energy convergence of 12C [three α’s] as a
function of the number of Slater determinants superposed [Nmax

in Eq. (4)] calculated with the Monte Carlo THSR framework.
The α clusters are not broken [� = 0 in Eq. (5)], and the solid,
dotted, short-dashed, dashed, and dash-dotted lines correspond to
σ = 1, 2, 3, 4, and 5 fm in Eq. (3), respectively. The dashed line
at −82.50 MeV shows the calculated three-α threshold energy. The
solid square at −92.2 MeV and the solid triangle at −84.9 MeV show
the experimental values for energies of the ground state and three-α
threshold, respectively.

adopted:

V̂so =
∑
i<j

Vls

(
e−d1(r i−rj )2 − e−d2(r i−rj )2)

P (3O )Lij · Sij ,

(7)

where d1 = 5.0 fm−2, d2 = 2.778 fm−2, and P (3O ) is a pro-
jection operator onto a triplet odd state. The operator Lij

stands for the angular momentum for the relative coordinate
(r i − rj ), and Sij is the total spin (Sij = Si + Sj ). The
strength, Vls , has been determined to reproduce the 4He + n
scattering phase shift [38], and Vls = 1600–2000 MeV has
been suggested. Here we employ Vls = 1800 MeV, which has
been tested in our previous works for 12C [5], although there
the Majorana parameter for the three-body (central) inter-
action is slightly modified to reproduce the binding energy
of 16O.

III. RESULTS AND DISCUSSIONS

We start the Monte Carlo THSR calculation with the α
nonbreaking case, which is nothing but the superposition of
Brink-type α cluster model wave functions. In the AQCM
framework, this situation corresponds to setting � in Eq. (5)
to zero. In Fig. 1, the 0+ energy convergence of 12C (three α
clusters) is shown as a function of the number of Slater de-
terminants superposed in the Monte Carlo THSR framework
[Nmax in Eq. (4)]. The solid, dotted, short-dashed, dashed,
and dash-dotted lines correspond to σ = 1, 2, 3, 4, and 5 fm
in Eq. (3), respectively. The dashed line at −82.50 MeV
shows the three-α threshold energy. The solid square at
−92.2 MeV and the solid triangle at −84.9 MeV show the ex-
perimental values for energies of the ground state and three-α
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FIG. 2. The convergence of the root mean square (rms) matter
radius for the 0+ state of 12C as a function of the number of Slater
determinants superposed [Nmax in Eq. (4)] calculated with the Monte
Carlo THSR framework. The α clusters are not broken [� in Eq. (5)
is zero], and the solid, dotted, short-dashed, dashed, and dash-dotted
lines correspond to σ = 1, 2, 3, 4, and 5 fm in Eq. (3), respectively.
The solid circle at 2.35 fm shows the experimental value for the
ground state deduced in Ref. [39].

threshold, respectively. This is a Monte Carlo calculation
and not variational one, thus the energy is not always going
down; the energy sometimes goes up with increasing number
of the basis states. Nevertheless, the energy converges at
the limit of Nmax → ∞, but here we can confirm that it
is well converged with 1000 basis states [Nmax = 1000 in
Eq. (4)]. In this calculation, the radial parts of the Gaussian
center parameters {Ri}k are generated by the random numbers
{ri}, whose distribution is proportional to exp[−r2

i /σ 2], and
the angular part of each Ri is isotropically generated using
random numbers. It is found that the converged energy of
the small-σ case, σ = 1 fm (solid line), is above the three-α
threshold. This is because the contribution of the spin-orbit
interaction, which is important in inner regions, is missing
within the � = 0 wave functions. Other σ values give the
energies below the threshold, and the dotted line (σ = 2 fm)
gives the lowest energy. With increasing σ value, the energy
again goes up, and the energy of σ = 5 fm (dash-dotted line)
is close to the threshold.

Using these wave functions, the convergence of the root
mean square (rms) matter radius for the 0+ states of 12C is
shown in Fig. 2. The basis states are the same as those in
Fig. 1, the wave functions are � = 0 (Brink α cluster model),
and the types of the lines are also the same; the solid, dotted,
short-dashed, dashed, and dash-dotted lines correspond to
σ = 1, 2, 3, 4 and 5 fm in Eq. (3), respectively. Experimentally
the rms matter radius of 12C is obtained as 2.35(2) fm in
Ref. [39], consistent with the value deduced from the electron
scattering (solid circle in Fig. 2). The trial state, which gives
the lowest energy within � = 0, is σ = 1 fm in the case of
this interaction, and this states gives a slightly larger rms
radius than the experiment. However the energy of the trial
state as a function of σ changes drastically if we incorporate
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FIG. 3. The 0+ energy curve of 12C as a function of σ defined in
Eq. (3). The dotted line is for � = 0. The solid line is obtained when
� is taken as a variational parameter to minimize the energy. The
values in the parentheses show the optimal � values for the cases of
σ = 1.0, 2.0, and 3.0 fm. The dashed line at −82.50 MeV shows the
calculated three-α threshold energy. The solid square at −92.2 MeV
and the solid triangle at −84.9 MeV show the experimental values
for energies of the ground state and three-α threshold, respectively.

the spin-orbit effect as we discuss below. For the second
0+ state known as the Hoyle state, the large rms radius of
∼4.0 fm has been extensively discussed, although this state
is a resonance state slightly above the threshold and the
experimental determination is difficult. In the present case, the
σ = 5 fm result (dash-dotted line) gives an energy around the
threshold and an rms radius of 4.18 fm.

Then we take finite � values, which allows us to take
into account the spin-orbit contribution. The energy of the
0+ trial state for 12C is shown in Fig. 3 as a function of σ .
The solid line depicts the energy of the trial state when �

is a variational parameter, while � = 0 for the dotted line.
For the solid line, the values in the parentheses show the
optimal � values for the cases of σ = 1.0, 2.0, and 3.0 fm.
After optimizing the value for � we can see in the limit
σ = 0 a drastic increase in binding due to a large contribution
of the spin-orbit interaction, and σ = 0 fm becomes a local
minimum point of the solid line. The optimal � value of
0.3 at the limit of σ = 0 fm means that the α clusters are
broken to some extent and the wave function approaches to the
jj -coupling shell model one. In general, the contribution of
the spin-orbit interaction increases and the energy decreases
with increasing � (for each fixed σ ), but it saturates at some
point because the kinetic energy grows with the square of �.

As a function of σ , in Fig. 3, the energy minimum point of
the solid line appears around σ = 2.0 fm, where the optimal
� value is 0.1. Owing to the additional attraction of the spin-
orbit interaction, here the solid line is lower than the dotted
line by about 1 MeV. We can superimpose the trial states at
the two minima, absolute minimum at (σ = 2.0 fm, � = 0.2)
and local minimum at (σ = 0 fm, � = 0.3), and obtain the
mixing amplitude by diagonalizing the Hamiltonian based on
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FIG. 4. The convergence of the spin-orbit energy for the 0+ state
of 12C as a function of number of Slater determinants superposed
[Nmax in Eq. (4)]. The solid line is for σ = 1.0 fm and � = 0.2, and
the dotted line is for σ = 2.0 fm and � = 0.1.

the generator coordinate method (GCM). The energy becomes
−87.5 MeV, lower than the value of (σ = 2.0 fm, � = 0.2)
by more than 1.1 MeV, and the rms matter radius becomes
2.37 fm, which reproduces the experimental value.

The convergence of the spin-orbit energy for the 0+ state
of 12C is shown in Fig. 4 as a function of number of Slater
determinants superposed [Nmax in Eq. (4)]. This is a demon-
stration that the spin-orbit effect can be successfully taken into
account with the procedure proposed here. The solid line is for
(σ = 1.0 fm, � = 0.2), and the dotted line is for (σ = 2.0 fm,
� = 0.1). The � values are optimal ones in each σ case,
and the latter gives the lowest energy point in Fig. 4. The
solid line (σ = 1.0 fm, � = 0.2) converges to ∼ − 6.4 MeV,
whereas the dotted line (σ = 2.0 fm, � = 0.1) converges to
∼ − 1.5 MeV.

After introducing nonzero � values, each nucleon is more
independently treated and calculation costs significantly in-
crease compared with the Brink model (� = 0) calculation.
Therefore, in Fig. 3, although the contribution of the kinetic
energy is calculated with superposing 1000 Slater determi-
nants [Nmax = 1000 in Eq. (4)], the contribution of the two-
body interactions is estimated with 500 Slater determinants
[Nmax = 500]. The most time-consuming part is the finite-
range three-body interaction part. This three-body part is
substituted with the values obtained with the � = 0 wave
functions. The three-body interaction terms do not strongly
depend on the � values, and we can approximate it with the
Brink model. The Brink model calculation is rather simple,
and we can superpose 1000 basis states for the estimation
of the three-body terms. This approximation can be justified
in Fig. 5, which shows the contribution of the three-body
interaction. The σ value is 2.0 fm, the solid line is for
� = 0.1, which gives the optimal energy in Fig. 3, and the
dotted line is for � = 0.0. The real parts of Gaussian center
parameters for each Slater determinant are common in the two
cases, and imaginary parts are just added to the real parts
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FIG. 5. The contribution of three-body interaction terms for the
0+ state of 12C as a function of the number of Slater determinants
superposed [Nmax in Eq. (4)] calculated with the Monte Carlo THSR
framework. The σ value defined in Eq. (3) is 2.0 fm, and � in Eq. (5)
is 0.1 (solid line) and 0 (dotted line).

in the � = 0.1 case following Eq. (5). The energies are not
converged yet within such a small number of the basis states,
but the values of these two lines for the three-body interaction
terms are very close and can hardly be distinguished. Indeed,
the difference is less than 100 keV. Then we can estimate
the contribution of three-body terms in the finite � cases by
superposing Brink-type Slater determinants (� = 0), where
the number of the basis states (Nmax) is not 30 as in this figure
but is increased to 1000.

The absolute value of the elastic form factor (|F(q )|) for
the 0+ state of 12C is shown in Fig. 6 as a function of the

0 2 4
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10−2

10−1

100

|F
(q

)|

q (fm−1) 

12C

FIG. 6. The absolute value of the elastic form factor (|F(q )|) for
the 0+ state of 12C as a function of the momentum transfer q (fm−1).
The dotted line is for (σ = 2.0 fm, � = 0.1), which gives the optimal
energy as shown in Fig. 3, and the solid line is the result after mixing
the local minimum point (at the limit of σ = 0 fm, � = 0.3) based
on GCM. The experimental values and other theoretical results are
compared in Refs. [35,40].
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momentum transfer q (fm−1). The dotted line is for (σ =
2.0 fm, � = 0.1), which gives the lowest energy as shown
in Fig. 3. The solid line is the result after mixing the local
minimum point (at the limit of σ = 0 fm, � = 0.3). The mix-
ing ratio of (σ = 2.0 fm, � = 0.1) and (σ = 0 fm, � = 0.3)
is given by diagonalizing the Hamiltonian matrix based on
GCM. The experimental values and other theoretical results
are compared in Refs. [35,40]. The dotted line shows the sign
change around q ∼ 1.6 fm−1, which is too small compared
with the experiment, reflecting the fact that the (σ = 2.0 fm,
� = 0.1) configuration (the energetically optimal one) has
too large spatial extent compared with the experiment (ex-
perimentally this sign change occurs around q ∼ 1.8 fm−1).
We have previously mentioned that the mixing of two states,
the energy optimal one and the local minimum point with
a smaller radius, enables us to reproduce the experimental
rms radius, and this mixing turns out to be also important in
reproducing the form factor, which is the solid line.

IV. SUMMARY

The THSR wave function has been successfully used for
studies of the gaslike nature of α clusters of various nuclei. In
this work, we proposed a method to take into account the spin-
orbit contribution in THSR by combing it with AQCM. In the

standard α cluster models, each α cluster wave function has
spin zero because of the spatial symmetry of the α clusters and
antisymmetrization effect. Thus the noncentral interactions do
not contribute, and this situation is the same in the THSR
wave function. The application of a new framework to 12C was
presented. The multi-integration in the original THSR wave
function was carried out by using a Monte Carlo technique,
which is called a Monte Carlo THSR wave function. In 12C,
the contribution of the spin-orbit interaction was successfully
taken into account. Especially for the cases when the spatial
extension is small, the contribution is quite strong, but it
decreases with increasing spatial extension. As a result, one
local minimum at the limit of zero distance between α clusters
and the real minimum state with a sizable α-α distance appear.
If we mix these two configurations, we can reproduce the
observed matter rms radius. This can be considered as the
quantum mechanical mixing of different structures, or, more
concretely, the competition of shell and cluster structures.
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