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In this paper we present an evolution of our derivation of the shell-model effective Hamiltonian, namely
introducing effects of three-body contributions. More precisely, we consider a three-body potential at next-to-
next-to-leading order in chiral perturbation theory, and the induced three-body forces that arise from many-body
correlations among valence nucleons. The first one is included, in the derivation of the effective Hamiltonian for
one- and two-valence nucleon-systems, at first order in the many-body perturbation theory. Namely, we include
only the three-body interaction between one or two valence nucleons and those belonging to the core. For nuclei
with more than two valence particles, both induced—turned on by the two-body potential—and genuine three-body
forces come into play. Since it is difficult to perform shell-model calculations with three-body forces, these
contributions are estimated for the ground-state energy only. To establish the reliability of our approximations, we
focus attention on nuclei belonging to the p shell, aiming to benchmark our calculations against those performed
with the ab initio no-core shell model. The obtained results are satisfactory, and pave the way to the application
of our approach to nuclear systems with heavier masses.
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I. INTRODUCTION

The shell model (SM) is a fundamental tool for the micro-
scopic description of nuclear structure, and its most appealing
feature is to reduce the complexity of a many-body problem,
where the degrees of freedom of all the individual nucleons are
explicitly taken into account, to the one where only the valence
nucleons interact in a limited model space.

Within this framework, it is highly desirable to derive
the SM parameters; namely, the single-particle (SP) energies
and the two-body matrix elements (TBMEs) of the residual
interaction from realistic nuclear forces. This approach is the
so-called realistic shell model (RSM), and its roots trace back
to the seminal paper by Kuo and Brown [1] more than fifty years
ago, where a SM effective Hamiltonian Heff for sd-shell nuclei
was derived starting from the hard-core Hamada–Johnston
potential [2]. Some historical developments of RSM may
be found in review papers [3,4], and a certain number of
fundamental papers on this topic are collected in Ref. [5].

Our approach to derive Heff is based on the energy-
independent linked-diagram perturbation theory [6], where the
pivotal role is played by the perturbative expansion of the
Q̂-box vertex function, which is a collection of irreducible
valence-linked Goldstone diagrams. The effective Hamiltonian
is obtained by solving iteratively nonlinear matrix equations,
that are expressed in terms of the Q̂ box [7].

Recently, an alternative way to derive Heff , framed within a
nonperturbative scheme, has been proposed [8]. This approach
is an application of the in-medium similarity renormalization
group [9] and may provide a new and valuable tool for the
development of the RSM.

In a previous paper [10], we described in detail the process
to derive Heff , and the procedures we apply to check both
the convergence properties of the perturbative expansion and
the weak dependence of the shell-model results upon the
harmonic-oscillator (HO) parameter h̄ω. The latter depen-
dence is introduced, as in all many-body techniques employing
the HO auxiliary potential, by the truncation of the number of
intermediate states in the sum of the perturbative expansion.

Moreover, to check the validity of our approach, we have
performed benchmark calculations comparing the outcome
of the diagonalization of RSM Hamiltonians with that of an
ab initio method, such as the no-core shell model (NCSM)
[11,12]. To this end, we derived p-shell effective Hamiltonians
starting from a realistic nuclear potential based on the chiral
perturbation theory (ChPT) at next-to-next-to-next-to-leading
order (N3LO) [13], but taking into account only the two-body
(2N ) component of this potential.

The comparison between the results obtained is very sat-
isfactory, especially considering that, in NCSM, the degrees
of freedom of all constituent nucleons are taken into account,
while in RSM the eigenfunctions contain explicitly configura-
tions of the valence nucleons only, which are constrained to a
model space limited to the 0p3/2 and 0p1/2 orbitals.

As a matter of fact, the low-lying energy spectra of some
p-shell nuclei calculated with RSM nicely agree with those
by NCSM, while the discrepancy of the calculated ground-
state energies, with respect to the 4He core, grows with the
mass number A. This can be explained by bearing in mind that
our Heff is derived for one- and two-valence-nucleon systems,
while it neglects the many-body (>2) components of Heff , that
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FIG. 1. The three-nucleon potential at N2LO. From left to right:
2π -exchange, 1π -exchange, and contact diagrams.

arise from the interaction via the two-body force of the many-
valence nucleons with core excitations as well as with virtual
intermediate nucleons scattered above the model space.

In the present work, we address this issue by calculating
the effect on the ground-state (g.s.) energies of three-body
correlation diagrams [14,15], and also including in our Heff ,
aside the chiral N3LO two-body potential [13,16], a chiral next-
to-next-to-leading order (N2LO) three-body potential [12]
whose effects are considered at first order in perturbation
theory.

So far, modern nuclear structure calculations have ev-
idenced the role played by three-nucleon (3N ) forces, in
particular for light nuclei with A � 12 (see, for example,
Refs. [17,18]). Our goal is to obtain an improvement of the
reproduction of the spectroscopic properties of p-shell nuclei,
and benchmark our results against those in Refs. [12,19], by
including the same chiral three-body potential.

It is worth mentioning that our approach to treat the
microscopic 3N potential is similar to that in Refs. [20–23]
where, aside a realistic two-body low-momentum potential,
only first-order contributions of the normal-ordered two-body
parts of 3N forces have been taken explicitly into account.

The paper is organized as follows: In Sec. II we give an out-
line of the derivation of our shell-model effective Hamiltonian
within a perturbative approach, and of our procedure to include
three-body effects. Section III is devoted to compare our RSM
results with those provided by the ab initio NCSM [12,19].
Concluding remarks and outlook of our future commitments
are given in Sec. IV. In the Appendix, details of the calculations
of the matrix elements of the N2LO three-body potential are
reported.

II. THEORETICAL FRAMEWORK

As mentioned in the introduction, a detailed description of
the procedure we apply to derive Heff within the many-body
perturbation theory has been reported in Ref. [10].

We start our calculations by considering a high-precision
nucleon-nucleon (NN ) potential derived within the ChPT
at next-to-next-to-next-to-leading order [13,16]. In the chiral
perturbative expansion the 3N potentials appear from N2LO
on, and we consider also its contributions in the derivation of
the Heff .

This 3N potential consists of three components (see Fig. 1);
namely, the two-pion (2π ) exchange term V

(2π )
3N , the one-pion

(1π ) exchange plus contact term V
(1π )

3N , and the contact term
V

(ct)
3N .

It should be pointed out that the low-energy constants
(LECs) c1, c3, and c4, appearing in V

(2π )
3N are the same as

those in the NN potential, so their values are fixed by the

renormalization procedure that is performed for the two-body
N3LO potential [16]. However, the 3N 1π -exchange term
and the contact interaction are characterized by two extra
LECs (known as cD and cE , respectively), which cannot be
constrained by two-body observables, and need to be fit in
order to reproduce observables in systems with mass A > 2.

Since we intend to benchmark our SM calculations against
those in Refs. [12,19], in this work we adopt cD = −1, as
reported in Ref. [12], and cE = −0.34, as may be inferred
from Fig. 1 in the same reference.

The N2LO 3N potential is defined in momentum space
and, in order to employ it to derive a shell-model effective
interaction, we have calculated its matrix elements in the
HO basis following a procedure similar to that indicated in
Ref. [24]. Actually, there is a difference about the calculation
of the two-pion exchange term with our formalism and the one
reported in Ref. [24], and the details of our calculations are
reported in the Appendix.

Note that the Coulomb potential is explicitly taken into
account in our calculations.

After choosing the NN and 3N potentials, our next step is to
derive a SM effective Hamiltonian for one- and two-valence-
nucleon systems within a model space spanned by the two
proton and neutron orbitals 0p3/2 and 0p1/2, outside the doubly
closed 4He core.

To this end, an auxiliary one-body potential U is introduced
in order to break up the intrinsic Hamiltonian for a system of A
nucleons as the sum of a one-body term H0, which describes the
independent motion of the nucleons, and a residual interaction
H1:

Hint =
(

1 − 1

A

) ∑
i

p2
i

2m

+
∑
i<j

(
V NN

ij − pi · pj

mA

)
+

∑
i<j<k

V 3N
ijk

=
∑

i

(
p2

i

2m
+ Ui

)

+
∑
i<j

(
V NN

ij − Ui − p2
i

2mA
− pi · pj

mA

)
+

∑
i<j<k

V 3N
ijk

= H0 + H1, (1)

where i, j, k indices run from 1 to the mass number A, and p is
the momentum of the nucleon. Note that, in order to compare
RSM with NCSM results, we have to employ a purely intrinsic
Hamiltonian by removing the center-of-mass (c.m.) kinetic
energy. This introduces a dependence on the mass number A
that is relevant for light systems, such as those belonging to
the p shell, but that is strongly suppressed for heavier nuclei.

The diagonalization of the many-body Hamiltonian Hint

in an infinite Hilbert space is unfeasible, and our eigenvalue
problem is then reduced to the one for an effective Hamiltonian
Heff in a truncated model space. Since Hint has been broken up
into two terms, we define the reduced model space in terms of
a finite subset of H0 eigenvectors. In our calculation we choose
as auxiliary potential U the HO potential.
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In this paper, we resort to the Kuo–Lee–Ratcliff (KLR)
folded-diagram expansion [6,25] to calculate Heff , and this
can be done by way of a perturbative expansion of the vertex
function Q̂ box:

Q̂(ε) = PH1P + PH1Q
1

ε − QHQ
QH1P, (2)

as defined in Ref. [7].
In our calculations we expand the Q̂ box in terms of irre-

ducible valence-linked one- and two-body Goldstone diagrams
through third order in H1, for contributions with 2N vertices
[10], and up to first order for those with a 3N vertex. Then, to
have a better estimate of the value to which the perturbation
series should converge, we resort to the Padé approximant
theory [26,27], and calculate the Padé approximant [2|1] of
the Q̂ box, as suggested in Ref. [28]:

[2|1] = V 0
Qbox + V 1

Qbox + V 2
Qbox

[
1 − (

V 2
Qbox

)−1
V 3

Qbox

]−1
. (3)

V n
Qbox is the square nonsingular matrix representing the nth-

order contribution to the Q̂ box in the perturbative expansion.
We have reviewed the calculation of our SM effective

Hamiltonian Heff in Ref. [10], where details of the diagram-
matic expansion of the Q̂ box and its perturbative properties
are also reported.

In terms of the Q̂ box, the SM effective Hamiltonian can be
written in an operator form as

Heff = Q̂ − Q̂′
∫

Q̂ + Q̂′
∫

Q̂

∫
Q̂

−Q̂′
∫

Q̂

∫
Q̂

∫
Q̂ + · · · , (4)

where the integral sign represents a generalized folding opera-
tion, and Q̂′ is obtained from Q̂ by removing terms at the first
order in the NN potential [6,25]. The folded-diagram series is
then summed up to all orders by using the Lee–Suzuki iteration
method [7].

In Ref. [10] the values of the SP energies and TBME derived
including only the N3LO two-body force have been reported.

As shown in the above paper, the diagonalization of Heff

performed for some p-shell nuclei, such as 6Li and 10B,
provides excitation spectra that are in a close agreement with
those obtained in NCSM calculations starting from the same
N3LO two-body potential [12,19].

As regards the calculated g.s. energies, with respect to the
4He core, the agreement between RSM and NCSM deteriorates
when increasing the number of valence nucleons in the shell-
model calculations. This may be ascribed to the fact that our
SM Hamiltonian is derived just for one- and two-valence-
nucleon systems and, as mentioned in the introduction, for
nuclei with more valence nucleons, the Q̂ box should contain
diagrams with at least three incoming and outcoming valence
particles. The leading terms of such correlation diagrams
appear at second order in perturbation theory for three-valence-
nucleon systems and are reported in Fig. 2.

The explicit expressions of these three-body diagrams are
reported in Ref. [15]. Since the inclusion of a three-body term
in the shell-model Hamiltonian cannot be managed by the SM
code we employ [29], we calculate the contribution of the

p
h

(a) (b)

d e f d e f

a b c a b c

FIG. 2. Second-order three-body diagrams. The sum over the
intermediate lines runs over particle and hole states outside the model
space, shown by A and B, respectively. For the sake of simplicity, for
each topology we report only one of the diagrams which correspond
to the permutations of the external lines.

monopole component of the three-body diagrams and add it
to the calculated g.s. energies.

As already mentioned in the introduction, we calculate Heff

introducing also the contributions of a N2LO 3N potential.
More precisely, we evaluate its contribution at first order in
many-body perturbation theory only for the one- and two-
valence-nucleon systems.

As regards the contribution to the single-particle component
of the Q̂ box from a three-body potential we report in Fig. 3
the diagram at first order, whose explicit expression is

〈ja|1b3N |ja〉 =
∑
h1, h2
J12J

Ĵ 2

2ĵa
2

〈[(
jh1jh2

)
J12

, ja

]
J

∣∣

× V3N

∣∣[(jh1jh2

)
J12

, ja

]
J

〉
. (5)

The expression of the first-order two-body diagram with a
3N vertex, shown in Fig. 3, is the following:

〈(jajb )J |2b3N |(jcjd )J 〉

=
∑
h,J ′

Ĵ ′2

Ĵ 2
〈[(jajb )J , jh]J ′ |V3N |[(jcjd )J , jh]J ′ 〉, (6)

a b

c da

a

hh1 h2

FIG. 3. First-order one- and two-body diagrams with a three-
body-force vertex. See text for details.
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FIG. 4. Low-lying energy spectra of 6Li and 8Li. In the middle
the experimental levels are given, and the calculated ones (starting
from a two-body potential only) with RSM and NCSM are reported
on the left and the right sides of the figure, respectively.

The three-body matrix element (3BME) 〈[(jajb )Jab
, jc]J |

V3N |[(jdje )Jde
, jf ]J 〉, expressed within the proton-neutron for-

malism, is antisymmetrized but not normalized.
It is worth mentioning that the expressions in Eqs. (5)

and (6) are the coefficients which multiply the one- and
two-body terms, respectively, arising from the normal-ordering
decomposition of the three-body component of a many-body
Hamiltonian [30].

In the Supplemental Material [31], the calculated SP ener-
gies and TBME of our SM Hamiltonians for A = 6, 8, 10, and
12 can be found. As pointed out in Ref. [10], the A dependence
of our Heff s, due to Eq. (1), affects mostly the calculated g.s.
energies and very weakly the excited spectra.

III. RESULTS

In the following sections, the results of our shell-model
calculations are presented: first those obtained starting from
the N3LO NN potential only, and then those including also
the contributions of the N2LO 3N potential. The calculated
spectra and binding energies are compared with those reported
in Refs. [12,19], in order to benchmark our approach against
NCSM, and with the corresponding experimental data.

A. Calculations with N N potential

In Figs. 4–7, the low-energy spectra of 6Li, 8Li, 8B, 8Be,
10B, 11B, 12C, and 13C, calculated in our RSM framework, are
compared with the experimental ones [32] and those obtained
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FIG. 5. Same as Fig. 4, but for 8B and 8Be.
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FIG. 6. Same as Fig. 4, but for 10B and 11B.

with NCSM [12,19]. From the inspection of Figs. 4–7, it can
be seen that there is an excellent agreement between RSM and
NCSM, especially for low energy levels.

In Fig. 6, we see that both RSM and NCSM predict the
inversion of the Jπ = 3+ g.s. and the first-excited Jπ = 1+
state in 10B. This defect is healed, as we will see in the next
section, by including the 3N -potential contributions.

As regards 11B, both RSM and NCSM calculations pro-
vide two low-lying doublets; the almost-degenerate Jπ =
( 1

2
−

)1, ( 3
2

−
)1 and Jπ = ( 3

2
−

)2, ( 5
2

−
)1 states. There is no ex-

perimental counterpart of these degeneracies, which will be
removed including the contribution of a 3N potential.

In Fig. 7 we report the first-excited states of 12,13C isotopes.
It can be seen that both RSM and NCSM fail to reproduce the
observed excitation energy of the yrast Jπ = 2+ state in 12C,
which is underestimated by ∼1 MeV.

In Fig. 15 of Ref. [10] we compared our calculated g.s.
energies with respect to 4He of N = Z nuclei—up to 12C—
with those of NCSM calculations [12,19]. Our calculated
energies were increasingly underbinding, with respect to the
NCSM ones, and in Ref. [10] we have ascribed this defect to
the lack of many-body components of our Heff , whose role
should grow with the number of valence nucleons.

As mentioned in Sec. II, we can now include the three-body
diagrams in Fig. 2 by calculating their monopole components
and then adding their contributions to the calculated g.s.
energies. The results of this procedure are reported in Fig. 8,
where the new calculated RSM g.s. energies (black diamonds)
are compared with both the experimental ones (red triangles)
and those obtained with NCSM (blue bullets). As can be seen,
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FIG. 7. Same as Fig. 4, but for 12C and 13C.
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FIG. 8. Ground-state energies for N = Z nuclei with mass
6 � A � 12.

we have efficiently improved the comparison between RSM
and NCSM, the largest discrepancy being about 4% for 8Be.

B. Calculations with N N plus 3N potentials

In Figs. 9–12, we show the low-energy spectra of 6Li,
8Li, 8B, 8Be, 10B, 11B, 12C, and 13C, calculated in our RSM
framework, now including also the contributions from the
N2LO 3N potential as reported in Sec. II. We compare
them with the experimental ones [32] and the NCSM results
[12,19].

As in the case with only N3LO NN potential, our results
and the NCSM ones are in close agreement. Moreover, the
theory with 3N compares far better with experiment, as can be
seen in all the reported spectra.

In particular, the experimental sequence of observed states
in 10B is restored, and the degeneracies of Jπ = ( 1

2
−

)1, ( 3
2

−
)1

and Jπ = ( 3
2

−
)2, ( 5

2
−

)1 states in 11B is removed. This supports
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FIG. 9. Same as Fig. 4 except that both RSM and NCSM include
the N2LO 3N potential.
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FIG. 10. Same as Fig. 9, but for 8B and 8Be.

the crucial role played by the 3N potential to improve the
spectroscopic description of p-shell nuclei.

We recall here that the effective single-particle energies
(ESPEs) are related to the monopole part of the shell-model
Hamiltonian, thus reflecting the angular-momentum-averaged
effects of the shell-model interaction V SM for a given nucleus.
The ESPE of a level is defined as the one-neutron separation
energy of this level, and calculated in terms of the bare εj

and the monopole part of the interaction; namely, ESPE(j ) =
εj + ∑

j ′ V SM
jj ′ nj ′ , where the sum runs on the model-space

levels j ′, nj being the number of particles in the level j
and V SM

jj ′ the angular-momentum-averaged interaction V SM
jj ′ =∑

J (2J + 1)〈jj ′|V SM|jj ′〉J /
∑

J (2J + 1).
In Figs. 13 and 14, we show the evolution of proton

and neutron 0p1/2 ESPE relative to 0p3/2, respectively, as a
function of A for N = Z isotopes.

The behavior of proton and neutron ESPEs is helpful to
understand the different properties of Heff , including or not
contributions of the N2LO 3N potential. As can be seen in
Figs. 13 and 14, the relative ESPE rapidly drops down when
considering only the N3LO NN potential, even becoming
negative around A = 8. Actually, the relative ESPE is almost
constant when the 3N potential is taken into account, being
4 ∼ 5 MeV.

This reflects in the calculated energy spacings between yrast
Jπ = 1

2
−

and 3
2

−
in 11B and, more important in the higher

excitation energy of the yrast Jπ = 2+ state in 12C spectra
reported in Figs. 7 and 12. In fact, calculations including the
three-body force lead to a better comparison with experiment.

It is worth pointing out that many studies have been per-
formed about the crucial role played by three-body potentials
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FIG. 11. Same as Fig. 9, but for 10B and 11B.
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on the monopole properties of SM effective interactions (see,
for instance, Refs. [33,34]), especially to obtain the correct
shell-closure properties when starting from realistic forces.
Recent progress in SM calculations, including three-body force
effects [20,35], has proven the validity of such a speculation,
and our results support the prospect that a consistent derivation
of Heff from chiral two- and three-body potentials may lead
to an improvement of the theoretical description of nuclear
systems with larger mass number A.

For the sake of completeness, in Fig. 15 we report the
g.s. energies of N = Z isotopes, that, as in Fig. 8, have been
obtained by taking into account also 3N correlations. Namely,
we add to the energies calculated with Heff , now including a
N2LO 3N potential, only the contribution of their monopole
component. It is worth pointing out that the results with RSM
are not satisfactory. Actually, there is a substantial discrepancy
between results obtained with RSM and those calculated
with NCSM, since our RSM calculations underestimate the
contribution of the 3N potential. This may be mainly ascribed
to the fact that, at present, our Heff includes only first-order
contributions.
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(see text for details). The diamond and bullet symbols refer to results
obtained with and without 3N contributions, respectively.
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IV. CONCLUDING REMARKS AND OUTLOOK

In this paper we have presented the results that we have
obtained for p-shell nuclei in the framework of RSM, taking
into account the contributions of both induced and genuine
three-body forces.

On one side, we have shown how the inclusion of the
three-body correlations between valence nucleons that are
induced by the NN potential due to the truncation of the
Hilbert space greatly improves the agreement of our calculated
binding energies with respect to those obtained by ab initio
calculations.
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FIG. 15. Same as Fig. 8, but including also contributions of
N2LO 3N potential both in RSM and NCSM calculations.
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On the other side, we have calculated the contribution at first
order in perturbation theory of a N2LO chiral 3N potential
to the SM effective Hamiltonian, and the comparison of our
calculated energy spectra with those from NCSM [12,19] turns
out to be successful, thus supporting the reliability of RSM
calculations.

Actually, as reported in Sec. III B, our g.s. energies—
calculated including the N2LO 3N potential—reflect the lack
of higher-order contributions to the perturbative expansion
of Heff . This is evidenced by the underestimation of the
binding energies obtained with NCSM; the latter reproducing
satisfactorily the observed ones.

In this regard, the next step of our study will be to include
higher-order contributions with 3N vertices in the perturbative

expansion of the Q̂ box, in order to establish their role in the
evolution of the spectroscopic properties provided by RSM.
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APPENDIX: CALCULATION OF THREE-BODY MATRIX ELEMENTS

Our aim is to calculate the three-body matrix elements of the chiral potential at N2LO between the antisymmetrized three-
particle HO states. To this end, we follow the procedure sketched below:

(i) Transformation of the JT -coupled three-particle HO basis into the Jacobi-HO basis, thus separating the c.m. and relative
motions;

(ii) antisymmetrization of the Jacobi-HO basis;
(iii) evaluation of the Jacobi-HO matrix element (ME), which is the 3BME of the chiral interaction at N2LO [16,36].

Our approach to steps (i) and (ii) is essentially same as that used in Ref. [24].
The transformation in step (i) leads to the so-called T coefficients (see, for instance, Ref. [37]), involving angular-momentum

recouplings and the HO brackets originating from the Talmi transformation [38–42]. The HO brackets are computed by using the
Fortran code of Ref. [43].

At the step (ii), as suggested in Refs. [44,45], we build up the antisymmetrized Jacobi-HO states |κ; JT 〉A by diagonalizing
the three-body antisymmetrizer. Thus we obtain

|κ; JT 〉A =
√

6
∑

κ̄

D
(JT )
κκ̄ |κ̄; JT 〉 , (A1)

D
(JT )
κκ̄ =

∑
η

〈κ; JT | η〉〈η | κ̄; JT 〉, (A2)

where |η〉 is a “physical” eigenstate [45] of the three-body antisymmetrizer, and it corresponds to the eigenvalue 1.
The index κ for the totally antisymmetrized Jacobi-HO states |κ; JT 〉A stands for the set of the quantum numbers
{n12, l12, S12, I12, T12, n, l, I }. The quantum numbers with the subscript “12” are associated with the a-b system; that is, the
principal quantum number n12, the orbital angular momentum l12, the two-nucleon coupled spin S12, the angular momentum I12

originating from the coupling of l12 and S12, and the two-nucleon coupled isospin T12. Whereas the (ab)-c motion is characterized
by the principal quantum number n, the orbital angular momentum l, and the angular momentum I coming from the coupling of
l and the nucleon spin 1/2. The total angular momentum J (isospin T ) is formed by the coupling of I12 and I (T12 and nucleon
isospin 1/2). The index κ̄ = {n̄12, l̄12, S̄12, Ī12, T̄12, n̄, l̄, Ī } is similar to κ but for the Jacobi-HO states |κ̄; JT 〉, which is partially
antisymmetrized with respect to the a-b system with the constraint (−1)l̄12+S̄12+T̄12 = −1.

As regards the step (iii), the Jacobi-HO MEs both of the one-pion-exchange plus-contact operator V
(1π )

3N and the 3N contact
operator V

(ct)
3N are evaluated with a nonlocal regulator [see Eq. (A8)] following the procedure described in Ref. [24]. At variance

with Ref. [24], the Jacobi-HO ME of the two-pion exchange operator V
(2π )

3N is calculated in an alternative way explained below.
Owing to Eq. (A1) and the symmetry of V

(2π )
3N with respect to the permutation of particles, the antisymmetrized Jacobi-HO

ME is given by

A〈κ ′; JT |V (2π )
3N |κ; JT 〉A = 18

∑
κ̄ κ̄ ′

D
(JT )
κκ̄ D

(JT )
κ ′κ̄ ′ 〈κ̄ ′; JT |[W (2π ;c1 )

3N + W
(2π ;c3 )
3N + W

(2π ;c4 )
3N

]|κ̄; JT 〉, (A3)

The momentum representation of the reduced operator W
(2π ;cμ )
3N , with μ = 1, 3, or 4, is written as

〈 p′
a p′

b p′
c|W (2π ;cμ )

3N | pa pb pc〉 = w
(2π ;cμ )
3N (qb, qc )δ(qa + qb + qc ). (A4)
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Here, for convenience, we define w
(2π ;cμ )
3N as a function of qb and qc, because these two transferred momenta are simply written

in terms of the Jacobi momenta we employ [see Eq. (A9)]. The explicit form of w
(2π ;cμ )
3N is expressed as follows (see, for example,

Refs. [16,46]):

w
(2π ;c1 )
3N (qb, qc ) = − 1

(2π )6

g2
Ac1m

2
π

f 4
π

(σ b · qb )(σ c · qc )(
q2

b + m2
π

)(
q2

c + m2
π

)τ b · τ c, (A5)

w
(2π ;c3 )
3N (qb, qc ) = 1

(2π )6

g2
Ac3

2f 4
π

(σ b · qb )(σ c · qc )(
q2

b + m2
π

)(
q2

c + m2
π

) (qb · qc )(τ b · τ c ), (A6)

w
(2π ;c4 )
3N (qb, qc ) = 1

(2π )6

g2
Ac4

4f 4
π

(σ b · qb )(σ c · qc )(
q2

b + m2
π

)(
q2

c + m2
π

) {(qb × qc ) · σ a}{(τ b × τ c ) · τ a}, (A7)

where σ i (τ i) is the Pauli spin (isospin) matrix of nucleon i (i = a, b, or c), and the transferred momentum is q i = p′
i − pi , with pi

and p′
i being the initial and final momenta, respectively. We use the parameters, gA = 1.29, fπ = 92.4 MeV, mπ = 138.04 MeV,

and �χ = 700 MeV. In this paper the parameters are given in natural units; namely, c = h̄ = 1. Note that, in w
(2π ;cμ )
3N there is

a prefactor 1/(2π )6, which originates from our convention of the normalization, 〈 p′
a p′

b p′
c | pa pb pc〉 = δ(qa )δ(qb )δ(qc ). See

Refs. [24,47] for more details.
Although a local regulator depending on qi is adopted in Ref. [24], alternatively we employ a nonlocal regulator,

uν (k,K,�0) = exp

[
−

(
k2 + K2

2�2
0

)ν ]
, (A8)

which is consistent with that for the two-body N3LO potential with �0 = 500 MeV and ν = 2. The Jacobi momenta k and K are
defined by

k = 1√
2

( pa − pb ), K =
√

2

3

[
1

2
( pa + pb ) − pc

]
. (A9)

Thus we regularize w
(2π ;cμ )
3N as

w
(2π ;cμ )
3N (qb, qc ) → uν (k′,K ′,�0)w

(2π ;cμ )
3N (qb, qc )uν (k,K,�0), (A10)

and we express it in terms of k, k′, K , K ′, cos θ1, cos θ2, and cos θ3, where the prime stands for the Jacobi momenta in the final
channel and θ1, θ2, and θ3 are the angles between K and K ′, k and k′, and K − K ′ and k − k′, respectively. Successively, we
perform the triple-fold multipole expansion for these angles. As a result, we obtain the regularized 3BMEs of each operator as

〈κ̄ ′; JT |W (2π ;c1 )
3N |κ̄; JT 〉 = 3c1m

2
πSJT

κ̄κ̄ ′

{
S̄12 S̄ ′

12 1
1
2

1
2

1
2

}{
T̄12 T̄ ′

12 1
1
2

1
2

1
2

} ∑
λbλc

λ′
bλ

′′
b

∑
λ1λ2λ3

λ′
3λ

′′
3

∑
l1

(−1)λb+l1+1 l̂2
1

× I
νλbλcλ

′
bλ

′′
bλ1λ2λ3λ

′
3λ

′′
3

κ̄ κ̄ ′Lb=2,Lc=2,L′
b=1,L′

c=1(�0)X
λbλcλ

′
bλ

′′
bλ1λ2λ3λ

′
3λ

′′
3

κ̄ κ̄ ′J,L0=1,L′
b=1,L′

c=1,l0=λb,l1
, (A11)

〈κ̄ ′; JT |W (2π ;c3 )
3N |κ̄; JT 〉 =

√
3

2
c3S

JT
κ̄κ̄ ′

{
S̄12 S̄ ′

12 1
1
2

1
2

1
2

}{
T̄12 T̄ ′

12 1
1
2

1
2

1
2

} ∑
LbLc

∑
λbλc

λ′
bλ

′′
b

∑
λ1λ2λ3

λ′
3λ

′′
3

∑
l0l1

L̂bL̂cl̂
2
0 l̂

2
1 (1010|Lb0)

× (1010|Lc0)

{
Lb − λb λb Lb

1 1 l0

}{
l0 l1 1
Lc 1 λb

}
I

νλbλcλ
′
bλ

′′
bλ1λ2λ3λ

′
3λ

′′
3

κ̄ κ̄ ′LbLc,L
′
b=Lb,L′

c=Lc
(�0)

× X
λbλcλ

′
bλ

′′
bλ1λ2λ3λ

′
3λ

′′
3

κ̄ κ̄ ′J,L0=1,L′
b=Lb,L′

c=Lc,l0l1
, (A12)

〈κ̄ ′; JT |W (2π ;c4 )
3N |κ̄; JT 〉 = 9

√
3c4(−)l

′
12+1SJT

κ̄κ̄ ′

⎧⎪⎨
⎪⎩

1
2

1
2 T̄ ′

12
1
2

1
2 T̄12

1 1 1

⎫⎪⎬
⎪⎭

∑
L0

LbLc

∑
λbλc

λ′
bλ

′′
b

∑
λ1λ2λ3
λ′

3λ
′′
3

∑
l0l1

L̂2
0L̂bL̂cl̂

2
0 l̂

2
1 (1010|Lb0)(1010|Lc0)

×
{
L0 Lb 1
1 1 1

}{
Lb − λb λb Lb

1 L0 l0

}{
l0 l1 1
Lc 1 λb

}⎧⎪⎨
⎪⎩

1
2

1
2 S̄ ′

12
1
2

1
2 S̄12

1 1 L0

⎫⎪⎬
⎪⎭I

νλbλcλ
′
bλ

′′
bλ1λ2λ3λ

′
3λ

′′
3

κ̄ κ̄ ′LbLc,L
′
b=Lb,L′

c=Lc
(�0)

× X
λbλcλ

′
bλ

′′
bλ1λ2λ3λ

′
3λ

′′
3

κ̄ κ̄ ′J,L0L
′
b=Lb,L′

c=Lc,l0l1
, (A13)
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where, in general, x̂ = √
2x + 1. The coefficients in Eqs. (A11)–(A13) are defined as

SJT
κ̄κ̄ ′ =

[
gA

(πfπ )2

]2

il̄12+l̄′12+l̄+l̄′ (−)S̄12+Ī ′
12−Ī+I+T̄12+T̄ ′

12+T + 1
2 ˆ̄S12

ˆ̄S ′
12

ˆ̄I12
ˆ̄I ′
12

ˆ̄I ˆ̄I ′ ˆ̄T12
ˆ̄T ′
12

{
T̄12 T̄ ′

12 1
1
2

1
2 T

}
, (A14)

I
νλbλcλ

′
bλ

′′
bλ1λ2λ3λ

′
3λ

′′
3

κ̄ κ̄ ′LbLcL
′
bL

′
c

(�0) = 3− λb
2 (−1)λb+λc+λ′

b+λ′′
b+λ1+λ2+λ3+λ′

3+λ′′
3 ̂L′

b − λb
̂L′
c − λc

̂L′
b − λb − λ′

b
̂λb − λ′′

b
̂λ3 − λ′

3
̂λ3 − λ′′

3

× [
C

2L′
b+1

2λb
C

2L′
c+1

2λc
C

2(L′
b−λb)+1

2λ′
b

C
2λb+1
2λ′′

b
C

2λ3+1
2λ′

3
C

2λ3+1
2λ′′

3

] 1
2

∫ ∫ ∫ ∫
dkdKdk′dK ′f (LbLc )

λ1λ2λ3
(k, k′,K,K ′)

× kL′
b−λb−λ′

b+λ3−λ′
3+1KL′

c−λc+λb−λ′′
b+λ3−λ′′

3+1

× k′λ′
b+λ′

3+1K ′λc+λ′′
b+λ′′

3+1Pn̄12 l̄12
(k)Pn̄l̄ (K )Pn̄′

12 l̄
′
12

(k′)Pn̄′ l̄′ (K
′)uν (k,K,�0)uν (k′,K ′,�0), (A15)

X
λbλcλ

′
bλ

′′
bλ1λ2λ3λ

′
3λ

′′
3

κ̄ κ̄ ′JL0L
′
bL

′
cl0l1

=
∑
l2l3

∑
λλ′
��′

∑
L1L2L3

(−1)L1+L2+L3 l̂2 l̂3λ̂λ̂′�̂�̂′L̂2
1L̂

2
2L̂

2
3(L′

c − λc, 0, λb − λ′′
b, 0|l20)(λc0λ′′

b0|l30)

× (L′
b − λb − λ′

b, 0λ0|l̄120)(λ′
b0λ′0|l̄′120)(l20�0|l̄0)(l30�′0|l̄′0)(λ20, λ3 − λ′

3, 0|λ0)(λ20λ′
30|λ′0)

× (λ10, λ3 − λ′′
3, 0|�0)(λ10λ′′

30|�′0)

{
λ3 − λ′

3 λ′
3 λ3

λ′ λ λ2

}{
λ3 − λ′′

3 λ′′
3 λ3

�′ � λ1

}

×
{
Ī12 Ī ′

12 L1

Ī ′ Ī J

}{
L0 L′

b − λb l0

λ3 L1 L2

}{
1 l1 l0

λ3 L1 L3

}

×

⎧⎪⎨
⎪⎩

λb − λ′′
b λ′′

b λb

L′
c − λc λc L′

c

l2 l3 l1

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

S̄ ′
12 l̄′12 Ī ′

12

S̄12 l̄12 Ī12

L0 L2 L1

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

1
2 l̄′ Ī ′
1
2 l̄ Ī

1 L3 L1

⎫⎪⎬
⎪⎭

×

⎧⎪⎨
⎪⎩

L′
b − λb − λ′

b λ′
b L′

b − λb

λ λ′ λ3

l̄12 l̄′12 L2

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

l2 l3 l1

� �′ λ3

l̄ l̄′ L3

⎫⎪⎬
⎪⎭, (A16)

where C
p
q and Pnl are the binomial coefficient C

p
q = p!/[(p − q )!q!] and the momentum-space HO wave functions, respectively.

Note that the phase of Pnl is chosen to be consistent with a convention employed in the Fortran code [43]. The multipole-expansion
function f

(LbLc )
λ1λ2λ3

is defined as

f
(LbLc )
λ1λ2λ3

(k, k′,K,K ′) = λ̂2
1λ̂

2
2λ̂

2
3

8

∫ 1

−1

∫ 1

−1

∫ 1

−1
dw1dw2dw3Pλ1 (w1)Pλ2 (w2)Pλ3 (w3)

× (|k − k′||K − K ′|)−λ3
2− Lb

2
(

2
3

) Lc
2 q

2−Lb

b q2−Lc
c(

q2
b + m2

π

)(
q2

c + m2
π

) , (A17)

where Pλm
is the Legendre polynomial with wm = cos θm (m = 1, 2, or 3).
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