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Bose-Einstein condensation of α clusters and new soft mode in 12C–52Fe 4N nuclei
in a field-theoretical superfluid cluster model
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Bose–Einstein condensation of α clusters in light and medium-heavy nuclei is studied in the frame of the
field-theoretical superfluid cluster model. The order parameter of the phase transition from the Wigner phase to
the Nambu–Goldstone phase is a superfluid amplitude, square of the moduli of which is the superfluid density
distribution. The zero-mode operators due to the spontaneous symmetry breaking of the global phase in the finite
number of α clusters are rigorously treated. The theory is systematically applied to Nα nuclei from 12C to 52Fe
at various condensation rates. In 12C it is found that the energy levels of the gas-like well-developed α cluster
states above the Hoyle state are reproduced well in agreement with experiment for realistic condensation rates
of α clusters. The electric E2 and E0 transitions are calculated and found to be sensitive to the condensation
rates. The profound raison d’être of the α cluster gas-like states above the Hoyle state, whose structure has
been interpreted geometrically in the nuclear models without the order parameter such as the cluster models or
ab initio calculations, is revealed. It is found that, in addition to the Bogoliubov–de Gennes vibrational mode
states, collective states of the zero-mode operators appear systematically at low excitation energies from the
Nα threshold energy. These collective states, which are new-type soft modes in nuclei due to the Bose–Einstein
condensation of the α clusters, emerge systematically in light– and medium-heavy–mass regions and are also
located at high excitation energies from the ground state in contrast to the traditional concept of soft mode in the
low-excitation-energy region.
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I. INTRODUCTION

The nucleus shows various aspects of collective motion
such as quadrupole vibration in spherical nuclei and rotation
in deformed nuclei, and pairing vibration in normal nuclei and
rotation in superfluid nuclei. These collective motion and the
phase transitions from spherical to deformed and from normal
to superfluid [1,2] are observed in the medium-heavy- and
heavy-mass region where the mean-field picture works well.
The emergence of quadrupole deformation and superfluidity
has been understood as a consequence of condensation of
a quadrupole boson with an angular momentum J = 2 and
a Cooper pair boson with J = 0, respectively. The phase
transition from the Wigner phase to the Nambu–Goldstone
(NG) phase in nuclei composed of a finite number of nucleons
can be understood by the order parameter, the deformation
δ for the quadrupole collective motion, and the pairing gap
energy � for the pairing collective motion.

In light nuclei, collective motion due to the emergence
of cluster structure, especially α cluster structure, has been
studied extensively in the last decades [3–6]. The cluster
model has been established as one of the three nuclear models
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[3–6] as well as the shell model [7,8] and the collective model
[9]. This collective motion caused by the spontaneous sym-
metry breaking of rotational invariance due to the α clustering
has been observed in a wide range of nuclei throughout the
periodic table. Typically, they are, for example, the α + α
cluster structure in 8Be in the p-shell region [3], the α + 12C
structure in 16O and α + 16O structure in 20Ne around the
beginning of the sd-shell region [5], and the α + 36Ar cluster
structure in 40Ca and the α + 40Ca cluster structure in 44Ti
around the beginning of the fp-shell region [10–12], and the
α + 208Pb cluster band in 212Po [13–16] in the heavy-mass
region.

The collective motion related to α cluster condensation
or superfluidity in nuclei has been studied in the framework
of many-body theory in the last decades [17–19]. However,
in the heavy- and medium-heavy-mass regions, α cluster
superfluidity with a characteristic collective motion has not
been confirmed experimentally. On the other hand, in light
nuclei the Hoyle state in 12C with a well-developed three-
α-cluster structure near the α threshold energy has been
extensively studied theoretically [20–29] and experimentally
[30–34], and has attracted much attention as a candidate for a
Bose–Einstein condensation (BEC) of α clusters.

Matsumura and Suzuki [24] have shown in cluster model
calculations that the occupation probability of the α clusters
sitting in the lowest 0s state is about 70% for the Hoyle
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state. However, from this occupation probability, whatever
the 0s state occupation probability may be, it is impossi-
ble to know that the global phase of the system is frozen;
that is, to conclude that the BEC of α clusters is realized.
It is because the order parameter is not defined in the
traditional cluster models such as the generator coordinate
method [21], the resonating group method [22], the cluster gas
model [23,28], the correlated Gaussian stochastic variation
method [24], the orthogonality condition model [25,26], the
local potential model [27], and the Faddeev theory [20]. The
ab initio calculations such as the antisymmetrized molecular
dynamics [35], the fermionic molecular dynamics [36], the
no-core shell model [37], and the lattice calculations [38] have
also no order parameter in their theoretical frames. To know
whether the phase transition from the Wigner phase to the NG
phase of BEC is realized, the order parameter of spontaneous
symmetry breaking (SSB) should be defined in the frame of
the theory. Also, up to now, no decisive experimental evidence
of BEC of α clusters such as superfluidity or quantum vortex
has been observed.

The very recent precise experiments [32] reported that
the direct three-α decays from the Hoyle state are less than
0.043% [33] and 0.047% [34]. Reference [34] noted that
this could indicate that the α-condensate interpretation of the
Hoyle state is less likely to be correct. However, the likelihood
of the BEC cannot be judged by the amount of the 0s state
occupation probability of the α clusters because the BEC
of α clusters could be realized by a smaller but significant
amount of condensation probability. The emergence of BEC
can only be concluded by investigating the order parameter of
the system.

A cluster model, in which the order parameter that charac-
terizes the phase transition from the Wigner phase of normal
solid, liquid, or gas-like cluster structure to the NG phase of
Bose–Einstein α cluster condensate, is defined and is highly
needed. In such a model, it is essential to treat the Nambu–
Goldstone (NG) operators or zero-mode operators rigorously
for the systems with a finite number of bosons like the three
α bosons in the Hoyle state. In a previous work [29], we
proposed an α cluster model, in which an order parameter of
a BEC of α clusters is defined based on quantum field theory
with a spontaneous breakdown of the global phase symmetry,
and we applied it to the Hoyle and excited states above it in
12C, assuming 100% condensation of the three α clusters. In
the present paper, we show, with a realistically smaller but
significant amount of condensation probability around 70%,
that the Hoyle state and the excited states are well understood
as a Bose–Einstein condensate of α clusters.

It has been well known that the α cluster structure persists
not only in light nuclei but also in medium-heavy nuclei, most
typically in the 44Ti region [6,10–12], where j -j coupling
becomes important due to the strong spin-orbit force. The
collective motion such as superdeformation, for example,
in 36Ar and 38Ar, can also be understood to be caused by
clustering [39,40]. The α cluster structure study around 48Cr
in the fp-shell region was done in Refs. [41–43]. The α
cluster condensation in the sd-shell region up to 40Ca and
in heavier nuclei including 52Fe was studied in Ref. [44]
and Refs. [45–49], respectively. In the present work, we

study the BEC of Nα clusters with N = 3–13, i.e., 12C, 16O,
20Ne, 24Mg28Si, 32S,36Ar, 40Ca, 44Ti, 48Cr, and 52Fe. We
show that collective states of the zero-mode operators, which
are new-type soft modes due to BEC of α clusters, emerge
systematically. In 12C the observed excited 0+

3 and 0+
4 states

with a well-developed α cluster structure above the Hoyle
state can be interpreted as such soft modes of the zero-mode
operators associated with the SSB of the global phase of the
Bose–Einstein condensate of α clusters. This interpretation is
in contrast with the traditional interpretations based on the
geometrical picture of α clusters in configuration space.

The organization of the paper is as follows: In Secs. II and
III, the formulation of the present model is given in detail.
Section II is devoted to the formulation of a cluster model with
an order parameter that characterizes the phase transition from
the Wigner phase of the normal α cluster state to the Bose–
Einstein condensate of the NG phase of a finite number of α
clusters in the frame of quantum field theory. The zero-mode
operators due to SSB of the global phase is treated rigorously,
keeping the canonical commutation relations. Section III is
devoted to the formulation of the Bogoliubov–de Gennes
equation. In Sec. IV, the electric transition probabilities for the
Bose–Einstein condensate states are formulated. In Sec. V, the
BEC of three α clusters in 12C, for which many experimental
data are available, are studied in detail under an assumption of
realistic condensation rate of 70%. In Sec. VI, the energy-level
structure, wave functions, and electric transitions of 12C at var-
ious condensation rates of α clusters, including condensation
rate of 100%, are investigated. The robustness of the energy-
level structure for the different condensation rates is shown.
In particular, the systematic appearance of the collective
states of the zero-mode operators is illustrated for different
condensation rates. We proceed with the investigations of the
BEC of many α clusters from 16O to 52Fe in Sec. VII. There
it is emphasized that the zero-mode states of the Nambu–
Goldstone mode due to BEC of α clusters is a new kind of
soft mode, which appears even in the highly excited energy
region in contrast to the concept of the traditional concept of
soft mode such as a quadrupole collective motion in the low-
excitation-energy region. We analyze the eigenequation to
determine the zero-mode states in some detail and clarify the
robustness of the spectra of the zero-mode states for various
condensation rates and numbers of α clusters. A summary is
given in Sec. VIII.

II. MODEL AND FORMULATION

The formulation was originally presented for BEC of
trapped cold atoms in Ref. [29] and is called the interacting
zero-mode formulation (IZMF). The reason for the IZMF is
explained as follows: The canonical commutation relations
of the field operator do not allow us to disregard the zero-
mode operators in finite-size systems such as in the trapped
cold atomic systems and nuclei, which is associated with
the spontaneously broken symmetry, whereas they can be
suppressed for homogeneous systems because of their point-
like contributions in the continuum. Once the zero-mode
operators, denoted by Q̂ and P̂ , are present, a naive choice of
the bilinear unperturbed Hamiltonian leads to the difficulties
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that no stationary vacuum exists and that the phase of the
order parameters should diffuse. To avoid the difficulties, we
take the nonlinear unperturbed Hamiltonian of Q̂ and P̂ . The
crucial point for our analysis on α cluster states is that this
nonlinear Hamiltonian adds a new type of discrete energy
levels with 0+ to the levels of the Bogoliubov–de Gennes
(BdG) modes with various JP . The combined spectrum of
both levels reproduces the observed energy levels above the
Hoyle state in 12C very well, by adjusting a single newly
introduced parameter of our phenomenological model, the
strength of the trapping potential.

As in Ref. [29], we start with the phenomenological model
in which the α particles are trapped inside the nuclei by the
external isotropic harmonic potential,

Vex(r ) = 1
2m�2r2, (1)

and the α-α interaction is given by the Ali–Bodmer potential
[50],

U (|x − x′|) = Vre
−μ2

r |x−x′|2 − Vae
−μ2

a |x−x′|2 . (2)

The repulsive Coulomb potential affects numerical results
very little and is suppressed in this work.

Let ψ (x) [x = (x, t )] be the field operator of the α cluster,
and the model Hamiltonian is

Ĥ =
∫

d3xψ̂†(x)

(
− ∇2

2m
+ Vex(x) − μ

)
ψ̂ (x)

+ 1

2

∫
d3xd3x ′ψ̂†(x)ψ̂†(x ′)U (|x − x′|)ψ̂ (x ′)ψ̂ (x),

(3)

where m and μ denote the mass of the α cluster and the
chemical potential, respectively. We set h̄ = c = 1 throughout
this paper. The total Hamiltonian Ĥ possesses the global
phase symmetry; namely, that Ĥ is invariant under ψ̂ → eiθ ψ̂
with a constant θ . When the α clusters are condensed, the
original field operator ψ̂ must be divided into a condensate
c-number component ξ and an excitation component ϕ̂, ψ̂ =
ξ + ϕ̂, according to the criterion 〈0|ψ̂ |0〉 = ξ . It is vital for
our formulation that the function ξ , called the order parameter,
is given by the vacuum expectation value of the field operator.
Note that the original gauge symmetry is spontaneously bro-
ken. The function ξ is assumed to be stationary and isotropic
in this paper and is normalized to the condensed particle
number N0 as

∫
d3x|ξ (x)|2 = N0. Any constant phase of ξ

is allowed, reflecting the original global phase symmetry, and
because physical results are not affected by its choice, we
take a real ξ throughout this paper. The Hamiltonian (3) is
classified according to power degree of ϕ̂:

Ĥ = Ĥ2 + Ĥ3,4,

Ĥ2 = 1

2

∫
d3xd3x ′ ˆ̄�(x)T (x, x′)�̂(x ′), (4)

Ĥ3,4 = 1

2

∫
d3xd3x ′U (|x − x′|)

× [{2ξ (x′) + ϕ̂†(x ′)}ϕ̂†(x)ϕ̂(x)ϕ̂(x ′) + H.c.], (5)

with t = t ′, and

VH (x) =
∫

d3x ′U (|x − x′|)ξ 2(x′), (6)

�̂(x) =
(

ϕ̂(x)

ϕ̂†(x)

)
, ˆ̄�(x) = �̂†(x)σ3, (7)

T (x, x′) =
( L(x, x′) M(x, x′)

−M(x, x′) −L(x, x′)

)
, (8)

M(x, x′) = U (|x − x′|)ξ (x)ξ (x′), (9)

L(x, x′) = δ(x − x′){−∇2/2m + Vex(x)

−μ + VH (x)} + M(x, x′), (10)

where σi (i = 1, 2, 3) is the Pauli matrix. We have the Gross–
Pitaevskii (GP) equation [51]

{−∇2/2m + Vex(x) − μ + VH (x)}ξ (x) = 0, (11)

because the ϕ̂-linear term in Ĥ must vanish, otherwise the
ground state could not be stationary.

The field operator ϕ̂ is expanded by the complete set of the
BdG eigenfunctions,∫

d3x ′T (x, x′) yn(x′) = ωn yn(x), (12)

yn(x) =
(

un(x)
vn(x)

)
. (13)

The index n = (n, 
, m) is a triad of the main, azimuthal,
and magnetic quantum numbers for isotropic ξ . Similarly, be-
cause the BdG equation is introduced for fermionic systems,
Eq. (13) is the BdG equation for bosonic systems. The bosonic
eigenfunction is normalized as

∫
d3x(|un|2 − |vn|2) = 1 [see

Eq. (16)] for the commutation relations, while the fermionic
eigenfunction is normalized as

∫
d3x(|un|2 + |vn|2) = 1 for

the anticommutation relations.
Another eigenfunction, denoted by zn, is introduced:∫

d3x ′T (x, x′)zn(x′) = −ωn zn(x), (14)

zn(x) = σ1 y∗
n(x) =

(
v∗

n(x)

u∗
n(x)

)
. (15)

The inner product is defined as ((a, b)) ≡ ∫
d3xa†(x)σ3b(x),

and the orthonormal relations are

(( yn, yn′ )) = −((zn, zn′ )) = δnn′ , (16)

(( yn, zn′ )) = 0. (17)

We also have the eigenfunction with zero eigenvalue,∫
d3x ′T (x, x′) y0(x′) = 0, y0(r ) =

(
ξ (x)

−ξ (x)

)
, (18)

which is orthogonal to all the eigenfunctions including itself,

(( y0, y0)) = (( y0, yn)) = (( y0, zn)) = 0. (19)
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For the completeness of the set of BdG eigenfunctions, the
adjoint eigenfunction y−1 is necessary:∫

d3x ′T (x, x′) y−1(x′) = I y0(x), (20)

y−1(x) =
(

η(x)
η(x)

)
, (21)

(( y−1, y−1)) = (( y−1, yn)) = (( y−1, zn)) = 0,

(22)

where the constant I is determined by the condition,

(( y−1, y0)) = 1. (23)

The function η(x) and the constant I can also be calculated as

η(x) = ∂ξ (x)

∂N0
, I = ∂μ

∂N0
. (24)

The completeness relation reads

σ3δ(x − x′) = y0(x) y†−1(x′) + y−1(x) y†0(x′)

+
∑

n

{ yn(x) y†n(x′) − zn(x)z†n(x′)}, (25)

and the field operators are expanded as

�̂(x) = − iQ̂(t ) y0(x) + P̂ (t ) y−1(x)

+
∑

n

{ân(t ) yn(x) + â†
n(t )zn(x)}, (26)

where the commutation relations

[Q̂, P̂ ] = i, [ân, â
†
n′] = δnn′ (27)

are derived from the canonical commutation relations of ϕ̂(x).
The inevitable appearance of the eigenfunction with zero

eigenvalue y0(x) and the pair of canonical operators Q̂ and P̂
is concluded from a general argument using the NG theorem.
For this, we derive the Ward–Takahashi relation, adding a
symmetry-breaking term −ε

∫
d3x{ψ̂ (x) + ψ̂†(x)} with an

infinitesimal parameter ε to the total Hamiltonian Ĥ in Eq. (3)
[52],

−2ξ (x) = −iε

∫
d4y〈0|T[{ϕ̂H (y) + ϕ̂

†
H (y)}

× {ϕ̂H (x) − ϕ̂
†
H (x)}]|0〉, (28)

where the suffix H represents the Heisenberg operator. When
ξ is a constant, Eq. (28), with the spectral form of the full
propagator, leads to the existence of a gapless mode in the
zero-momentum limit in Fourier space, which is well known
as the NG theorem for a homogeneous system. Equation (28)
for the present inhomogeneous system indicates that there
should exist an eigenfunction, whose components are propor-
tional to ξ (x). This implies the existence of y0(x), having
zero eigenvalue, and subsequently the existence of y−1(x),
as above. We are then forced to introduce Q̂ and P̂ in the ex-
pansion of the field operator. This is an implication of the NG
theorem for an inhomogeneous system. We note that P̂ is not
identical to the generator of the global phase transformation

G = ∫
d3xψ̂†(x)ψ̂ (x), which is calculated Ĝ = P̂ + d1Q̂

2 +
d2P̂

2 + · · · with constant coefficients di .
This way the pair of canonical operators Q̂ and P̂ originate

from the SSB of the global phase, and we call them the
zero-mode operators or NG operators. As was explained in
Refs. [29,53], the substitution of Eq. (26) into Eq. (4) gives
Ĥ2 = I P̂ 2/2 + ∑

n ωnâ
†
nân, whose NG operator part causes

serious defects. To avoid the defects, we replace the term
I P̂ 2/2 in the unperturbed Hamiltonian with

ĤQP
u = − (δμ + 2C2002 + 2C1111)P̂ + I − 4C1102

2
P̂ 2

+ 2C2011Q̂P̂ Q̂+ 2C1102P̂
3 +1

2
C2020Q̂

4 − 2C2011Q̂
2

+ C2002Q̂P̂ 2Q̂ + 1

2
C0202P̂

4, (29)

where

Ciji ′j ′ =
∫

d3xd3x ′U (|x − x′|){ξ (x)}i{η(x)}j

×{ξ (x′)}i ′ {η(x′)}j ′
, (30)

and δμ is a counter term that the criterion 〈0|ψ̂ |0〉 = ξ deter-
mines. The Hamiltonian HQP

u is obtained from gathering all
the terms consisting only of Q̂ and P̂ in Ĥ2 and Ĥ3,4. We set
up the eigenequation of HQP

u :

ĤQP
u |�ν〉 = Eν |�ν〉 (ν = 0, 1, . . . ). (31)

The eigenstates {|�ν〉} are collective states of Q̂ and P̂ , simply
called zero-mode states, and span their own state subspace,
referred to as the NG subspace. The state of the total system
|S〉 is expressed as a direct product,

|S〉 = |�ν〉|·〉ex, (32)

where |·〉ex is a Fock state associated with the BdG mode
operator ân. The discrete spectrum of the zero-mode states
in Eq. (31) is our original consequence that is to be compared
with the observed energy levels. We may point out a resem-
blance between the breakings of the rotational symmetry in
the deformed nuclear ground state [2] and the global phase
symmetry in our model. Because both are SSBs in finite
systems, the quantum degrees of freedom to restore the broken
symmetries appear as the zero-mode operators, which give
rise to a rotational band of the states in case of the broken
rotational symmetry and the collective states |�ν〉 with Eν in
our present case.

The vacuum state |�0〉|0〉ex is identified as the Hoyle
state just above the three-α threshold in the case of 12C.
The states |�ν〉|0〉ex (ν = 1, 2, . . . ), are NG (or zero-mode)
excited states with the excitation energy from the vacuum
Eν − E0. The excitation in the NG subspace changes neither
the value of the angular momentum J nor the sign of the
parity P . The state |�0〉(ân† |0〉ex), called the BdG state, has
the excitation energy ωn, measured from the vacuum state.

044303-4



BOSE-EINSTEIN CONDENSATION OF α CLUSTERS … PHYSICAL REVIEW C 98, 044303 (2018)

III. BOGOLIUBOV–DE GENNES EQUATION

We give the BdG equations here in some detail that was
not presented explicitly in Ref. [29]. We put the following
separable form of the BdG eigenfunction in Eq. (13):

yn(x) =
(Un
(r )
Vn
(r )

)
Y
m(θ, ϕ). (33)

For convenience the function Ũ
m(r, r ′, θ, ϕ) is introduced as

Ũ
m(r, r ′, θ, ϕ)/r ′2

≡
∫

d�′U (
√

r2 + r ′2 − 2rr ′ cos(θ ′ − θ ))Y
m(θ ′, ϕ′). (34)

For performing the surface integral, the direction of the z′
axis is taken along the vector x and then cos(θ ′ − θ ) becomes
cos θ ′. We define the eigenfunctions of L̂n = L̂ · x/r , denoted
by Yn


m(θ, ϕ), as L̂nY
n

m(θ, ϕ) = mYn


m(θ, ϕ). The Wigner D
matrix gives the following relations,

Yn

m(θ ′, ϕ′) =

∑
m′

D

,∗
m′m(ϕ, θ, 0)Y
m′ (θ ′, ϕ′), (35)

Y
m(θ ′, ϕ′) =
∑
m′

D

mm′ (ϕ, θ, 0)Yn


m′ (θ ′, ϕ′). (36)

The last relation is substituted into Eq. (34), and we integrate
it over the variable ϕ′ to have

Ũ
m(r, r ′, θ, ϕ)/r ′2

= 2πY
m(θ, ϕ)
∫ 1

−1
dwU (

√
r2 + r ′2 − 2rr ′w)P
(w), (37)

where the relation D

m0(ϕ, θ, 0) =

√
4π

2
+1Y
m(θ, ϕ) has been

used. For the isotropic ξ (x) = ξ (r ), VH in Eq. (6) is also
isotropic, given by

VH (r ) = N0√
4π

∫
dr ′Ũ00(r, r ′)ξ̃ 2(r ′), (38)

where

ξ (r ) =
√

N0

4π
ξ̃ (r ), (39)

Ũ00(r, r ′) =
√

πr ′

r

{
Vr

2μ2
r

(e−μ2
r (r−r ′ )2 − e−μ2

r (r+r ′ )2
)

− Va

2μ2
a

(e−μ2
a (r−r ′ )2 − e−μ2

a (r+r ′ )2
)

}
. (40)

The Fock term in Eq. (12) is manipulated as∫
d3x ′M(x, x′)un(x′)

= N0

4π
ξ̃ (r )

∫
dr ′ξ̃ (r ′)Un
(r ′)Ũ
m(r, r ′, θ, ϕ)

= F
[r : Un
]ξ̃ (r )Y
m(θ, ϕ), (41)

with a linear functional of f ,

F
[r : f ] = N0

2

∫
dr ′r ′2ξ̃ (r ′)f (r ′)

×
∫ 1

−1
dwU (

√
r2 + r ′2 − 2rr ′w)P
(w), (42)

and similarly for vn. The BdG equation (12) is reduced to

h
Un
(r ) + F
[r : Un
 + Vn
]ξ̃ (r ) = ωnUn
(r ), (43)

h
Vn
(r ) + F
[r : Un
 + Vn
]ξ̃ (r ) = −ωnVn
(r ), (44)

with

h
 = − 1

2m

(
d2

dr2
+ 2

r

d

dr
− 
(
 + 1)

r2

)

+ Vex(r ) − μ + VH (r ). (45)

IV. ELECTRIC TRANSITION PROBABILITIES

The formulation presented in Secs. II and III enables us to
calculate the γ -decay transitions among the states with an α
cluster condensate.

The decay rate of an electric transition with a photon
angular momentum J for an unpolarized initial state and
summing all final polarization states [1] is generally given by

�̄f i (E : k, J ) = 8π (J + 1)

J [(2J + 1)!!]2 k2J+1B(EJ : Ji → Jf ),

(46)

where k is the photon energy k = Ei − Ef , calculated from
the initial- and final-state energies of the nucleus Ei and Ef .
The symbol B stands for the reduced transition probability,

B(EJ : Ji → Jf ) = 1

2Ji + 1
|〈f (Jf )||M̂(E : kJ )||i(Ji )〉|2,

(47)

where M̂ is the multipole moment, and |i〉, |j 〉, Ji , and Jf are
the initial and final nuclear states and spins, respectively.

The transitions |�0〉(â†
12m|0〉ex) → |�0〉|0〉ex and |�1〉|0〉ex

correspond in our approach to the transitions 2+
2 → 0+

2 and 0+
3

in 12C, respectively, which will be discussed in the next sec-
tions. The reduced transition probabilities for these processes
are calculated as

B(E2 : 2 → 0) = |〈f (Jf = 0,Mf = 0)|M̂(E : k20)

× |i(Ji = 2,Mi = 0)〉|2, (48)

and we have for 2+
2 → 0+

2 ,

〈f (0, 0)|M̂(E : k20)|i(2, 0)〉

= 60e

mk3

√
N0

4π

∫
drr

[
ξ̃ (r )

{
d

dr
U12(r )j2(kr )

+U12(r )

(
j2(kr )

r
+ kj ′

2(kr )

)}

+ d

dr
ξ̃ (r )V12(r )j2(kr )

]
, (49)

and for 2+
2 → 0+

3 ,

〈f (0, 0)|M̂(E : k20)|i(2, 0)〉

= 60e

mk3

√
N0

4π

∫
drr

[
{i〈�1|Q̂|�0〉ξ̃ (r )+〈�1|P̂ |�0〉η̃(r )}

×
{

d

dr
U12(r )j2(kr ) + U12(r )

(
j2(kr )

r
+ kj ′

2(kr )

)}
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+
{
−i〈�1|Q̂|�0〉 d

dr
ξ̃ (r ) + 〈�1|P̂ |�0〉 d

dr
η̃(r )

}

×V12(r )j2(kr )

]
, (50)

where j
 is the spherical Bessel function and j ′

(z) = dj


dz
, and

η(x) = η(r ) =
√

N0
4π

η̃(r ).
The monopole E0 transition probabilities for the processes

0+
2 → 0+

3 and 0+
4 are given by

M (E0 : 0+
2 → 0+

ν+2)

=
∣∣∣∣〈�ν |2e

∫
d3xψ̂†(x)ψ̂ (x)|�0〉

∣∣∣∣
2

= 4e2|IQQ〈�ν |Q̂2|�0〉 + IPP 〈�ν |P̂ 2|�0〉
+ IP 〈�ν |P̂ |�0〉|2, (51)

where ν = 1, 2 and

IQQ =
∫

d3xr2ξ 2(x), IPP =
∫

d3xr2η2(x),

IP = 2
∫

d3xr2ξ (x)η(x). (52)

V. BOSE–EINSTEIN CONDENSATION OF ALPHA
CLUSTERS IN 12C: REALISTIC

70%-CONDENSATION CASE

First we study the BEC of α clusters in the Hoyle state
at 7.654 MeV excitation energy of 12C and the excited states
above it.

Using a three-α-cluster orthogonality condition model,
Yamada and Schuck [54] confirmed the result of Matsumura
and Suzuki [24] that about 70% of the three α particles in
the Hoyle state are sitting in the 0s state. Note that this large
probability of 70% itself, compared with a superfluid liquid
HeII, does not necessarily mean the realization of the BEC
of three-α clusters. Because these traditional cluster models
do not have an order parameter to characterize the phase
transition in its theory, it is impossible to judge in principle
whether the system is in the NG phase with its global phase
being locked. We attempt this 70%, i.e., N0 = 0.7N in our
calculations, and investigate whether the BEC is realized for
the N = 3 system.

A. Alpha-alpha and trapping potentials

The original nuclear force is supposed to fill the two sep-
arate roles in our phenomenological approach: One is to trap
the α clusters inside the nucleus, represented by the external
harmonic potential Vex(r ) in Eq. (1) with the parameter �.
The other is a residual α-α interaction, for which we take the
Ali–Bodmer potential U (r ) in Eq. (2) for the s wave, which is
specified by the four parameters, the strengths of the repulsive
and attractive parts, Vr and Va , and their respective inverse
ranges, μr and μa [50]. These four parameters have been
determined to fit the phase shifts of α-α scattering [50].

In the present calculations we adjust Vr , which is the most
sensitive to our analysis among the four parameters, while the

TABLE I. The fit parameters of � and Vr for three rms radii r̄ of
12C with N0 = 0.7N .

r̄ [fm] � [MeV] Vr [MeV] Common parameters

3.8 2.42 415 Va = 130 MeV
3.5 2.84 398 μa = 0.475 fm−1

3.2 3.38 380 μr = 0.7 fm−1

remaining parameters are kept fixed. The potential parameter
set d0 used in Ref. [50] are Va = 130 MeV, μa = 0.475 fm−1,
and μr = 0.7 fm−1. The two parameters � and Vr serve to
balance between concentration by Vex(r ) and repulsion by
U (r ), which are crucial for a stable condensate.

The vacuum state |�0〉|0〉ex is identified as the Hoyle
state in the calculations. The rms radius of the Hoyle state,
denoted by r̄ = (〈r2〉)1/2, is calculated from ξ (r ). Because
the α-cluster model calculations [21–24,35] report the range
of r̄ = 3.2–3.8 fm typically, we consider the three cases of
r̄ = 3.8, 3.5, and 3.2 fm. The two parameters � and Vr are
determined to reproduce the experimental 0+

3 state, i.e., the
first 0+ state above the Hoyle state, which is considered to be
the first NG excited state |�1〉|0〉ex.

The parameters � and Vr are given in Table I when N0 =
0.7N is assumed.

Figure 1 shows how � and Vr are constrained when r̄ is
fixed to be 3.8 fm. An increase in � requires an increase in Vr

to keep a constant r̄ , and they are related roughly as �2 ∝ Vr .
As noted in Ref. [29] where 100% condensation was assumed,
we see in Fig. 1 that the BEC for the N0 = 0.7N case also
becomes unstable when Vr is smaller than some critical value.
As displayed in Fig. 2, the parameters are determined to
reproduce the experimental excitation energy of 0+

3 from the
vacuum, E1 − E0. The parameters in Table I for r̄ = 3.5 and
3.2 fm are determined similarly.

We note that our calculations premise the stability of the
condensate. It happens that the condensate is unstable, which

FIG. 1. The relation between the confining potential parameter
� and the repulsive potential Vr for 12C is plotted for the case of r̄ =
3.8 fm with N0 = 0.7N . As shown by the vertical dashed lines, the
BEC system collapses for Vr smaller than the critical value around
310 MeV.
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FIG. 2. The energy levels of 12C calculated with N0 = 0.7N as a
function of Vr for r̄ = 3.8 fm are compared with the observed energy
levels (horizontal lines) taken from Refs. [30,31,55–58].

is seen from the fact that there is no consistent solution in
the GP equation (11) or that energy eigenvalues in the BdG
equation (12) are complex (called the dynamical instability).
In Fig. 1, there is no consistent solution of the GP equation
below Vr < 310 MeV. A very low condensation rate in general
leads to the instability of condensate.

B. Order parameter, Bogoliubov–de Gennes eigenfunctions,
and wave functions of zero-mode states

The calculated wave functions are shown in Figs. 3–5 in
sequence.

The eigenfunction with zero eigenvalue in Eq. (18) or the
order parameter in Eq. (11), ξ (r ), is shown in Fig. 3(a). In
Fig. 3(b) the adjoint eigenfunction η(r ) in Eq. (21), which
is calculated as a derivative of ξ with respect to the number
of the α clusters N0 in Eq. (24), represents the fluctuation of
the number of α clusters [59]. The |ξ (r )|2 represents the con-
densate fraction density, and the superfluid density [60–62] is
given by |ξ (r )|2/N0. In Fig. 3(c) the radial density distribution
of the condensate, defined by r2ξ 2(r )/N0 is displayed. We see
from Fig. 3(a) that the superfluid density distribution of the
condensate α clusters in the vacuum Hoyle state extends to
about 8 fm, which is consistent with the picture of the diffused
gas-like structure. As the size of the condensate becomes
larger from r̄ = 3.2 to 3.8 fm, the density in the central
region is depressed while that in the surface is enhanced.

In Fig. 3(b) we note that the number fluctuation around the
average N0 is roughly flat up to 4 fm with about 0.05, 0.045,
and 0.04 for r̄ = 3.8, 3.5, and 3.2 fm, respectively, and with
a small depression at around 2–2.5 fm, and extends to about
8 fm. The magnitude of η is considerably large even at 6 fm
compared with ξ , which means that the number fluctuation
occurs significantly not only in the central region but also
in the surface region beyond the rms radius up to about
6 fm. As seen in Fig. 3(c), the radial distribution of the
superfluid density diffuses more widely for larger size of the
condensate.

In Fig. 4 the wave functions of the first BdG excitation
modes (n = 1) with 
 = 0, 2, and 4 are shown. The radial
behavior of U1
(r ), which represents the radial extension of
the state, is rather similar to that of ξ in Fig. 3(a). The
peak position of U1
(r ) moves outward as 
 increases. This
is reasonably understood by considering that the states with
larger 
 correspond to the higher excitation energy, as seen
in Fig. 2. On the other hand, in Fig. 4 we see that V1
(r ) is
drastically small compared with U1
(r ) as 
 increases and is
strongly damped beyond r = 4 fm in the surface region for
all the cases of r̄ = 3.2–3.8 fm. The size of the condensate is
dominantly determined by the behavior of the wave function
U1
(r ). In fact, as the size of the condensate becomes larger
from r̄ = 3.2 to 3.8 fm, the peak of U1
(r ) moves outward
and the amplitude at the surface is increased, while that in
the internal region decreases. The magnitude of V1
(r ), which
represents the quantum fluctuations of the α clusters of the
condensate, decreases for larger 
. For 
 = 0 the magnitude
of V10(r ) in the internal region is not small compared with
U10(r ), which means that the quantum fluctuation is signifi-
cant for 
 = 0. The node of the U1
(r ) for 
 = 0 is due to the
orthogonality to the nodeless ξ and η.

As in Table I, Vr changes only slightly in our fitting, and
the wave functions are determined mainly by the value of �,
not by the value of Vr . It is natural, as seen in Figs. 3 and 4,
that the peaks at the center are enhanced or the peak positions
are shifted closer to the center with the higher peaks, as r̄
is smaller. We note the relation r̄ ∝ 1/

√
� there, which is

identical with the relation for the ground-state wave function
of a simple harmonic oscillation.

We introduce the eigenstate of Q̂, denoted by |q〉, as
Q̂|q〉 = q|q〉. To solve Eq. (31), we move to the q-diagonal
representation, in which the state is represented by the wave
function �ν (q ) = 〈q|�ν〉, and the operators Q̂ and P̂ are rep-
resented by q and 1

i
∂
∂q

, respectively, consistent with Eq. (27).

FIG. 3. The calculated (a) eigenfunction with zero eigenvalue ξ (r ), (b) its adjoint eigenfunction η(r ), and (c) radial density distribution of
the condensate r2|ξ (r )|2/N0 for r̄ = 3.8, 3.5, and 3.2 fm with N0 = 0.7N in 12C.

044303-7



R. KATSURAGI et al. PHYSICAL REVIEW C 98, 044303 (2018)

FIG. 4. Numerically calculated BdG wave functions, U1
(r ) (solid lines) and V1
(r ) (dashed lines) for (a) 
 = 0, (b) 
 = 2, and (c) 
 = 4
for r̄ = 3.8, 3.5, and 3.2 fm with N0 = 0.7N in 12C. In the legends of the figures, the suffix n = 1 is omitted and only 
 is given for U1


and V1
.

Figure 5 represents |�ν (q )|2 (ν = 0, 1, 2) numerically calcu-
lated. We see that the excitation of the NG mode is caused
by the nodal excitation of �ν (q ) with respect to q in the NG
subspace. It is important to note that this nodal excitation is
anharmonic as seen in ĤQP

u in Eq. (29), which brings the
excitation energy of the ν = 1 state lower and closer to the
vacuum, and the ν = 2 state closer to the ν = 1 state in Fig. 2
(and Fig. 13 later). In fact, in Fig. 2 (Fig. 13) the energy
intervals between the ν = 0 and ν = 1 states, and between the
ν = 1 and ν = 2 states are smaller than those for other higher
NG mode states for ν > 2. It is worth noting that the NG wave
functions and the NG excitation energies depend very little on
r̄ and �. This is because the coefficients of ĤQP

u in Eq. (29)
include the �-dependent ξ (r ) and η(r ) only in the integrands
and the integration values are insensitive to �. On the other
hand, the coefficients of ĤQP

u have a factor Vr , and the NG
energy levels rise with an increasing Vr .

C. Electronic transition probabilities

Using the obtained wave functions, the reduced transition
probabilities in Eq. (47) with Eqs. (48) and (49) and the
monopole transition probabilities in Eq. (51) are calculated
numerically. The results are summarized in Table II in com-
parison with other theoretical calculations in Refs. [35] and
[28]. There the parameters are � = 2.42 MeV and Vr =
415 MeV in the case of r̄ = 3.8 fm in Table I. We note the
difference of our results between the E2 transitions 2+

2 → 0+
2

and 2+
2 → 0+

3 : Whereas the former is the transition to change
only the BdG state, the latter involves transition in both of the
NG and BdG states. The difference between the two monopole
transitions 0+

2 → 0+
3 and 0+

2 → 0+
4 is explained as follows:

The most dominant term Ip〈�ν |P̂ |�0〉 interferes with the
other two terms constructively in the former, but destructively
in the latter.

VI. ROBUSTNESS OF BOSE–EINSTEIN CONDENSATE
STRUCTURE OF 12C VS CONDENSATION RATES

So far it has been assumed that the α clusters inside 12C are
condensed with N0 = 0.7N based on the preceding cluster-
model calculations [24,54] that about 70% of three-α clusters
inside 12C are in the 0s state. However, experimentally, the
condensation rate has not been directly measured. Therefore it
seems important to investigate whether the structure obtained
under 70% condensation is robust for the different conden-
sation rates. Here we study and compare the three cases of
condensation, N0 = 3.0 (condensation rate 100%), 2.5 (83%),
and 2.0 (67%) in 12C.

A. Three cases of condensation rate: N0 = 3, 2.5, and 2

Similarly as in the previous section, we determine the
confining and α-α potentials by adjusting the parameters of
� and Vr , for different N0 with r̄ = 3.8 [fm] and E1. The
obtained potential parameters are summarized in Table III.
The values of � and Vr depend only slightly on N0.

In Fig. 6 the calculated energy levels of 12C for different
three condensation rates are displayed. The zero-mode excita-
tion levels remain constant or rise only slightly as N0 becomes
smaller. This is because r̄ and Vr are fixed and the fitted �

is therefore almost constant for varying N0. This shows that
the nature of the low-lying zero-mode states just above the
Hoyle state, the experimental 0+

3 and the 0+
4 states, is robust

FIG. 5. The squares of numerically calculated wave functions of the zero-mode states, (a) |�0(q )|2, (b) |�1(q )|2, and (c) |�2(q )|2, for
r̄ = 3.8, 3.5, and 3.2 fm with N0 = 0.7N in 12C.
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TABLE II. Calculated reduced transition probabilities B(E2 :
2 → 0) and monopole transition probabilities M (E0 : 0 → 0) in 12C
with 70% and 100% (see Sec. VI B) condensation in units of e2 fm4

and fm2, respectively, are displayed in comparison with Ref. [35] and
Ref. [28].

Transition 70% 100% Ref. [35] Ref. [28]

B(E2 : 2+
2 → 0+

2 ) 107 132 100 295–340

B(E2 : 2+
2 → 0+

3 ) 147 122 310 88–220

M (E0 : 0+
2 → 0+

3 ) 1.59 2.34 34.5 2.0

M (E0 : 0+
2 → 0+

4 ) 0.072 0.145 0.57

with respect to the changes of the condensation rates. On
the other hand, the BdG excitation energies decrease only
slightly as N0 becomes smaller. This is reasonable because
the Hartree and Fock terms of the self-interaction in BdG
equations (43) and (44), which push up energy levels due to a
dominant contribution of the repulsive force, are proportional
to N0. This is also understood as follows: Because � becomes
smaller as N0 decreases as in Table III, the BdG vibrational
energy becomes smaller. As a result, the choice of N0 =
2.0, about 70% condensation, gives the most favorable BdG
energy levels in our calculations.

B. Detailed study of 100%-condensation case

To see how the energy-level structure, wave functions, and
electric transitions, calculated with N0 = 0.7N in the previous
section, are affected for the different three condensation rates,
we focus on comparing them here with those in the 100%-
condensation case. A brief result of 100% condensation has
been given in Ref. [29]. We present here the results rather
in detail because it was found that there were small errors in
numerical calculations involving the BdG modes with 
 = 2
and 4, although the results for the zero-mode states and the
BdG modes with 
 = 0 are not altered.

As shown in Fig. 7, the two parameters � and Vr are con-
strained for N0 = N when r̄ is fixed to be 3.8 fm, similarly to
the N0 = 0.7N case in Fig. 1. The parameters are determined
as in Fig. 8, similarly to the 70% case in Fig. 2, and the
obtained parameters are given in Table IV.

1. Energy levels

The energy levels, calculated from the parameters in Ta-
ble IV, are displayed for each of r̄ = 3.8, 3.5, and 3.2 fm
in Fig. 9. The 0+

4 state is reproduced well as the second NG

TABLE III. The fit parameters of � and Vr used in the calcula-
tions with three different condensation rates of N0 = 3.0, 2.5, and
2.0 in 12C with fixed r̄ = 3.8 fm.

N0 � [MeV] Vr [MeV] Common parameters

3.0 2.62 403 Va = 130 MeV
2.5 2.53 410 μa = 0.475 fm−1

2.0 2.40 417 μr = 0.7 fm−1

FIG. 6. The energy levels of 12C calculated with the parameters
in Table III for the three condensation rates, N0 = 3.0 (100%), 2.5
(83%), and 2.0 (67%), with fixed r̄ = 3.8 fm.

excited state |�2〉|0〉ex, which is similar to the N0 = 0.7N case
for the whole calculated range of r̄ . The calculated levels of
the 2+

2 and 4+
1 states are identified as the lowest excitations

of the BdG modes with 
 = 2 and 
 = 4, respectively. The
BdG energy levels show that the levels increase for smaller r̄ .
The increase in � affects more dominantly the levels than the
decrease in Vr , similarly to the 70% condensation case.

2. The order parameter, Bogoliubov–de Gennes eigenfunctions,
and wave functions of the zero-mode states

The results of the calculated wave functions with 100%
condensation are shown in sequence. The eigenfunction with
zero eigenvalue in Eq. (18) or the order parameter in Eq. (11),
ξ (r ), and its adjoint eigenfunction η(r ) in Eq. (21) are de-
picted in Figs. 10(a) and 10(b), respectively. The radial density
distribution of the condensate is also shown in Fig. 10(c). By
comparing Figs. 3 and 10, we see that the essential features
of the behavior of ξ (r ) and η(r ) with r̄ = 3.8, 3.5, and 3.2 fm
change little, irrespective of the condensation rates of 70%

FIG. 7. The relation between the confining potential parameter
� and the repulsion potential Vr for 12C is plotted for the case of
r̄ = 3.8 fm with 100% condensation (N0 = N ).
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FIG. 8. The energy levels of 12C calculated with 100% con-
densation (N0 = N ) as a function of Vr for r̄ = 3.8 fm are com-
pared with the observed energy levels (horizontal lines) taken from
Refs. [30,31,55–58].

and 100%. In Fig. 11 the wave functions of the first BdG
excitation modes (n = 1) with 
 = 0, 2, and 4 are displayed.
We see that the features of the BdG wave functions there
for the three different sizes of the condensate with r̄ = 3.8,
3.5, and 3.2 fm are similar to those in Fig. 4 with conden-
sation rate 70%. Figure 12 represents |�ν (q )|2 (ν = 0, 1, 2),
numerically calculated from solving Eq. (31). The probability
densities |�ν (q )|2 (ν = 0, 1, 2) depend very little on r̄ (i.e.,
�). Furthermore, we see that Fig. 12 resembles closely Fig. 5
for all the three cases with r̄ = 3.8, 3.5, and 3.2 fm. This
means that the wave functions of the zero-mode states depend
little on the size of the condensate and condensation rate.
This is parallel to the result that the excitation energies of
the low-lying zero-mode states are almost independent of the
condensate size and the condensation rates. This is understood
when we consider that the origin of the zero-mode states is
due to the SSB of the global phase of the condensate, which
is independent of both the sizes and the condensation rates of
the system.

3. Electronic transition probabilities

Calculated B(E2) and M (E0) values are displayed in the
column of Table II.

We note there that, as the condensation rate increases from
70% to 100%, the E2 transition of 2+

2 → 0+
2 increases from

107 to 132, while the transition of 2+
2 → 0+

3 decreases from
147 to 122. Also the ratio B(E2 : 2+

2 → 0+
2 )/B(E2 : 2+

2 →
0+

3 ) changes from 0.73 to 1.08. With increasing condensation

TABLE IV. The fit parameters of � and Vr for the three rms radii
r̄ = 3.8, 3.5, and 3.2 fm of 12C with 100% condensation (N0 = N ).

r̄ [fm] � [MeV] Vr [MeV] Common parameters

3.8 2.62 403 Va = 130 MeV
3.5 3.10 389 μa = 0.475 fm−1

3.2 3.77 375 μr = 0.7 fm−1

FIG. 9. The energy levels of 12C, calculated from the parameters
in Table IV with fixed 100% condensation (N0 = N ) for r̄ = 3.8, 3.5,
and 3.2 fm, are compared with the experimental energy levels from
Refs. [30,31,55–58]. Vac, ZM, and BdG mean the vacuum Hoyle
state, zero-mode states, and BdG excited states, respectively.

rate the transition of 2+
2 → 0+

2 is enhanced more than the
2+

2 → 0+
3 transition.

As for the monopole transitions, the strength of the
monopole transition probabilities increases with increasing
condensation rate, while the condensation rate does not much
affect the ratio M (E0 : 0+

2 → 0+
3 )/M (E0 : 0+

2 → 0+
4 ).

Thus, in our approach, the relative ratio of the E2 tran-
sitions and the strength of the E0 transitions sensitively
reflects the condensation probabilities. The sensitivity of these
quantities of the transitions may serve to the experimental
determination of condensation rate of the Hoyle state. This
sensitivity of the relative ratio of the E2 transitions is related
to the vibrational nature of the BdG 2+ state.

C. Energy levels of 12C

In Fig. 13 the energy levels calculated with the parameters
in Table I for each of r̄ = 3.8, 3.5, and 3.2 fm are shown in
comparison with the experimental energy levels. The 0+

4 state
is identified as the second NG excited state |�2〉|0〉ex, and its
predicted energy level agrees well with the observed value for
the whole calculated range of r̄ . The small excitation energy
of 0+

3 state, less than 2 MeV, from the Hoyle, and the similar
small energy between the 0+

4 and 0+
3 states are consistent with

the picture that these two 0+ states are due to the collective
states of the NG operators. The almost-same small excitation
energy of the two 0+ states despite of the change of the size
of the vacuum Hoyle state also supports the conclusion that
they are the zero-mode states due to the SSB of the global
phase of the vacuum. On the other hand, the calculated energy
levels 2+ and 4+ of the lowest excitations of the BdG modes
with 
 = 2 and 
 = 4 correspond to the observed 2+

2 and 4+
1

states, respectively. The agreement between the calculations
and experiment is better for r̄ = 3.8 fm and deteriorates for
r̄ = 3.5 and 3.2 fm because the excitation energy increases
with a larger � value in Table I in accordance with the
vibrational nature of these states. Thus, the observed 2+

2 and
4+

1 states are both interpreted as vibrational states on the BEC
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FIG. 10. Numerically calculated (a) ξ (r ), (b) η(r ), and (c) the radial density distribution of the condensate r2|ξ (r )|2/N0 with r̄ = 3.8, 3.5,
and 3.2 fm for100% condensation (N0 = N ).

Hoyle state. The BdG energy levels in Fig. 13 show that the
levels increase for smaller r̄ . The increase in � affects more
dominantly the levels than the decrease in Vr .

D. Robustness of the zero-mode states for various
condensation rates

We found that the energy levels in the realistic 70%-
condensation case barely change from those in the 100%-
condensation case. This means that, in much smaller conden-
sation rates such as 50%, 30%, and 20%, the similar zero-
mode states could appear. Although the condensation rate in
12C is reported to be as large as more than 60% in the theoret-
ical cluster-model calculations, it is intriguing to calculate the
energy-level structure under such hypothetical condensation
rates, because in heavier mass region such as 52Fe, in which
we are interested from the viewpoint of universality of BEC
of α cluster, the condensation rate could be much smaller than
12C.

Figure 14 displays the energy levels calculated under con-
densation rates of 20%, 30%, and 50% in comparison with
those of 70% and 100%. We see that the structure of the
energy levels of the first two low-lying zero-mode states does
not depend on the condensation rate, even for the smaller
condensation rates. This is naturally understood because the
zero-mode states emerge once the global symmetry is sponta-
neously broken.

As for the BdG modes the excitation energy decreases as
the condensation rate decreases. However, the electric transi-
tions to the BdG states are rather sensitive to the condensation
rate of the three-α clusters in 12C. The transition probability
changes, depending on the coefficient C2020 of the Q4 term

in Eq. (29). As seen in Fig. 15, this term is overwhelmingly
larger than other terms.

It is worth noting that Bose–Einstein condensation of α
clusters occurs even when the condensation rate is not 100%.
In such a case, α clusters that are not involved in condensation
are sitting at the excited higher energy levels other than the
lowest 0s state of the trapping potential. This partial involve-
ment of α clusters in causing the Bose–Einstein condensation
of α clusters reminds us the superfluidity of liquid HeII, in
which the observation of the momentum distribution by neu-
tron inelastic scattering [63] showed that only about 13% of
the atoms are in the lowest state at 1 K and others are staying
at the excited states. Also in the superfluid nuclei in the heavy-
mass region where the paring interaction is strong, Cooper
pairs created only near the Fermi surface are responsible for
causing superfluidity of nuclei. Many other nucleons are not
needed to be paired as a Cooper pair. In fact, even several
valence nucleons in the open shells outside the inert core in
heavy nuclei cause superfluidity [2,64,65]. The present theo-
retical finding that Bose–Einstein condensation of α clusters is
caused by partial condensation of α cluster as small as 20%–
30% in nuclei seems to be similar to Bose–Einstein condensa-
tion in other systems in nature. This is interesting and impor-
tant, suggesting that α-cluster condensation may be realized
in a wide range of mass regions in nuclei and also could be in
nuclear matter and α-cluster matter [66–68] at low densities.

VII. BOSE–EINSTEIN CONDENSATION OF MANY
ALPHA CLUSTERS IN 16O–52Fe

There is no reason that the BEC of α clusters be limited
to the Hoyle and the related states of three-α clusters, N =

FIG. 11. Numerically calculated BdG wave functions, U1
(r ) (solid lines), and V1
(r ) (dashed lines) for (a) 
 = 0, (b) 
 = 2, and (c) 
 = 4,
with r̄ = 3.8, 3.5, and 3.2 fm for100% condensation (N0 = N ).
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FIG. 12. The squares of numerically calculated wave functions of the zero-mode states, (a) |�0(q )|2, (b) |�1(q )|2, and (c) |�2(q )|2, with
r̄ = 3.8, 3.5, and 3.2 fm for100% condensation (N0 = N ).

3. It may occur for multi-α-cluster systems with N > 3.
Experimental and theoretical efforts have been devoted to
search for such condensate states in heavier nuclei. Exper-
imentally, however, it is not easy to detect multi-α clusters
emitted with very low kinetic energies near the threshold in
coincidence. Also, it is not easy technically for the micro-
scopic cluster models such as the resonating group method
and generator coordinate method to solve the multi-α-cluster
problems up to N = 13 systematically. On the other hand,
the present field-theoretical superfluid α-cluster model, in
which the order parameter is embedded, has no difficulty in
application to nuclei with a large number of α clusters like
N = 13.

For 16O with N = 4, experimentally much attention has
been paid to four-α-cluster states with a linear chain structure
for more than a decade since the observation by Chavallier
et al. [69]. In Ref. [70] it was shown in the unified descrip-
tion of nuclear rainbows in α + 12C scattering and α-cluster
structures in the bound and quasibound low-energy region of
16O that the four-α-cluster states that have been considered to
be a linear chain structure can be interpreted to have the α +
12C (0+

2 ) structure in α-cluster condensation. The observed
0+ state at 15.1 MeV just above the four-α threshold was

FIG. 13. The energy levels of 12C, calculated from the parame-
ters in Table I with fixed N0 = 0.7N for r̄ = 3.8, 3.5, and 3.2 fm are
compared with the experimental energy levels from Refs. [30,31,55–
58]. Vac, ZM, and BdG mean the vacuum Hoyle state, zero-mode
states, and BdG excited states, respectively.

suggested to be a Hoyle analog four-α condensate, similarly to
the four-α-cluster orthogonality-condition model calculations
in Ref. [71]. As for the four-α linear chain structure in 16O,
recent calculations suggest that their excitation energy is much
higher than ever considered and as high as above 30 MeV
[72,73]. Itoh et al. [74] reported 386 MeV inelastic α scat-
tering to search for a four-α condensate in 16O and observed
two 0+ states at 16.7 MeV with the α + 12C(0+

2 ) structure and
18.8 MeV with the 8Be + 8Be structure just above the four-α
threshold.

Beyond 16O, Freer et al. [75] searched for an α-
condensate state in 20Ne by detecting five-α clusters in
the 12C(12C, 8Be + 12C(0+

2 ))4He reactions and observed two
20Ne resonances at 35.2 and 36.5 MeV. A theoretical study
of four- and five-α condensates in 16O and 20Ne, using a
quasi-Schuck wave function, was made by Itagaki et al. [76].
Kawabata et al. [77] searched for six-α condensates in 24Mg in
400 MeV inelastic α scattering. Two-α-cluster condensation
in 24Mg and a three-α-cluster condensation in 28Si were theo-
retically discussed by using a quasi-Schuck wave function in
Refs. [78,79]. Akimune et al. [80] reported a search for nine-α
clusters in 36Ar. Also, von Oertzen et al. [45–49] discussed
the observed experimental signature of α condensation in 52Fe
and studied the three-α-cluster structure around the 40Ca core.
Akimune et al. [81] made inelastic α scattering from 56Ni in
inverse kinematics to observe an α-condensate state in 56Ni
and strongly suggested the existence of an α gas state at
high excitation energies in 56Ni. von Oertzen [82] discussed
the conditions for a phase change with the formation of an

FIG. 14. The energy levels of 12C calculated with different con-
densation rates with r̄ = 3.8 fm.
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FIG. 15. How the coefficient Ciji′j ′ of the zero-mode Hamilto-
nian in Eq. (29) change in the calculations of Fig. 14 with different
condensation rates of the three-α clusters in 12C is displayed.

α-cluster condensate in excited compound nuclei up to 164Pb
based on the systematics for binding energies per α cluster
in N = Z nuclei. These investigations are encouraging and
suggestive; however, no clear experimental evidence of a BEC
of α clusters such as α-cluster superfluidity or the α-cluster
Josephson effect has been reported yet. It is therefore im-
portant and intriguing to explore, based on a firm theoretical
frame of superfluid cluster model with an order parameter,
the BEC of α clusters systematically in heavier-mass regions
beyond N = 3.

A. 100%-condensation case

We calculate the energy levels of Nα clusters of 16O in the
0p shell, 20Ne–40Ca (N = 4–10) in the sd-shell of the light
mass region, and 44Ti–52Fe (N = 11–13) in the fp shell of
the medium-heavy–mass region.

It is an unfounded claim that the parameters � and Vr are
independent of N in our phenomenological model, but we
have no general argument to determine their N dependencies.
Here we presume that r̄ behaves as N1/3, similarly as r̄ of the
ordinary nuclei is proportional to A1/3 with A being the mass
number. Fixing Vr = 400 MeV, we adjust � for each N in
such a manner that r̄ behaves as N1/3. Figure 16 shows the N
dependence of � thus obtained, which is represented by the
curve � = 5.4N−0.65.

In Fig. 17 the energy levels, given by calculations using
this N -dependent �, are displayed. Figure 17 predicts the first
zero-mode state for each N below 2 MeV near the threshold
energy, whose energy decreases as N becomes larger and
which is expected to be observed in experiment. We note
that, for N > 7, the spectrum of the low-lying zero-mode
states becomes very similar. We therefore expect that similar
zero-mode states would appear in heavier nucleus beyond
52Fe.

B. 70%-condensation case

We have assumed 100% α-cluster condensation N0 = N
above, but in reality the condensation rate may not be nec-

FIG. 16. The N dependence of � of the confining poten-
tial, which is used in the energy-level calculations of N = 3–13
(12C–52Fe) in Fig. 17, is displayed by crosses. This is obtained
under a constraint r̄ ∝ N 1/3 and with fixed Vr = 400 MeV for 100%
condensation. The solid curve 5.4N−0.65 is to guide the eye.

essarily 100% and may change from nucleus to nucleus.
Similarly to 12C in the previous sections, we here consider
a case where Nα clusters are condensed only partly, i.e., a
typical case of N0 = 0.7N .

We attempt to determine the parameter � for each N in
such a manner that r̄ is proportional to N1/3, setting Vr = 400
MeV and N0 = 0.7N . The N dependence of � is shown in
Fig. 18 and is traced by the curve � = 4.70N−0.60. In Fig. 19
the energy levels calculated in the case of 70% condensation
with the N -dependent � is displayed. From Figs. 17 and 19,
we see that the energy-level structure is affected little by the
condensation rate.

C. New soft mode of Bose–Einstein condensation
of alpha clusters

The zero-mode operator due to the BEC of α clusters
emerge universally for any N , if α clusters are condensed only
partly. Even under a condensation rate as small 20%–30%,
which may be likely in the actual nuclei, we have the zero
mode, consisting of a series of zero-mode states associated
with the zero-mode operators, in the same way as in the
previous sections. It is also noted that the first excited zero-
mode state appears less than 2 MeV above the threshold sys-
tematically for all the nuclei investigated here. The 0+ states,
identified as members states of the zero-mode states, with low
excitation energy can be regarded as a soft mode. This is a
new kind of soft mode due to the BEC of α clusters and has
never been known in nuclei. The systematic appearance of
this soft mode in a wide range of nuclei including the light-
and heavy-mass regions is natural, since it originates from the
locking of the global phase in gauge space that violates the
number conservation.

The emergence of a soft mode in physical systems has
been well known [83]. The soft modes, by its definition [83],
appear at low excitation energy from the ground state. In
nuclei a soft mode of quadrupole collective motion appears in
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FIG. 17. The energy levels calculated for N = 3–13 (12C–52Fe) with 100% condensation using the N -dependent � given in Fig. 16.
Excitation energy is measured from the Hoyle-analog vacuum, i.e., the N -alpha condensate state near the N -alpha threshold.

heavy nuclei under the quadrupole force. Then the NG zero
mode connected to the spontaneous breaking of rotational
symmetry plays a crucial role in the rotational motion [2].
Also pairing vibration and pairing rotation [64,65,84] are a
soft mode in heavy superfluid nuclei in gauge space (number
space) due to the spontaneous breaking of particle-number
symmetry caused by the paring interaction, i.e., condensation
of the Cooper pairs. The soft modes in hadronic systems have
been studied extensively; see, for example, Ref. [85].

The vibrational and rotational collective motion due to α
clustering, accompanied by SSB in Euclidean space, have
been known. The vibrational motion is a radial (higher nodal)
excitation of the relative motion and the rotational motion

FIG. 18. The N dependence of � of the confining potential in
case of N0 = 0.7N , which is used in the energy-level calculations
of N = 3–13 (12C–52Fe) in Fig. 19, is displayed by crosses. This is
obtained under a constraint r̄ ∝ N 1/3 and with fixed Vr = 400 MeV.
The solid curve 4.70N−0.60 is to guide the eye.

is due to the deformation caused by clustering. They have
been observed in experiment, for example, typically as the
N = 10 higher nodal band and the parity doublet bands with
the α + 16O cluster structure in 20Ne [86], and the N = 14
higher nodal band and the parity doublet bands with the
α + 40Ca cluster structure in 44Ti [10]. Here N = 2n + 
,
with n and 
 being the number of the nodes in the relative
wave function between the clusters and the orbital angular
momentum, respectively. However, no collective motion with
soft-mode nature related to α-cluster condensation and SSB
has been known so far. The collective states with low exci-
tation energies, such as the zero-mode states in the present
study, definitely possess soft-mode nature. It is noted that the
zero-mode states emerge as 0+ levels at very high excita-
tion energies as well as at low excitation energy above the
threshold.

The emergence of the well-developed 0+
3 and 0+

4 α cluster
states in 12C have been understood based on the geometrical
configuration of α clusters in the traditional microscopic
cluster models without an order parameter. For example, the
0+

3 state has been interpreted to have an α + 8Be geometrical
configuration with its relative motion being excited (higher
nodal radial excitation) [87]. The 0+

4 state has been interpreted
to have a geometrical configuration of a linear chain [88,89].
The origin of the emergence of the two 0+

3 and 0+
4 states just

above the threshold has been ascribed to the specific structure
of the 0+

2 state (the Hoyle state) in 12C. It is not clear if
such two 0+ states with low excitation energy also appear,
for example, in 16O with four alphas, 20Ne with five alphas,
24Mg with six alphas, 28Si with seven alphas, etc., before
performing microscopic many-α-cluster model calculations
and/or ab initio calculations, which are formidably difficult
nowadays for N > 4 or 5. Our viewpoint is that there may
be a profound raison d’être for the very specific structure in
12C that the collective three 0+ states with a very developed
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FIG. 19. The energy levels calculated for N = 3–13 (12C–52Fe) in the case of 70% condensation (N0 = 0.7N ) using the interaction with
N -dependent � in Fig. 18. Excitation energy is measured from the Hoyle-analog vacuum, i.e., the N -alpha-condensate state near the N -alpha
threshold.

dilute α-cluster structure appear nearby within a couple of
MeV just above the threshold. In other words, there may
be an underlying fundamental principle related to symmetry
that causes this specific structure in 12C because emergence
of a collective motion with low excitation energy is often
related to an underlying symmetry of the system [83,90–92].
In the present systematic calculations from A = 12–52, it is
found that the two 0+ states appear just above the vacuum
0+ state (analog of the Hoyle state) inevitably and universally
as the zero-mode states of the NG operators [90–92]. The
present calculations have shown that, even in the three-α-
cluster system of 12C, these gas-like 0+

3 and 0+
4 states can

be understood as a collective motion that originates from the
fundamental principle of SSB of the global phase. This is
important because it enables us to expect the existence of such
a gas-like α cluster states of BEC in the NG phase universally
in light and heavy nuclei, which was never expected in the
Ikeda diagram [93] in the configuration space considered in
the Wigner phase. The emergence of the low-lying two 0+
states above the Hoyle state is not accidental to 12C but has a
profound physical meaning of SSB of the global phase, which
may persist as a emergence of a new kind of soft mode in light
and heavy nuclei. It is interesting to search for experimentally
not only the first two soft-mode 0+ states, which are observed
in 12C, but also higher members of low-lying soft-mode states
of the Nambu–Goldstone mode in light and heavy nuclei.

D. Characteristic of the zero-mode spectrum

The spectrum of the zero-mode states or collective states of
the NG operators is derived from Eq. (31). There, the Hamil-
tonian ĤQP

u in Eq. (29) is specified by the six coefficients
Ciji ′j ′ defined in Eq. (30) and the parameter I in Eq. (24).
In the most naive estimation, which is valid for large N0

and in which ξ (r ) and η(r ) behave as
√

N0 and 1/
√

N0,
respectively, the N dependencies are C2020 ∝ N2

0 , C2011 ∝
N1

0 , C2002, C1111 ∝ N0
0 , C1102, I ∝ N−1

0 , and C0202 ∝ N−2
0 ,

respectively. The results of actual numerical calculations for
the coefficients Ciji ′j ′ and I , ranging from N0 = 2 to 13, are
given in Fig. 20, indicating that the hierarchical order of the
magnitudes is C2020 > C2011 > I > C2002, C1111 > C1102 >
C0202 for the whole range of N0 and that C1102 and C0202 are
negligible.

The dominant contribution in ĤQP
u comes from the Q̂4

term with C2020, and the P̂ 2 term cannot be neglected due to
the virial theorem. Thus, the leading-order zero-mode Hamil-
tonian is the Hamiltonian for a one-dimensional quantum-

FIG. 20. The N0 dependencies of Ciji′j ′ and I with the param-
eters Vr = 403 [MeV], � = 2.62 [MeV] and for N0 = 2–14 are
shown. The two coefficients C1102 and C0202 that are smaller than
C1111 are not plotted.
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FIG. 21. The q4 potential and the eigenfunctions �ν (q ) belong-
ing to the eigenvalues Eν (ν = 0, 1, 2) for Ĥ

QP
0 .

mechanical system under the Q̂4 potential,

Ĥ
QP
0 = I

2
P̂ 2 + 1

2
C2020Q̂

4. (53)

Figure 21 outlines the q4 potential and the eigenfunctions
�ν (q ) belonging to the eigenvalues Eν (ν = 0, 1, 2) for Ĥ

QP
0 .

The eigenvalues for Ĥ
QP
0 depend only on a single parameter

of a dimension of energy w = (I 2C2020)1/3. This is because
Ĥ

QP
0 becomes

Ĥ
QP
0 = I ′

2

(
P̂ ′)2 + 1

2
C ′

2020Q̂
4, (54)

with I ′ = s2I and C ′
2020 = C2020/s

4 when the scale trans-
formation with a dimensionless parameter s, Q̂′ = sQ̂ and
P̂ ′ = P̂ /s, keeping [Q̂′, P̂ ′] = 1, is performed. According to
numerical calculations, the parameter w shows a very weak
N0 dependence as N−0.08

0 and is almost constant. This implies
that the spectrum of the zero-mode states are almost the same
regardless of the value of N0 at this level of approximation, as
in Fig. 22(a).

The terms of the next orders in ĤQP
u are

Ĥ
QP
1 = 2C2011Q̂P̂ Q̂ − 2C2011Q̂

2, (55)

Ĥ
QP
2 = −2(C2002 + C1111)P̂ + C2002Q̂P̂ 2Q̂. (56)

We see that Ĥ
QP
1 pushes down Eν , while Ĥ

QP
2 pushes up

Eν , both larger for larger ν. The calculated spectrum of
Ĥ

QP
0 + Ĥ

QP
1 + Ĥ

QP
2 that approximates ĤQP

u well is plotted
in Fig. 22(b). It is seen there that the spectrum is almost
independent of N0 and that the corrections by Ĥ

QP
1 + Ĥ

QP
2

shift the spectrum of Ĥ
QP
0 downwards for all ν and N0.

We remark on the interpretations of Q̂ and P̂ , and the
excitations in �ν (q ). When the quantum fluctuation of Q̂
is small, it may be interpreted as the phase operator, as
(1 − iQ̂)ξ � e−iQ̂ξ , and the localization of �0(q ) around
q = 0 corresponds to the phase locking. The excited wave
functions �ν (q )(ν = 1, 2,) are extended more widely as ν
goes up, which implies that the excitation in the zero-mode
sector loosens the phase locking. However, the interpretation
of Q̂ as the phase operator is valid only for small quantum
fluctuations. As quantum fluctuations of Q̂ and P̂ become
large due to the finite size of the system, the simple interpre-

FIG. 22. Numerically calculated excitation energies Eν − E0 of
(a) Ĥ

QP
0 and (b) Ĥ

QP
0 + Ĥ

QP
1 + Ĥ

QP
2 are plotted for ν = 1–5

and N0 = 3, 6, 9, 12 with the parameters Vr = 403 [MeV] and
� = 2.62 [MeV].

tation that Q̂ and P̂ are the phase operator and the generator
of the phase transformation, respectively, breaks down. The
operators Q̂ and P̂ should be treated as the canonical coor-
dinate and momentum in a fictitious one-dimensional space,
as is indicated by the field expansion in Eq. (26) and the
commutation relation Eq. (27).

The analysis of this section serves as a general grasp of
the energy levels of the 0+ states, identified as the zero-mode
states, in Figs. 13, 6, 9, 14, 17, and 19.

VIII. SUMMARY

Bose–Einstein condensation (BEC) of α clusters in light-
and medium-heavy 4N nuclei is studied in the frame of the
field-theoretical superfluid cluster model. There it is crucial
that the order parameter is expressed as the vacuum expec-
tation of the field operator explicitly. The order parameter
is a superfluid amplitude that satisfies the Gross–Pitaevskii
equation and characterizes the phase transition from the nor-
mal α cluster state in the Wigner phase to the Nambu–
Goldstone phase with Bose–Einstein condensate of α clusters.
The Nambu–Goldstone operators (zero-mode operators) due
to spontaneous symmetry breaking of the global phase in the
finite number of α clusters is rigorously treated. We have
analyzed the α cluster structure in 12C, assuming a realistic
condensation rate. It is found that the energy levels of the α
cluster structure above the Hoyle state are well reproduced.
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The well-developed 2+ and 4+ states are understood to be
Bogoliubov–de Gennes vibrational modes built on the Hoyle
state rather than a rotational band. The calculations at various
condensation rates have revealed that the similar energy-level
structures appear repeatedly once the BEC is realized, even if
the condensation rate is not very large.

It is found in the superfluid cluster model with the order
parameter that the two gas-like collective 0+

3 and 0+
4 states

above the Hoyle state in 12C, which have been understood in
the traditional cluster models based on a geometrical configu-
ration space, can be understood as a manifestation of the emer-
gence of the zero mode that has a profound field-theoretical
physical meaning of the locking of the global phase in the
gauge space. The present theory of 12C was extended to Nα
nuclei, 16O–52Fe, in light- and medium-heavy–mass region,
assuming different condensation rates of α clusters. Then,
due to spontaneous symmetry breaking, we similarly have the
zero-mode operators and the associated zero-mode states in
these nuclei, even if the condensation rates are not very large.
The energy-level structure of the zero-mode 0+ states change
little, depending on N and the condensation rates. This means
that the collective 0+ states with low excitation energy appear
systematically above the threshold energy in light and heavy
nuclei. They are a new kind of soft-mode states due to the

BEC of α clusters. It is highly expected to search for such a
soft mode in experiment.

The field-theoretical superfluid cluster model may be ap-
plicable to much heavier nuclei beyond the present study.
It is expected that the new zero-mode states, originating
from the spontaneous symmetry breaking of the global phase
of the superfluid α clusters in nuclei may persist throughout
the periodic table from light nuclei to heavy nuclei. The
application of the present field-theoretical superfluid cluster
model study to the heavy-mass region around 212Po is a future
challenging subject.
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