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The Gamow-Teller (GT) matrix element contributing to tritium β decay is calculated with trinucleon wave
functions obtained from hyperspherical-harmonics solutions of the Schrödinger equation with the chiral two- and
three-nucleon interactions including � intermediate states that have recently been constructed in configuration
space. Predictions up to next-to-next-to-next-to-leading order (N3LO) in the chiral expansion of the axial current
(with �’s) overestimate the empirical value by 1–4%. By exploiting the relation between the low-energy constant
(LEC) in the contact three-nucleon interaction and two-body axial current, we provide new determinations of the
LECs cD and cE that characterize this interaction by fitting the trinucleon binding energy and tritium GT matrix
element. Some of the implications that the resulting models of three-nucleon interactions have on the spectra of
light nuclei and the equation of state of neutron matter are briefly discussed. We also provide a partial analysis,
which ignores �’s, of the contributions due to loop corrections in the axial current at next-to-next-to-next-to-
next-to-leading order (N4LO). Finally, explicit expressions for the axial current up to N4LO have been derived
in configuration space, which other researchers in the field may find useful.
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I. INTRODUCTION

Tritium β decay and the Gamow-Teller (GT) matrix ele-
ment contributing to it have provided, over the past several
decades, a testing ground for models of the nuclear axial
current and, in particular, for the role that many-body weak
transition operators beyond the leading one-body GT operator
play in this matrix element [1–5] as well as in the closely
related one entering the cross section of the basic solar burning
reaction 1H(p, e+νe )2H [4–7] (in this connection, the first
calculation of these processes in lattice quantum chromody-
namics reported last year by the NPLQCD Collaboration [8]
should also be noted). More recently, the development of chi-
ral effective field theory (χEFT) has led to a re-examination
of these weak transitions within such a framework [9–
13] (as well as in formulations in which the pion degrees
of freedom are integrated out—so-called pionless effective
field theory [14,15]). An important advantage of χEFT over
older approaches based on meson-exchange phenomenology

*Deceased.

[16–18] has been in having established a relation between
the three-nucleon (3N ) interaction and the two-nucleon (2N )
axial current [19,20], specifically between the low-energy
constant (LEC) cD (in standard notation) in the 3N contact
interaction [21] and the LEC in the 2N contact axial cur-
rent [20]. Thus, this makes it possible to use nuclear properties
governed by either the strong or weak interactions to constrain
simultaneously the 3N interaction and 2N axial current.

In this context, the present study addresses two topics. The
first consists in an assessment of how well the experimental
value of the 3H GT matrix element is reproduced in calcu-
lations based on nuclear Hamiltonians with the recently con-
structed chiral 2N and 3N interactions [22,23]. These interac-
tions, which are local in configuration space, have long-range
parts mediated by one- and two-pion exchange (denoted as
OPE and TPE, respectively), including �-isobar intermediate
states, up to next-to-next-to-leading order (N2LO) in the 2N
case, and up to next-to-leading order (NLO) in the 3N case
in the chiral expansion. The 2N and 3N short-range parts are
parametrized by contact interactions up to, respectively, next-
to-next-to-next-to-leading order (N3LO) [22] and NLO [23].
In particular, the LECs cD and cE which characterize the
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3N contact terms have been fitted to the trinucleon binding
energies and neutron-deuteron (nd) doublet scattering length.
As shown below, the predicted GT matrix element with these
interactions and accompanying axial currents is a few percent
larger than the empirical value.

The second topic deals with a determination of cD and
cE in which we fit, rather than the scattering length, the 3H
GT matrix element. Because of the much reduced correlation
between binding energies and the GT matrix element, this
procedure leads to a more robust determination of cD and
cE than attained in the previous fit. The axial current here
includes OPE terms with � intermediate states up to N3LO
in the chiral counting of Ref. [24]. The resulting values of cD

and cE are rather different from those obtained earlier [23],
and the implications that these newly calibrated models of
the 3N interaction have on the spectra of light nuclei and
the equation of state of neutron matter are currently being
investigated [25] (note that an error in the relation given in
the original Ref. [20] between the contact-axial-current LEC
and cD has been corrected [26]).

Related issues which we also explore in this work are (i)
the magnitude of contributions to the axial current beyond
N3LO owing to loop corrections induced by TPE and (ii) the
extent to which these contributions impact the 3H GT matrix
element and, in particular, modify the values of cD and cE .
Since currently available derivations of TPE axial currents in
χEFT [24,27] do not explicitly include �’s, our comments
regarding these two questions should be viewed, at this stage,
as preliminary. Nevertheless, we believe that, even within the
context of such an incomplete analysis, it is possible to draw
some conclusions, especially in reference to the convergence
pattern of the chiral expansion for the axial current.

This paper is organized as follows. In Sec. II, we discuss
briefly the local chiral interactions of Refs. [22,28] and list ex-
plicit expressions in configuration space for the axial current
up to N3LO. While the latter are well known [10], they are re-
ported here for completeness and clarity of presentation, par-
ticularly in view of the regularization scheme in configuration
space that has been adopted for consistency with the interac-
tions. In Sec. III, we present predictions for the 3H GT matrix
element obtained with the LECs cD and cE of Ref. [23], and in
Sec. IV, we report a new set of values for these LECs resulting
from fitting the GT matrix element and 3H/3He binding ener-
gies. In Sec. V, we provide configuration-space expressions
for the loop corrections of the axial current at N4LO [24,27]
and estimates of their contributions. The actual derivation
of these expressions, which to the best of our knowledge
were previously not known, is relegated in Appendix A; the
resulting N4LO current has a simple structure, which we hope
will encourage its use by other researchers in the field. Finally,
we offer some concluding remarks in Sec. VI.

II. INTERACTIONS AND AXIAL CURRENTS UP TO N3LO
IN CONFIGURATION SPACE

In recent years, local chiral 2N interactions have been
derived [22,28,29] in configuration space, primarily for use in
quantum Monte Carlo calculations of light nuclei and neutron-
matter properties [23,30–35]. Here we focus on the family of

(a) (b) (e) (f) (g)(c) (d)

(h) (i) (j) (k) (l) (m) (n) (o) (p)

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (l) (m) (n) (o) (p)(j) (k)

FIG. 1. OPE and TPE contributions at LO (a), NLO [(b)–(g)],
and N2LO [(h)–(p)]. Nucleons, � isobars, and pions are denoted,
respectively, by the solid, thick solid, and dashed lines; note that
both direct and crossed box contributions are retained in diagrams
(d), (f)–(g), (k), and (n)–(p). The open circles denote πN and πN�

couplings from the subleading chiral Lagrangians L(2)
πN [36] and

L(2)
πN� [37].

interactions constructed by our group [22]. These are written
as the sum of an electromagnetic-interaction component, in-
cluding up to quadratic terms in the fine-structure constant
and a strong-interaction component characterized by long-
and short-range parts. The long-range part includes OPE and
TPE terms up to N2LO in the chiral expansion [28], derived
in the static limit from leading and subleading πN [36] and
πN� [37] chiral Lagrangians; see Fig. 1. In coordinate space,
this long-range part is represented by charge-independent
central, spin, and tensor components with and without isospin
dependence τ i · τ j (the so-called v6 operator structure) and by
charge-independence-breaking central and tensor components
induced by OPE and proportional to the isotensor opera-
tor Tij = 3 τ z

i τ z
j − τ i · τ j . The radial functions multiplying

these operators are singular at the origin and are regularized
by a cutoff of the form given by

CRL (r ) = 1 − 1

(r/RL)p e(r−RL )/aL + 1
, (2.1)

where aL = RL/2 and the exponent p is taken as p = 6.
The short-range part is described by charge-independent

contact interactions up to N3LO, specified by a total of 20
LECs, and charge-dependent ones up to NLO, characterized
by 6 LECs [22]. By utilizing Fierz identities, the resulting
charge-independent interaction can be made to contain, in
addition to the v6 operator structure, spin-orbit, L2 (L is
the relative orbital angular momentum), and quadratic spin-
orbit components, while the charge-dependent one retains
central, tensor, and spin-orbit components. Both are reg-
ularized by multiplication of a Gaussian cutoff CRS (r ) =
exp[−(r/RS)2]/(π3/2R3

S) as in the contact axial current of
Eq. (2.11) below.

Two classes of interactions were constructed, which only
differ in the range of laboratory energy over which the fits to
the 2N database [38] were carried out, either 0–125 MeV in
class I or 0–200 MeV in class II. For each class, three different
sets of cutoff radii (RS, RL) were considered: (RS, RL) =
(0.8, 1.2) fm in set a, (0.7,1.0) fm in set b, and (0.6,0.8) fm
in set c. The χ2/datum achieved by the fits in class I (II)
was �1.1 (�1.4) for a total of about 2700 (3700) data points.
We have been referring to these high-quality 2N interactions
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generically as the Norfolk vij ’s (NV2s) and have been desig-
nating those in class I as NV2-Ia, NV2-Ib, and NV2-Ic and
those in class II as NV2-IIa, NV2-IIb, and NV2-IIc. Owing to
the poor convergence of the hyperspherical-harmonics (HH)
expansion and the severe fermion-sign problem of the Green’s
function Monte Carlo (GFMC) method, however, models
Ic and IIc have not been used (at least, not yet) in actual
calculations of light nuclei.

The NV2s were found to underbind, in GFMC calcula-
tions, the ground-state energies of nuclei with A = 3–6 [22].
To remedy this shortcoming, in Ref. [23] we constructed the
leading 3N interaction in a χEFT, including � intermediate
states. It consists [21] of a long-range piece mediated by TPE
at LO and NLO and a short-range piece parametrized in terms
of two contact interactions, which enter formally at NLO.
The two (adimensional) LECs cD and cE , which characterize
these latter interactions, were determined in HH calculations
by simultaneously reproducing the experimental trinucleon
ground-state energies and the nd doublet scattering length for
each of the 2N models considered, namely, Ia and Ib, and IIa
and IIb. It was then shown [23] that the Hamiltonian based on
the interactions NV2+3-Ia led, in GFMC calculations, to an
excellent description of the spectra of light nuclei in the mass
range A = 4–12, including their level ordering and spin-orbit
splittings. It has since become clear [25] that the other models
(NV2+3-Ib, etc.) do not provide a description of these spectra
as satisfactory as that obtained with NV2+3-Ia.

Nuclear axial currents have been derived up to one loop
(or N4LO1) in a χEFT formulation with nucleons and pions
by Park et al. [39] in heavy-baryon perturbation theory in the
early 1990s, and more recently in time-ordered perturbation
theory in Refs. [24,27] (differences between these last two
derivations obtained in the N4LO currents are discussed in
Sec. V). The inclusion of �-isobar degrees of freedom is
straightforward up to N3LO, and the representative set of
contributions is illustrated by the diagrams in Fig. 2. We
are not aware, however, of formal derivations of the two-
body (and three-body) axial currents at N4LO, which include
explicitly nucleons, pions, and �’s.

We observe that momentum-space expressions for
Figs. 2(a) and 2(b), 2(c) and 2(d), 2(i) and 2(j), and 2(k)

1It is useful to comment at this stage on a confusing notational
inconsistency in the power counting ascribed to interactions and
currents. On the one hand, following the customary practice in the
literature, we have been referring to two-body interaction terms of
increasing order in the power counting as LO, NLO, N2LO, and
N3LO with, respectively, power scaling Q0, Q2, Q3, and Q4 in a
two-body system, and to three-body interaction terms as LO and
NLO with scaling Q−1 and Q0 in a three-body system. On the other
hand, we denote axial-current terms as LO, N2LO, N3LO, and N4LO
which scale, respectively, as Q−3, Q−1, Q0, and Q1 (in a two-body
system). This notational mismatch between interactions and currents,
however, should not obscure the fact that, at least as far as the
long-range part of the interactions from OPE and TPE is concerned,
there is formal consistency in the power counting between these
interactions and currents in the calculations reported in the next two
sections.

(a) (b)

(c) (d) (e) (f) (g) (h)

(i) (j) (k) (l)

LO

N2LO

N3LO

FIG. 2. Diagrams illustrating the contributions to the axial cur-
rent up to N3LO (Q0). Nucleons, � isobars, pions, and external
fields are denoted by solid, thick solid, dashed, and wavy lines,
respectively. The squares in panels (c) and (d) represent relativistic
corrections, while the dots in panels (i) and (j) denote vertices
implied by the L(2)

πN chiral Lagrangian. Only a single time ordering
is shown. Note that the contact contributions in panels (g) and (h)
vanish.

and 2(l) are listed in Ref. [24] in Eqs. (3.14), (5.1)–(5.2),
(5.5)–(5.6), and (5.4), respectively; the contributions of Figs.
2(g) and 2(h) vanish, while those of Figs. 2(e) and 2(f) read

jN2LO
5,a (�) = j�5,a − q

q2 + m2
π

q · j�5,a, (2.2)

where

j�5,a = gA

2 f 2
π

[
2 c�

3 τj,a kj + c�
4 (τ i × τ j )aσ i × kj

]
× σ j · kj

1

ω2
j

+ (i � j ), (2.3)

with the LECs c�
3 and c�

4 given by

c�
3 = − h2

A

9 m�N

, c�
4 = h2

A

18 m�N

. (2.4)

Here gA and hA are nucleon and nucleon-to-� axial cou-
pling constants (gA = 1.2723 and hA = 2.74), fπ and m�N

are the pion-decay constant and �-nucleon mass difference
(fπ = 92.4 MeV and m�N = 293.1 MeV), σ i and τ i are
the spin and isospin Pauli matrices of nucleon i, pi and p′

i are
its initial and final momenta with the pion energy ωi and pion
momentum ki defined as ωi =

√
k2
i + m2

π and ki = p′
i − pi ,

and ki + kj = q, where q is the external field momentum.
These N3LO currents are free of the ambiguities originat-

ing from the nonuniqueness of transition amplitudes off the
energy shell which affect the currents at loop level [24,27]
(or N4LO). In particular, they are conserved in the static limit
order by order in the power counting when mπ = 0 (i.e., in
the chiral limit), as shown explicitly in Ref. [24].

We provide below the configuration-space expressions for
these currents, ignoring pion-pole terms which contribute
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negligibly to the observable under consideration in the present
work. The LO term, which scales as Q−3 in the power
counting (Q denotes generically a low-momentum scale),
reads

jLO
5,a (q) = −gA

2
τi,a σ i eiq·ri + (i � j ), (2.5)

while the N2LO and N3LO terms (scaling, respectively, as
Q−1 and Q0) are written as

jN2LO
5,a (q) = jN2LO

5,a (q; RC) + jN2LO
5,a (q; �), (2.6)

jN3LO
5,a (q) = jN3LO

5,a (q; OPE) + jN3LO
5,a (q; CT), (2.7)

where

jN2LO
5,a (q; RC) = gA

8 m2
τi,a{pi × (σ i × pi ) , eiq·ri } + gA

8 m2
τi,a eiq·ri (i q × pi + q σ i · q/2) + (i � j ), (2.8)

jN2LO
5,a (q; �) = −ei q·ri (τ i × τ j )a

[
I (1)

(
μij ; α�

1

)
σ i × σ j + I (2)

(
μij ; α�

1

)
σ i × r̂ij σ j · r̂ij

]
− eiq·ri τj,a

[
I (1)

(
μij ; α�

2

)
σ j + I (2)

(
μij ; α�

2

)
r̂ij σ j · r̂ij

] + (i � j ), (2.9)

and

jN3LO
5,a (q; OPE) = −ei q·ri (τ i × τ j )a[I (1)(μij ; α1) σ i × σ j + I (2)(μij ; α1) σ i × r̂ij σ j · r̂ij ]

− eiq·ri τj,a[I (1)(μij ; α2) σ j + I (2)(μij ; α2) r̂ij σ j · r̂ij ] − (τ i × τ j )a
1

2 mπ

{pi , eiq·ri Ĩ (1)(μij ; α̃1) σ j · r̂ij }

− i(τ i × τ j )a eiq·ri Ĩ (1)(μij ; α̃2) σ i × q
mπ

σ j · r̂ij + (i � j ), (2.10)

jN3LO
5,a (q; CT) = z0 ei q·Rij

e−z2
ij

π3/2
(τ i × τ j )a (σ i × σ j ), (2.11)

and pk = −i ∇k is the momentum operator of nucleon k,
{. . . , . . . } denotes the anticommutator,

rij = ri − rj , Rij = (
ri + rj

)
/2, (2.12)

μij = mπrij , zij = rij /RS, (2.13)

and the δ function in the contact axial current has been
smeared by replacing it with a Gaussian cutoff of range
RS [22,28]. The adimensional LEC z0 is given by

z0 = gA

2

m2
π

f 2
π

1

(mπ RS)3

[
− mπ

4 gA �χ

cD

+ mπ

3

(
c3 + c�

3 + 2 c4 + 2 c�
4

) + mπ

6 m

]
, (2.14)

where cD denotes the LEC multiplying one of the contact
terms in the three-nucleon interaction [21], and it should be
noted that the combination c�

3 + 2 c�
4 vanishes. It has recently

been realized [26] that the relation between z0 and cD had
been given erroneously in the original reference [20], a minus
(–) sign and a factor 1/4 were missing in the term proportional
to cD . The various correlation functions are defined as

I (1)(μ; α) = −α (1 + μ)
e−μ

μ3
, (2.15)

I (2)(μ; α) = α (3 + 3 μ + μ2)
e−μ

μ3
, (2.16)

Ĩ (1)(μ; α̃) = −α̃ (1 + μ)
e−μ

μ2
, (2.17)

where

α�
1 = gA

8 π

m3
π

f 2
π

c�
4 , α�

2 = gA

4 π

m3
π

f 2
π

c�
3 , (2.18)

α1 = gA

8 π

m3
π

f 2
π

(
c4 + 1

4 m

)
, α2 = gA

4 π

m3
π

f 2
π

c3, (2.19)

α̃1 = gA

16 π

m3
π

m f 2
π

, α̃2 = gA

32 π

m3
π

m f 2
π

(c6 + 1), (2.20)

mπ and m are the pion and nucleon masses, �χ = 1 GeV,
and the LECs c3, c4, and c6 have the values [28,37]

c3 = −0.79 GeV−1, c4 = 1.33 GeV−1, c6 = 5.83.

(2.21)

Each correlation function above is regularized by multiplica-
tion of a configuration-space cutoff as in the case of the local
chiral potentials of Refs. [22,28], namely

X(1,2)(mπr ) −→ CRL (r ) X(1,2)(mπr ), (2.22)

and X stands for I or Ĩ . Finally, charge-raising (+) or charge-
lowering (−) currents are obtained from j5,± = j5,x ± i j5,y ,
and hereafter, we define the isospin combinations

τi,± = (τi,x ± i τi,y )/2, (2.23)

(τ 1 × τ 2)± = (τ 1 × τ 2)x ± i (τ 1 × τ 2)y. (2.24)

III. 3H β DECAY WITH LOCAL CHIRAL INTERACTIONS

Given the value of cD , the axial current is fully con-
strained, since the LEC z0 in the contact term is fixed via
Eq. (2.14). The evaluation of the tritium Gamow-Teller (GT)
matrix element is carried out by Monte Carlo integration [12],
and statistical errors are less than 1% for each individual
contribution (in fact, at the level of a few parts in 10−4 for
the LO). Predictions obtained with the Hamiltonian models
NV2+3-Ia/b and NV2+3-IIa/b and at vanishing momentum
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TABLE I. Contributions to the GT matrix element in tritium β

decay obtained with chiral axial currents up to N3LO and HH wave
functions corresponding to the NV2+3-Ia/b and NV2+3-IIa/b chiral
Hamiltonians. The experimental value is 0.9511 ± 0.0013 [12], to
be compared to the sum of these contributions (row labeled TOT).
Also listed are the cD and cE values of the contact terms in the three-
nucleon interactions of these Hamiltonians [23].

Ia Ib IIa IIb

cD 3.666 −2.061 1.278 −4.480
cE −1.638 −0.982 −1.029 −0.412
LO 0.9248 0.9237 0.9249 0.9259
N2LO(�) 0.0401 0.0586 0.0406 0.0589
N2LO(RC) −0.0055 −0.0063 −0.0059 −0.0077
N3LO(OPE) 0.0327 0.0457 0.0330 0.0462
N3LO(CT) −0.0036 −0.0487 −0.0249 −0.0668
TOT 0.9885 0.9730 0.9677 0.9565

transfer (q = 0) are reported in Table I. The experimental
value, as obtained in the analysis of Ref. [12], is GTexp =
0.9511 ± 0.0013; it is underestimated at LO by all models
at the 3% level, but is overestimated by �4% in the N3LO
calculations. As can be surmised from the difference between
models a and b in both classes I and II, the LO contribution
is very weakly dependent on the pair of cutoff radii (RS, RL),
characterizing the two- and three-nucleon interactions from
which the 3H and 3He HH wave functions are derived. In
contrast, the cutoff dependence is much more pronounced in
the case of the N2LO and N3LO contributions, since for these
the short- and long-range regulators directly enter the cor-
relation functions of the corresponding transition operators.
The N2LO(RC) correction, which is nominally suppressed
by two powers of the expansion parameter Q/�χ , being
inversely proportional to the square of the nucleon mass, itself
of order �χ , is in fact further suppressed than the naive N2LO
power counting would imply. Indeed, it is almost an order of
magnitude smaller, and of opposite sign, than the N2LO(�)
contribution.

The sum of the N2LO(�) and N3LO(OPE) contributions
in Table I should be compared to the N3LO(OPE) contri-
bution reported in Ref. [12] for the combinations of the
Entem and Machleidt (momentum-space) 2N interactions at
N3LO [40,41] and the Epelbaum et al. 3N interactions at
LO [21] (i.e., the TPE piece proportional to c1, c3, and c4,
and the cD and cE contact terms). In that work, �-isobar
degrees of freedom were included implicitly, as reflected by
the much larger values (in magnitude) considered for the
LECs c3 and c4. We found in Ref. [12] the N3LO(OPE)
contribution to be 0.0082 (0.00043) or 0.0579 (0.0652) with
the momentum-space cutoff � = 500 (600) MeV depending
on which c3-c4 set was used, either the values reported by
Entem and Machleidt [41] in the first case or the recent
determinations by Hoferichter and collaborators [42] in the
second case. Here, we obtain values in the range 0.073–0.104,
with the lower (upper) limit corresponding to models a (b).
As we noted in Ref. [12], there are cancellations between
the individual terms proportional to c3 and c4, which make
their sum very sensitive to the actual values adopted for these

TABLE II. Contributions of four different parametrizations of the
contact axial current to the GT matrix element in tritium. The first
row is the same as listed in Table I.

Ia Ib IIa IIb

CT1 −0.0036 −0.0487 −0.0249 −0.0668
CT2 −0.0037 −0.0493 −0.0252 −0.0677
CT3 −0.0036 −0.0487 −0.0249 −0.0669
CT4 −0.0036 −0.0482 −0.0246 −0.0660

LECs. Nevertheless, it would appear that the present results
are close to those obtained in that work with the c3 and c4

values from Ref. [42].
The magnitude (and sign) of the N3LO(CT) contribution

results from the product of the matrix element∑
i�j

〈
3He| e−z2

ij (τ i × τ j )+(σ i × σ j )z|3H
〉
< 0, (3.1)

and magnitude and sign of the LEC z0, which is proportional
to

z0 ∝ − mπ

4 gA �χ

cD + mπ

3
(c3 + 2 c4) + mπ

6 m

� 0.1105 − 0.0271 cD. (3.2)

For the cD values corresponding to the interactions NV2+3-
Ia/b and NV2+3-IIa/b, we find that the N3LO(CT) contri-
bution is negative overall. Because of the cancellation in z0

between the constant term and the term proportional to cD in
Eq. (3.2), its magnitude is accidentally very small for model
Ia.

The N3LO(CT) contribution is only very marginally af-
fected by the operator structure adopted for the contact axial
current, more specifically

jN3LO
5,+ (CT1) = z0

e−z2
ij

π3/2
(τ i × τ j )+ (σ i × σ j ), (3.3)

jN3LO
5,+ (CT2) = 4 z0

e−z2
ij

π3/2
(σ i τi,+ + σ j τj,+), (3.4)

jN3LO
5,+ (CT3) = 2 z0

e−z2
ij

π3/2
(σ i − σ j )(τi,+ − τj,+), (3.5)

jN3LO
5,+ (CT4) = −4 z0

e−z2
ij

π3/2
(σ i τj,+ + σ j τi,+), (3.6)

where the isospin-raising operators are defined as in
Eq. (2.23). These structures, which are Fierz equivalent in
the absence of the cutoff, are no longer so when the latter is
included. The contributions corresponding to the set above are
reported in Table II.

IV. REFITTING cD WITH LOCAL CHIRAL
INTERACTIONS

In this section, we determine the LECs cD and cE in
the three-nucleon contact interaction, as parametrized in
Ref. [23], by fitting the experimental trinucleon binding
energies and central value of the 3H GT matrix element. We
designate these new LECs as c∗

D and c∗
E . The fit is carried out

as in Refs. [12,43]. We span a broad range of values in cD ,
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FIG. 3. Upper panel: The calculated ratio GTth/GTexp as func-
tion of cD (solid line; each point on this line reproduces the trinucleon
binding energies). Lower panel: The cD-cE trajectories obtained by
fitting the experimental trinucleon binding energies (solid line) and
nd doublet scattering length (dashed line) (the intercept of these two
lines gives the cD and cE values that reproduce these two observables
simultaneously). The NV2+3-Ia chiral interactions are used here for
illustration. The values of 8.475 and 7.725 MeV and 0.645 ± 0.010
fm [44] are used for the 3H and 3He binding energies and nd scatter-
ing length, respectively. Note that these energies have been corrected
for the small contributions (+7 keV in 3H and −7 keV in 3He)
due to the n-p mass difference [45]. The band (left panel) results
from experimental uncertainty GTEXP, which has conservatively been
doubled.

and, in correspondence to each cD in this range, determine
cE so as to reproduce the binding energy of either 3H or 3He.
The resulting trajectories are nearly indistinguishable [12,43].
Then, for each set of (cD, cE ), the triton and 3He wave
functions are calculated and the GT matrix element, denoted
as GTth, is obtained, by including in the axial current
contributions up to N3LO. The ratio GTth/GTexp for the case
of the NV2+3-Ia interactions is shown in Fig. 3 (left panel),
where the band reflects the uncertainty resulting from the
experimental error on GTexp, which, conservatively, has been
doubled. The LECs (c∗

D, c∗
E ) that reproduce GTexp (its central

value) and the trinucleon binding energies are reported in
Table III, along with the axial current contributions at LO,

TABLE III. The values c∗
D and c∗

E obtained by fitting the ex-
perimental trinucleon binding energies and central value of the 3H
GT matrix element with chiral axial currents up to N3LO and HH
wave functions corresponding to the NV2+3-Ia∗/b∗ and NV2+3-
IIa∗/b∗ chiral Hamiltonians. Also reported are the contributions at
LO, N2LO, N3LO(OPE), and N3LO(CT).

Ia∗ Ib∗ IIa∗ IIb∗

c∗
D −0.635 −4.71 −0.61 −5.25

c∗
E −0.09 0.55 −0.35 0.05

LO 0.9272 0.9247 0.9261 0.9263
N2LO 0.0345 0.0517 0.0345 0.0515
N3LO(OPE) 0.0327 0.0454 0.0330 0.0465
N3LO(CT) −0.0435 −0.0715 −0.0432 −0.0737

N2LO, and N3LO. In Table IV, we provide the range of
(c∗

D, c∗
E ) values compatible with the experimental error on

GTexp. The 3N interactions corresponding to the new set of
(c∗

D, c∗
E ) are denoted with ∗ hereafter.

It is interesting to compare the present (cD, cE ) trajectories
(top panel of Fig. 3) with those of Ref. [23] (lower panel),
obtained by fitting the experimental nd doublet scattering
length rather than GTexp. The strategy adopted in the present
work appears to be more robust than that of Ref. [23],
since there the strong correlation between binding energy and
scattering length makes the simultaneous determination of
(cD, cE ) problematic. This difficulty is removed here.

The most striking difference between the previous and
present determinations of LECs is in the values of cE and
c∗
E , in particular the fact that c∗

E is quite small in magnitude
and not consistently negative as obtained in Ref. [23]. A
negative cE leads to a repulsive contribution for the associated
three-nucleon contact interaction in light nuclei [23], but to an
attractive one in pure neutron matter. Indeed, auxiliary-field
diffusion Monte Carlo (AFDMC) calculations show [25] that
the large and negative cE value for model NV2+3-Ia (cE =
−1.638) turns out to be disastrous in neutron matter, since it
leads to collapse already at moderate densities (at ρ � ρ0 =
0.16 neutron/fm3). Thus, even though this model reproduces
quite well the low-lying spectra of nuclei in the mass range
A = 4–12, it cannot sustain the existence of neutron stars of
twice solar masses, and is therefore at variance with recent
observations [46,47]. The present determinations (the c∗

E’s)
will mitigate, if not resolve, this issue [25]. Furthermore,
because of their smallness (in magnitude), they will very
substantially reduce the cutoff dependence seen in AFDMC
calculations of the neutron-matter equation of state at high
densities [32]. There are also first indications that these new

TABLE IV. The range of c∗
D and c∗

E values allowed by the
experimental error on GTexp (note that this error has conservatively
been doubled). The lower and upper limits correspond to GTexp −/+
error, respectively.

Ia∗ Ib∗ IIa∗ IIb∗

c∗
D (−0.89, −0.38) (−4.99, −4.42) (−0.89, −0.33) (−5.56,−4.94)

c∗
E (−0.01, −0.17) (+0.70, +0.40) (−0.25, −0.45) (+0.23,−0.13)
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models, NV2+3-Ia∗/b∗ and NV2+3-IIa∗/b∗, predict light-
nuclei spectra in reasonable agreement with experimental
data [25].

There is a large variation between the c∗
D values obtained

with models NV2+3-Ia∗/IIa∗ and those with models NV2+3-
Ib∗/IIb∗, which simply reflects the cutoff dependence of the
N2LO(�), N3LO(OPE), and N3LO(CT) contributions (see
Table III). The cutoff radii (RS, RL) are (0.8,1.2) fm for the
former (a models) and (0.7,1.0) fm for the latter (b models).
As a consequence, the N2LO(�) and N3LO(OPE) contribu-
tions, which both have the same (positive) sign, increase the
LO contribution and lead to an overestimate of GTexp. This
offset is then corrected by the N3LO(CT) contribution. In
contrast to the earlier fits [23], we find the present determi-
nations of c∗

D to be consistently negative, which make the
term in the three-nucleon contact interaction proportional to it
repulsive in both light nuclei and nuclear and neutron matter.
However, because of its one-pion leg, it is highly sensitive
to tensor correlations induced by the 2N interaction, so its
contribution in neutron matter, where such correlations are
weak, is noticeably reduced.

V. ESTIMATE OF AXIAL CURRENT
CONTRIBUTIONS AT N4LO

In this section, we provide estimates of N4LO corrections
to the GT matrix element in 3H. As already noted above, these
estimates are incomplete, since the calculations reported here
ignore � intermediate states in the axial current at N4LO.
Nevertheless, it is interesting to have an approximate estimate
for the magnitude of the presently known corrections at this
order. As a by-product of this effort, we also obtain analyt-
ical expressions in configuration space for these corrections,
which other researchers in the field may find useful.

The (static part of the) axial current at N4LO was given in
the Baroni et al. papers and accompanying errata [12,24]. It
is written as the sum of three terms: the first (labeled OPE)
represents loop corrections to the OPE axial current, the sec-
ond (labeled TPE) represents genuine TPE contributions, and
the last (labeled CT) includes contact contributions induced
by the regularization scheme in configuration space we have
adopted (see the appendix for a discussion),

jN4LO
5,a (q) = jOPE

5,a (q) + jTPE
5,a (q) + jCT

5,a (q), (5.1)

where

jOPE
5,a (q) = eiq·ri 1

9 (τ i × τ j )a[I (1)(μij ; β ) σ i × σ j + I (2)(μij ; β ) σ i × r̂ij σ j · r̂ij ]

− eiq·ri τj,a[I (1)(μij ; β ) σ j + I (2)(μij ; β ) r̂ij σ j · r̂ij ] + (i � j ), (5.2)

jTPE
5,a (q) = eiq·ri τj,a

[
F

(0)
1 (λij ) σ i − F

(1)
2 (λij ) σ i − F

(2)
2 (λij ) r̂ij σ i · r̂ij

] − eiq·ri τi,a

[
F

(1)
3 (λij ) σ j + F

(2)
3 (λij ) r̂ij σ j · r̂ij

]
− ei q·Rij τj,a

[
G

(0)
1 (λij ) σ j + H

(1)
1 (λij ) σ j + H

(2)
1 (λij ) r̂ij σ j · r̂ij

]
+ ei q·Rij (τ i × τ j )a

[
H

(1)
3 (λij ) σ i × σ j + H

(2)
3 (λij ) σ i × r̂ij (σ j · r̂ij )

] + (i � j ), (5.3)

jCT
5,a (q) = ei q·Rij (τ i × τ j )aI

(0)(zij ; ∞) σ i × σ j + [
eiq·ri τj,a F

(0)
1 (zij ; ∞) σ i − ei q·Rij τj,a G

(0)
1 (zij ; ∞) σ j + (i � j )

]
, (5.4)

and pion-pole contributions are provided in the appendix for
completeness. The various correlation functions, regularized
by multiplication of configuration-space cutoffs as in Sec. II
(and Refs. [22,28]), are listed in Eqs. (2.15) and (2.16) and the
appendix, Eqs. (A42)–(A51) and Eqs. (A57)–(A58); further-
more, we have defined

I (0)(zij ; ∞) = 5 g5
A

1536 π

m4
π

f 4
π

1

(mπRS)3

e−z2
ij

π3/2
(5.5)

and

β = 9 g5
A

1024 π2

m4
π

f 4
π

, λij = 2 mπ rij . (5.6)

An independent derivation of the axial current by the
Bochum group in the same χEFT framework has recently
appeared in the literature [27]. There are differences at N4LO
between this derivation and that of Ref. [24], relating to (i)
nonstatic two-body and static three-body contributions, which
were deliberately neglected in Ref. [24] but are explicitly
accounted for in Ref. [27], and (ii) a subset of static two-body

contributions, specifically those obtained from box-diagram
corrections as well as loop corrections to the OPE axial cur-
rent. These differences presumably originate from the differ-
ent prescriptions adopted in these two derivations for isolating
noniterative terms in reducible diagrams. It is plausible that
the resulting forms in the two formalisms may be related to
each other by a unitary transformation [48]. However, whether
this is indeed the case is yet to be established.

We report below the configuration-space expression for
these differences at vanishing momentum transfer. We define

� jN4LO
5,a ≡ jTOPT

5,a (q = 0) − jUT
5,a (q = 0)

∣∣
N4LO, (5.7)

where jTOPT
5,a (the superscript TOPT stands for time-ordered

perturbation theory) and jUT
5,a (the superscript UT stands for

unitary transformations) are the static N4LO contributions ob-
tained, respectively, in Refs. [12,24,27], and separate � jN4LO

5,a

as before into OPE, TPE, and associated contact terms (see
the Appendix),

� jN4LO
5,a = � jN4LO

5,a (OPE) + � jN4LO
5,a (TPE) + � jN4LO

5,a (CT),

(5.8)
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TABLE V. Contributions obtained with the Baroni et al. [24] and
Krebs et al. [27] formulations of the N4LO axial current, denoted
respectively as N4LO(B) and N4LO(K). Also listed are the OPE(B),
TPE(B), and CT(B) individual contributions of Eqs. (5.2), (5.3), and
(5.4) in the Baroni et al. formulation and the corresponding differ-
ences B-K(OPE), B-K(TPE), and B-K(CT) in the two formalisms as
given in Eqs. (5.9), (5.10), and (5.11).

Ia∗ Ib∗ IIa∗ IIb∗

N4LO(B) −0.0672 −0.0732 −0.0671 −0.0716
N4LO(K) −0.0364 −0.0540 −0.0365 −0.0543

OPE(B) −0.0045 −0.0068 −0.0046 −0.0069
TPE(B) −0.0211 −0.0326 −0.0214 −0.0338
CT(B) −0.0415 −0.0338 −0.0410 −0.0310

B-K(OPE) 0.0141 0.0196 0.0142 0.0201
B-K(TPE) 0.0018 0.0024 0.0018 0.0025
B-K(CT) −0.0467 −0.0412 −0.0466 −0.0399

where

� jN4LO
5,a (OPE) = − 7

9 (τ i × τ j )a[I (1)(μij ; β ) σ i × σ j

+ I (2)(μij ; β ) σ i × r̂ij σ j · r̂ij ]

+ 7
9τj,a[I (1)(μij ; β ) σ j

+ I (2)(μij ; β ) r̂ij σ j · r̂ij ] + (i � j ), (5.9)

� jN4LO
5,a (TPE) = −τj,a[F̃ (0)(λij ) σ i − G̃ (1)(λij ) σ i

− G̃ (2)(λij ) r̂ij σ i · r̂ij ] + (i � j ), (5.10)

� jN4LO
5,a (CT) = (τ i × τ j )aĨ

(0)(zij ; ∞) σ i × σ j

− [τj,a F̃ (0)(zij ; ∞) σ i + (i � j )]. (5.11)

The correlation functions for the TPE and CT terms are listed
in the appendix, Eqs. (A72)–(A74), (A76), and (A77).

The contributions of these N4LO corrections to the GT ma-
trix element are listed in Table V. The calculations use the HH
wave functions obtained with the Hamiltonians NV2+3Ia∗/b∗
and NV2+3IIa∗/b∗ of the previous section. In the table,
we report the jN4LO

5,a contribution as given in Eq. (5.1) and
obtained in the Baroni et al. and Krebs et al. formalisms,
rows labeled B and K respectively, as well as the breakup
of the B contribution into its three pieces associated with the
OPE, TPE, and CT terms of Eqs. (5.2), (5.3), and (5.4), rows
labeled OPE(B), TPE(B), and CT(B). We also provide the
corresponding differences between the B and K formalisms
of Eqs. (5.9), (5.10), and (5.11), rows labeled B-K(OPE),
B-K(TPE), and B-K(CT).

The contributions at N4LO are found to be relatively large
and of opposite sign than those at LO in both formalisms.
There is virtually no dependence on fitting the 2N scattering
data to higher energies (compare I to II results). One would ex-
pect also the N4LO contributions from the presently ignored
two-body (as well as three-body) terms with � intermediate
states to have a similar magnitude and to be of the same sign

as calculated in Table V. This makes the convergence pattern
of the chiral expansion problematic for this weak-transition
process. It is also apparent that there is a significant cutoff
dependence (compare the a∗ and b∗ results). Of course, this
dependence could be reabsorbed into the LEC of the contact
current by enforcing agreement with the empirical value (note
that there are no additional currents of this type that come in at
N4LO). Clearly, the values of z0 (and cD) would be radically
different from those listed in Table IV. For example, for the
Ia∗ case, these new cD values would be roughly 6.0 and 3.5
with, respectively, the Baroni et al. and Krebs et al. estimates
of the (incomplete) N4LO corrections reported in the table
above, to be compared to c∗

D = −0.635 obtained in the
previous section. Of course, these determinations assume that
cD and cE in the 3N contact interaction can be independently
fixed, which is only approximately valid. Furthermore, such
an analysis at N4LO would also call for the inclusion of loop
contributions at N2LO in the 3N interaction. Finally, we have
evaluated the contribution due to one out of the many three-
body axial-current mechanisms—specifically, the expected
leading term associated with TPE, Fig. 3(a) in Ref. [12]—and
found it to be negligible, having values in the range –0.0009
for Ia∗/IIa∗ to –0.0014 Ib∗/IIb∗.

VI. CONCLUSIONS

One of questions we have examined in this work deals with
the determination of the LECs cD and cE that characterize
the 3N interaction and nuclear axial current, in the context of
the chiral 2N and 3N interaction models with � intermediate
states we have developed over the past couple of years [22,23].
We have shown that cD and cE constrained to reproduce
the trinucleon binding energies and nd doublet scattering
length [23] lead to a few 2–4% overestimation of the em-
pirical value for the tritium GT matrix element. In contrast,
the values for these LECs obtained by replacing the scattering
length with the GT matrix element in the fitting procedure
(and denoted as c∗

D and c∗
E) are very different from—and

generally much smaller in magnitude than—those above [23].
The implications of these new determinations on the spectra
of light nuclei and the equation of state of neutron matter
have yet to be fully analyzed. However, the first indications
are [25] that the new chiral Hamiltonian models NV2+3-
Ia∗/b∗ and NV2+3-IIa∗/b∗ (with the c∗

D and c∗
E values in

the 3N contact interaction) provide a description, at least for
the set of levels in the mass range A = 4–10 examined so
far, in reasonable accord with the observed spectra. More
important, the problem of neutron-matter collapse at relatively
low density, which affects, in particular, model NV2+3-Ia
studied in detail in Ref. [23], does not occur for the current
models [25], since the |c∗

E|’s are significantly smaller than
the |cE |’s and, indeed, positive in some cases, thus leading
to repulsion in neutron matter for the associated (central) term
in the 3N contact interaction.

The other issue we have investigated concerns the size
of the contribution associated with N4LO terms in the axial
current, specifically those originating from loop corrections.
Even after making allowance for current uncertainties in
the form of some of these loop corrections obtained in the
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Baroni et al. [12,24] and Krebs et al. [27] formalisms, it
appears that their contribution is relatively large when com-
pared to that at N2LO and N3LO, which calls into question
the convergence of the chiral expansion for the axial current.
As we have already noted, the analysis at N4LO carried out
here is incomplete, since � degrees of freedom have not been
accounted for consistently in either interactions or currents at
that order. Nevertheless, there is no obvious reason, at least
not to us, to expect that axial-current terms originating from
TPE with � intermediate states would give a contribution
of opposite sign relative to that obtained currently and so
conspire to make the overall N4LO contribution small and in
line with the expected power counting. As a matter of fact, the
convergence is already problematic in going from N2LO to
N3LO (see Table III).

A future application of the interactions and currents
we have developed here will focus on the study of
weak transitions—β decays and electron- and muon-capture
processes—in light nuclei with quantum Monte Carlo meth-
ods [49]. In this context, it is interesting to note that no-core
shell-model calculations of these transitions in the A = 3–10
mass range [50,51], based on chiral interactions and currents,
find the sign of the overall correction beyond LO to be
opposite to that obtained for the same systems by Pastore
et al. [49]; the exception is tritium, for which both groups
find the same sign as the LO contribution. So, the authors of
Refs. [50,51] obtain a quenching of the nuclear GT matrix
elements for all these light nuclei but 3H (see also Ref. [52]
in connection with this issue in a calculation of 6He β decay),
while those of Ref. [49] always obtain an enhancement. It is
unclear whether this discrepancy arises from the hybrid nature
of the Pastore et al. calculation, which used phenomenological
interactions, but the chiral currents derived in Refs. [12,24]
(albeit regularized with a momentum-space cutoff).2 How-
ever, one would expect the sign of the correction beyond LO
to be the same in 3H and the other light nuclei, as indeed
obtained by Pastore et al. This expectation is based on the
fact that, say, in a GT charge-raising process, the two-body
weak transition operators primarily convert a pn pair with
total spin-isospin ST = 10 (nn pair with ST = 01) to a

pp pair with ST = 01 (pn pair with ST = 10) [5]. These
operators, at least in light systems, do not couple T Tz = 10
to T Tz = 11 in a significant way, since P waves are small in
that case. At small internucleon separations �1/mπ , where
these transitions operators play a role, the pair wave functions
with ST = 10 and 01 in different nuclei are similar in shape
and differ only by a scale factor [53]. Thus, the sign of these
contributions should be the same.
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APPENDIX: AXIAL CURRENTS AT N4LO
IN CONFIGURATION SPACE

In this Appendix, we sketch the derivation of the
configuration-space expressions for (the local part of) the
axial current at N4LO. For completeness, we include pion-
pole contributions,

jN4LO
5,a (q) = jOPE

5,a (q) + jTPE
5,a (q) + jCT

5,a (q)

− q
2 mπ

1

q2/(4 m2
π ) + 1/4

×
[

q
2 mπ

· jOPE
5,a (q) + ρTPE

5,a (q) + ρCT
5,a (q)

]
, (A1)

where jOPE
5,a (q), jTPE

5,a (q), and jCT
5,a (q) have been defined earlier,

and

ρTPE
5,a (q) = −i ei q·Rij τj,a

[
L

(1)
2 (λij ) σ j · r̂ij + L

(1)
1 (λij )(2 σ i · r̂ij − σ j · r̂ij )

]
+ eiq·ri τj,a

q
2 mπ

· [
F

(0)
1 (λij ) σ i − F

(1)
2 (λij ) σ i − F

(2)
2 (λij ) r̂ij σ i · r̂ij

]
− eiq·ri τi,a

q
2 mπ

· [
F

(1)
3 (λij ) σ j + F

(2)
3 (λij ) r̂ij σ j · r̂ij

] + (i � j ), (A2)

ρCT
5,a (q) = − i ei q·Rij τj,a

[
L

(1)
2 (zij ; ∞) σ j · r̂ij + L

(1)
1 (zij ; ∞)(2 σ i · r̂ij − σ j · r̂ij )

]
+ q

2 mπ

· [
eiq·ri τj,a F

(0)
1 (zij ; ∞) σ i − ei q·Rij τj,a G

(0)
1 (zij ; ∞) σ j

] + (i � j ). (A3)

2We note that an enhancement was also obtained in a calculation using phenomenological interactions with two-body axial currents derived
from meson-exchange mechanisms [49].
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1. Loop functions

We begin with the momentum-space expressions in
Ref. [24] and accompanying errata. After carrying out the
parametric integrations, the loop functions read

1

2 mπ

W 1(x) = −1 − 5 g2
A

4
x arcc(x)

+ 1 − 2 g2
A

4 x
arcs(x) + g2

A

4

1

1 + x2
,

(A4)

2 mπ W2(x) = 1 − g2
A

4

1

x
arcs(x) + g2

A

4

1

1 + x2

− 1 + 2 g2
A

4 x2

[
1

x
arcs(x) − 1

]
, (A5)

2 mπ W3(x) = − 1

x
arcs(x), (A6)

1

2 mπ

Z1(x) = −x arcc(x) + 1

2 x
arcs(x), (A7)

1

2 mπ

Z2(x)

x2 + 1/4

∣∣∣∣
q=0

= 3

x

3 x2/4 + 1/8

x2 + 1/4
arcs(x) + 3x

×
[

x2

x2 + 1/4
arcs(x) − π

2

]
, (A8)

1

2 mπ

Z3(x) = 1

4
+ x2 + 1

4 x
arcs(x), (A9)

where we have defined the adimensional variable

x = k

2 mπ

(A10)

and have introduced the shorthand

arcc(x) = arccos
x√

1 + x2
and

arcs(x) = arcsin
x√

1 + x2
. (A11)

The notation Z2(x)|q=0 indicates that this loop function is
evaluated in the limit of vanishing momentum transfer q,
while the overlines on W1(x), Z1(x), and Z2(x)/(x2 + 1/4)
indicate that we have isolated a linear polynomial in x in the
limit x → ∞ in these loop functions, that is

W 1(x) = W1(x) − W∞
1 (x), (A12)

and similarly for Z1(x) and Z2(x)/(x2 + 1/4), where the
asymptotic polynomials read

1

2 mπ

W∞
1 (x) = 1 − 9 g2

A

4
+ π

1 − 5 g2
A

8
x, (A13)

1

2 mπ

Z∞
1 (x) = 1 + π

2
x, (A14)

1

2 mπ

Z2(x)

x2 + 1/4

∣∣∣∣∞
q=0

= 3 + 3 π

2
x. (A15)

2. Fourier transforms

In order to obtain configuration-space expressions for the
N4LO axial current, we need the following Fourier transforms
of the loop functions (with the asymptotic polynomials sub-
tracted out as in the previous subsection):

Fi (r ) =
∫

dk
(2π )3

e−ik·r Wi (k),

Gi (r ) =
∫

dk
(2π )3

e−ik·r Zi (k), (A16)

Hi (r ) =
∫

dk
(2π )3

e−ik·r Zi (k)

k2 + m2
π

,

which can be generically expressed as∫
dk

(2π )3
e−ik·r f (k) = (2 mπ )3

2 π2

1

λ

∫ ∞

0
dx x sin(xλ) f (x),

λ = 2 mπ r. (A17)

We carry out the integrals above by utilizing contour inte-
gration in the complex plane. We illustrate the procedure by
considering

F3(λ) = (2 mπ )3

2 π2

1

λ

∫ ∞

0
dx x sin(xλ) W3(x)

= − (2 mπ )2

2 π2

1

λ
I (λ), (A18)

where

I (λ) =
∫ ∞

0
dx sin(xλ) arcsin

x√
1 + x2

. (A19)

While this integral can be done by more elementary methods,
the contour-integration technique is useful for dealing with the
more complicated transforms needed above. By making use of
the identity arccos α = π/2 − arcsin α, we write

I (λ) = 1

2

∫ ∞

−∞
dx sin(xλ) arcsin

x√
1 + x2

= −1

2
Im

∫ ∞

−∞
dx ei xλ arccos

x√
1 + x2

(A20)

and are then led to consider the function of the complex
variable η

f (η) = i

2
ln

η − i

η + i
ei ηλπ ≡ g(η) ei ηλπ , (A21)

where we have used the relation

arccos η = −i ln(η + i
√

1 − η2). (A22)

The function f (η) has branch points at η = ± i, but is other-
wise analytic. The upper cut is taken from i to +i ∞ (along
the positive imaginary axis), while the lower one is from −i
to −i ∞ (along the negative imaginary axis). We consider the
closed contour C as in Fig. 4, so that∮

C

dη f (η) = 0. (A23)

Before evaluating the integral above, we need to consider the
value of f (η) to the right and left of the cut running along the
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FIG. 4. Integration contour.

positive imaginary axis. To this end, we define

η − i = r+ ei θ+ with −3 π

2
� θ+ � π

2
,

η + i = r− ei θ− with −π

2
� θ− � 3 π

2
, (A24)

and the restrictions on θ± ensure that the cuts are not crossed.
Therefore, for a given η, we have

g(η) = i

2
ln

r+
r−

− θ+ − θ−
2

, (A25)

and the difference along the upper cut (corresponding to η =
i y with y > 0) is given by

g(η)|left of cut − g(η)|right of cut = π. (A26)

The big arcs of radius R and the small circle of radius r
around the brach point + i give vanishing contributions as,
respectively, R → ∞ and r → 0. Therefore, on the segments
left and right of the upper cut, we find∫

left of cut
dη f (η) −

∫
right of cut

dη f (η)

= π

∫ i ∞

i

dη ei ηλ = i π
e−λ

λ
, (A27)

and from Eq. (A23) we obtain∫ ∞

−∞
dx ei xλ arccos

x√
1 + x2

+ i π
e−λ

λ
= 0 or

I (λ) = π

2

e−λ

λ
. (A28)

By employing the integration technique above (in some in-
stances, in addition to branch points simple poles also occur),
we find the following expressions:

1

(2 mπ )4
F1(λ) = 1

16 π

[(
1 − 2 g2

A

)1

λ
− (

1 − 5 g2
A

)( 2

λ3
+ 2

λ2
+ 1

λ
− 2

λ3
eλ

)
+ g2

A

]
e−λ

λ
, (A29)

1

(2 mπ )2
F2(λ) = 1

16 π

[(
1 − g2

A

)e−λ

λ2
+ g2

A

e−λ

λ
+ (

1 + 2 g2
A

)
�(−1, λ)

]
, (A30)

1

(2 mπ )2
F3(λ) = − 1

4 π

e−λ

λ2
, (A31)

1

(2 mπ )4
G1(λ) = − 1

2 π

(
1

λ2
+ 1

λ
+ 1

4
− eλ

λ2

)
e−λ

λ2
, (A32)

1

(2 mπ )4
G3(λ) = − 1

8 π

(
1

λ
+ 1 − eλ

λ

)
e−λ

λ3
, (A33)

1

(2 mπ )2
H1(λ) = 1

4 π

[(
1 + ln 3

4

)
e−λ/2

λ
+ e−λ

λ2
− 1

4

∫ ∞

λ

dt e−t 1

t2 − λ2/4

]
, (A34)

1

(2 mπ )4
H2(λ) = − 9

16 π

[
ln 3

12

e−λ/2

λ
− e−λ

λ2
+ 1

12

∫ ∞

λ

dt e−t 1

t2 − λ2/4
+ 4

3 λ

d2

dλ2
M (λ)

]
, (A35)

1

(2 mπ )2
H3(λ) = 1

16 π

[(
1 + 3 ln 3

4

)
e−λ/2

λ
+ e−λ

λ2
− 3

4

∫ ∞

λ

dt e−t 1

t2 − λ2/4

]
, (A36)

where we have introduced the incomplete � function �(α, x),

�(α, x) =
∫ ∞

x

dt tα−1 e−t , (A37)

and have defined

M (λ) = e−λ

λ
− 1

λ
− ln 3

4
e−λ/2 + λ

4

∫ ∞

λ

dt e−t 1

t2 − λ2/4
, (A38)

which enters H2(λ). The leftover integrals and their derivatives relative to λ can be expressed in terms of incomplete � functions
via the identities ∫ ∞

λ

dt e−t 1

t2 − λ2/4
= e−λ/2

λ
�(0, λ/2) − eλ/2

λ
�(0, 3 λ/2), (A39)
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d

dλ

∫ ∞

λ

dt e−t 1

t2 − λ2/4
= −

(
1 + λ

2

)
e−λ/2

λ2
�(0, λ/2) +

(
1 − λ

2

)
eλ/2

λ2
�(0, 3 λ/2), (A40)

d2

dλ2

∫ ∞

λ

dt e−t 1

t2 − λ2/4
=

(
2 + λ + λ2

4

)
e−λ/2

λ3
�(0, λ/2) −

(
2 − λ + λ2

4

)
eλ/2

λ3
�(0, 3 λ/2) + eλ

λ2
. (A41)

3. Correlation functions

From the Fourier transforms above, the correlation functions entering the N4LO axial current listed in Sec. V are obtained as

F
(0)
1 (λ) = g3

A

64 π

1

f 4
π

F1(λ) = g3
A

1024 π2

(2 mπ )4

f 4
π

[(
1 − 2 g2

A

)
λ2

π − (
1 − 5 g2

A

)
(2 + 2 λ + λ2 − 2 eλ) + g2

A λ3
] e−λ

λ4
, (A42)

F
(1)
2 (λ) = g3

A

64 π

(2 mπ )2

f 4
π

1

λ

d

dλ
F2(λ) = − g3

A

1024 π2

(2 mπ )4

f 4
π

[(
1 − g2

A

)
(2 + λ) + g2

A (λ + λ2) + (
1 + 2 g2

A

)
λ
] e−λ

λ4
, (A43)

F
(2)
2 (λ) = g3

A

64 π

(2 mπ )2

f 4
π

[
d2

dλ2
F2(λ) − 1

λ

d

dλ
F2(λ)

]

= g3
A

1024 π2

(2 mπ )4

f 4
π

[(
1 − g2

A

)
(8 + 5 λ + λ2) + g2

A(3 λ + 3 λ2 + λ3) + (
1 + 2 g2

A

)
(3 λ + λ2)

] e−λ

λ4
, (A44)

F
(1)
3 (λ) = − g5

A

64 π

(2 mπ )2

f 4
π

[
d2

dλ2
F3(λ) + 1

λ

d

dλ
F3(λ)

]
= g5

A

256 π2

(2 mπ )4

f 4
π

(4 + 3 λ + λ2)
e−λ

λ4
, (A45)

F
(2)
3 (λ) = g5

A

64 π

(2 mπ )2

f 4
π

[
d2

dλ2
F3(λ) − 1

λ

d

dλ
F3(λ)

]
= − g5

A

256 π2

(2 mπ )4

f 4
π

(8 + 5 λ + λ2)
e−λ

λ4
, (A46)

G
(0)
1 (λ) = g3

A

64 π

1

f 4
π

G1(λ) = − g3
A

128 π2

(2 mπ )4

f 4
π

(
1 + λ + λ2

4
− eλ

)
e−λ

λ4
, (A47)

H
(1)
1 (λ) = g3

A

32 π

(2 mπ )2

f 4
π

1

λ

d

dλ
H1(λ)

= g3
A

128 π2

(2 mπ )4

f 4
π

[
−

(
1 + ln 3

4

)(
λ + λ2

2

)
eλ/2 − (2 + λ)+ 1

4

(
λ + λ2

2

)
�̃(0, λ/2)− 1

4

(
λ− λ2

2

)
�̃(0, 3 λ/2)

]
e−λ

λ4
,

(A48)

H
(2)
1 (λ) = g3

A

32 π

(2 mπ )2

f 4
π

[
d2

dλ2
H1(λ) − 1

λ

d

dλ
H1(λ)

]

= g3
A

128 π2

(2 mπ )4

f 4
π

[(
1 + ln 3

4

)(
3 λ + 3 λ2

2
+ λ3

4

)
eλ/2 +

(
8 + 5 λ + 3 λ2

4

)

−1

4

(
3 λ + 3 λ2

2
+ λ3

4

)
�̃(0, λ/2) + 1

4

(
3 λ − 3 λ2

2
+ λ3

4

)
�̃(0, 3 λ/2)

]
e−λ

λ4
, (A49)

H
(1)
3 (λ) = g3

A

32 π

(2 mπ )2

f 4
π

1

λ

d

dλ
H3(λ)

= g3
A

512 π2

(2 mπ )4

f 4
π

[
−

(
1+ 3 ln 3

4

)(
λ+ λ2

2

)
eλ/2−(2+λ)+ 3

4

(
λ+ λ2

2

)
�̃(0, λ/2) − 3

4

(
λ − λ2

2

)
�̃(0, 3 λ/2)

]
e−λ

λ4
,

(A50)

H
(2)
3 (λ) = g3

A

32 π

(2 mπ )2

f 4
π

[
d2

dλ2
H3(λ) − 1

λ

d

dλ
H3(λ)

]

= g3
A

512 π2

(2 mπ )4

f 4
π

[(
1 + 3 ln 3

4

)(
3 λ + 3 λ2

2
+ λ3

4

)
eλ/2 +

(
8 + 5 λ + λ2

4

)

− 3

4

(
3 λ + 3 λ2

2
+ λ3

4

)
�̃(0, λ/2) + 3

4

(
3 λ − 3 λ2

2
+ λ3

4

)
�̃(0, 3 λ/2)

]
e−λ

λ4
, (A51)
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L
(1)
1 (λ) = g3

A

128 π

1

f 4
π

d

dλ
G1(λ) = g3

A

256 π2

(2 mπ )4

f 4
π

(
4 + 4 λ + 3 λ2

2
+ λ3

4
− 4 eλ

)
e−λ

λ5
, (A52)

L
(1)
2 (λ) = g3

A

128 π

1

f 4
π

d

dλ
H2(λ)

= g3
A

512 π2

(2 mπ )4

f 4
π

[
24 + 24 λ + 9 λ2 + 3 λ3

2
− 24 eλ + 3

8
λ3

(
1 + λ

2

)
�̃(0, λ/2) − 3

8
λ3

(
1 − λ

2

)
�̃(0, 3 λ/2)

]
e−λ

λ5
,

(A53)

where we have defined

�̃(α, x) = ex

∫ ∞

x

dt tα−1 e−t , (A54)

and �̃(α, x) is computed numerically. The correlation functions above are regularized via

X
(n)
i (2 mπr ) −→ CRL (r ) X

(n)
i (2 mπr ) (A55)

where X stands for F,G,H , and L.

4. Contact contributions

Asymptotic polynomials only occur in the loop functions
W1(k), Z1(k), and Z2(k)/(k2 + m2

π ) (see above), and lead to
contact contributions, which we regularize with the Gaussian
cutoff [22,28]

CRS (k) = e−R2
S k2/4. (A56)

We obtain

F
(0)
1 (z; ∞) = g3

A

128 π3

m4
π

f 4
π

1

(mπRS)3

[
1 − 9 g2

A

2
C (0)(z)

+ 1 − 5 g2
A

8

π

mπRS
C (1)(z)

]
, (A57)

G
(0)
1 (z; ∞) = g3

A

128 π3

m4
π

f 4
π

1

(mπRS)3

×
[

2 C (0)(z) + π

2 mπRS
C (1)(z)

]
, (A58)

L
(1)
1 (z; ∞) = g3

A

512 π3

m4
π

f 4
π

1

(mπRS)4

×
[

2
d

dz
C (0)(z) + π

2 mπRS

d

dz
C (1)(z)

]
,

(A59)

L
(1)
2 (z; ∞) = g3

A

512 π3

m4
π

f 4
π

1

(mπRS)4

×
[

6
d

dz
C (0)(z) + 3 π

2 mπRS

d

dz
C (1)(z)

]
,

(A60)

where

C (0)(z) = 2
√

π e−z2
, (A61)

d

dz
C (0)(z) = −4

√
π z e−z2

, (A62)

C (1)(z) =
∫ ∞

0
dx x3 j0(xz) e−x2/4, (A63)

d

dz
C (1)(z) = −

∫ ∞

0
dx x4 j1(xz) e−x2/4, (A64)

and z = r/RS.

5. Difference between Baroni et al. and Krebs et al.

For clarity, we report below the momentum-space expres-
sions for the difference between the two derivations, denoted
as TOPT [24] and UT [27] (in the limit of vanishing momen-
tum transfer),

� jN4LO
5,a (k; OPE) = − 7 g5

A

256 π

mπ

f 4
π

[τj,a k − (τ i × τ j )a σ i × k]

× σ j · k
k2 + m2

π

+ (i � j ), (A65)

� jN4LO
5,a (k; TPE) = − g5

A

128 π f 4
π

τj,a[F̃ (k) σ i + G̃(k) k σ i · k]

+ (i � j ), (A66)

where k ≡ kj = −ki , and the loop functions are given by

F̃ (k) = mπ

6 k2 + 20 m2
π

k2 + 4 m2
π

, (A67)

G̃(k) = 4 k2 + 16 m2
π

2 k3
arctan

(
k

2 mπ

)
− 2 mπ

k2

3 k2 + 8 m2
π

k2 + 4 m2
π

.

(A68)

We isolate the asymptotic constant in F̃ (k) as

F (k) = F̃ (k) − F̃∞, F (k) = − 4 m3
π

k2 + 4 m2
π

,

F̃∞ = 6 mπ. (A69)
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The Fourier transforms read

F̃ (λ) =
∫

k
e−ik·r F (k) = − (2 mπ )4

8 π

e−λ

λ
, (A70)

G̃(λ) =
∫

k
e−ik·r G̃(k)

= (2 mπ )2

2 π

[
e−λ

(
1

λ2
− 1

2 λ

)

−�(−1, λ)

]
, (A71)

and the corresponding correlation functions are obtained as

F̃ (0)(λ) = g5
A

128 π f 4
π

F (λ) = − g5
A

1024 π2

(2 mπ )4

f 4
π

e−λ

λ
,

(A72)

G̃(1)(λ) = g5
A

128 π

(2 mπ )2

f 4
π

1

λ

d

dλ
G̃(λ)

= − g5
A

256 π2

(2 mπ )4

f 4
π

(
2 − λ

2
− λ2

2

)
e−λ

λ4
, (A73)

G̃(2)(λ) = g5
A

128 π

(2 mπ )2

f 4
π

[
d2

dλ2
G̃(λ) − 1

λ

d

dλ
G̃(λ)

]

= g5
A

256 π2

(2 mπ )4

f 4
π

(
8 + λ

2
− 3 λ2

2
− λ3

2

)
e−λ

λ4
.

(A74)

We write the contact contributions from the OPE and TPE
terms above as

� jN4LO
5,a (k; CT) = 7 g5

A

512 π

mπ

f 4
π

(τ i × τ j )a σ i × σ j

−
[

g5
A

128 π f 4
π

F̃∞ τj,a σ i + (i � j )

]
,

(A75)

and define the correlation functions in Eq. (5.11) as

Ĩ (0)(z; ∞) = 7 g5
A

1024 π3

m4
π

f 4
π

1

(mπRS)3 C (0)(z), (A76)

F̃ (0)(z; ∞) = 3 g5
A

128 π3

m4
π

f 4
π

1

(mπRS)3 C (0)(z). (A77)
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