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Signatures of higher-multipole deformations and non-coplanarity as essential,
additional degrees-of-freedom in heavy-ion reactions
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Eloquent display of signatures of including higher-multipole (octupole and hexadecupole) deformations βλi ,
i = 1, 2, λ = 2–4, and non-coplanar degrees-of-freedom � are shown here for the first time as essential, addi-
tional variables in low-energy heavy-ion reactions (HIR), within the dynamical cluster-decay model (DCM) of
the collective clusterization process. In other words, a description in terms of quadrupole-deformed, “optimally”
oriented coplanar nuclei is not sufficient, which therefore calls for both higher-multipole deformations (β3i and
β4i ; i = 1, 2) and non-coplanarity (� �= 0◦) as the additional degrees-of-freedom. Such a convincing, real result
appears in terms of the non-compound-nucleus (nCN) effect, the nCN cross section σnCN-content in σfusion, which
is different for different compound nuclei (CN), i.e., CN specific, varying from an almost complete impure to
pure CN decay while going successively from (β2i , θ

opt
2i , � = 0◦) to (β2i-β4i , “compact” oriented θci , � �= 0◦),

which is further independent of the radioactive or nonradioactive nature of CN formed in different entrance
channels, i.e., also independent of entrance channel target-projectile nuclei. This study plus our earlier study of
spontaneous 14C-cluster radioactivity provide a new set of variables, in terms of higher-multipole deformations
and non-coplanarity degrees-of-freedom, to explore the real outcome of any low-energy HIR (plus spontaneous
decay), which could in fact be already close to Nature.
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The true nature of experimental data can be best under-
stood in terms of a model if the variables of the problem
are chosen judiciously. For a quantum mechanical, dynamical
description, the variables are referred to as good “quantum
numbers” or “degrees-of-freedom” of the system. Here, in this
work, we investigate the heavy-ion reaction (HIR) problem
in terms of the quantum mechanical fragmentation theory
(QMFT)-based dynamical cluster-decay model (DCM) [1–3],
where the formation and/or decay of a compound nucleus
(CN) formed in HIRs is formulated in terms of the mass (and
charge) asymmetries η (and ηZ) [η = (A1 − A2)/(A1 + A2)
[4], ηZ = (Z1 − Z2)/(Z1 + Z2) [5]] and the coordinate of rel-
ative separation R, for quadrupole (β2i)-deformed, (optimum
θ

opt
i ) oriented nuclei lying in the same plane (coplanar nuclei,

� = 0◦) [6–11]. The nuclei are, however, observed to have
higher-multipole (β3i , β4i) deformations and to lie in two
different planes (non-coplanar nuclei, � �= 0; refer to Fig. 1,
which is based on Fig. 1 in Ref. [12]). Only a very few
studies have been made for coplanar (� = 0◦) nuclei with
higher-multipole deformations (mostly β4i) [13–20] included,
the exceptions being a couple of very recent studies of our own
group where both deformations including higher multipoles
[βλi , λ = 2, 3, 4; taken from Möller et al. [21], supplemented
by Audi et al. [22] and relativistic mean field (RMF) calcula-
tions for A < 16 nuclei] and non-coplanar (� �= 0) degrees-
of-freedom are considered, together with hot-compact ori-
entations (θci) [23–26] (hot-compact orientations are ones
with the highest barriers and smallest interaction radii). Of
particular interest to our present study, where the role of (β3i ,
β4i) is found to be explicitly important is the spontaneous
exotic 14C-cluster radioactivity [17], predicted by Săndulescu,

Poenaru, and Greiner in 1980 [27] on the basis of the same
theory as described here, prior to the very first signatures of
14C decay of 223Ra by Rose and Jones in 1984 [28]. For such
decays, the corresponding preformed cluster model (PCM), a
zero temperature (T = 0) version of DCM is used for coplanar
(� = 0◦) configurations.

In the following, we carry out a systematic analysis of
some randomly chosen, DCM-studied HIRs [7–11,18,23–26]
where both βλi , λ = 2, 3, 4, and � degrees-of-freedom play
their roles, compared with ones using β2i alone or βλi , λ = 2,
3, 4 included for coplanar, � = 0◦ nuclei. The DCM used
here to study the hot and rotating CN is based on the nuclear
proximity potential of Blocki et al. [29], and the chosen
CN, formed in various entrance-channel reactions, are the
three weakly fissioning CN 105Ag∗ [18,25], 164Yb∗ [8,24],
and 196Pt∗ [9], and three strongly fissioning radioactive CN
202Po∗ [11], 220Th∗ [10,26], and 246Bk∗ [7,23]. It is interesting
to find that both multipole deformations (βλi , i = 1, 2, λ >
2) and non-coplanarity (� > 0◦) play their roles, which are
CN specific, i.e., different for different compound systems,
also entrance-channel independent, and hence act as the very
essential, additional good quantum numbers, characterizing
the CN formed in any low-energy HIR.

The DCM, based on the above-noted collective co-
ordinates, defines for � partial waves the CN decay
and/or formation cross section for each pair of fragments
as

σ(A1orA2 ) = π

k2

�max∑
�=0

(2� + 1)P0P, k =
√

2μEc.m.

h̄2 , (1)
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where P0, the relative preformation probability referring to η
motion, is given as the (normalized) solution of the stationary
Schrödinger equation in η, namely, P0(Ai ) = |ψ (η(Ai ))|2√

Bηη
2
A

, where Bηη are the smooth classical hydrodynamical
masses [30]; and P , the penetration probability referring to R
motion, is given by the WKB integral between the first turning
point Ra and second turning point Rb, where

Ra (T ) = R1(α1, T ) + R2(α2, T ) + �R(η, T ), (2)

being dependent on both angular momentum � and tem-
perature T. The above relations are used for each decay
channel, whose sum for light-particle decay A2 = 1–4 or
5 gives the evaporation residue (ER) cross section σER (=∑4or5

A2=1 σA2 ), the intermediate mass fragmentation (IMF) A2 =
5 or 6 � A2 � 20, and the fusion-fission cross section σff

(= 2
∑A/2

5or6 σA2 ). The definition of σff is also applicable to
IMFs with the sum taken up to the maximum measured value
of IMFs and without the multiplying factor 2 (i.e., only for
light fragments); in fact, the IMFs are a part of fusion-fission.
Thus, the pure CN cross section σ

pure
CN = σER + σff .

Equation (1) is also applicable to nCN decay, treated as the
quasifission (qf)-like decay channel where P0 = 1 since the
target and projectile nuclei are considered to have not yet lost
their identities. Then, σfusion = σ

pure
CN + σnCN.

In Eq. (2), the neck-length parameter �R, which varies
smoothly with E∗

CN, is directly related to “barrier lowering”
and hence to the fusion hindrance phenomenon in HIRs. The
choice of �R, for a best fit to experimental data on excitation
function σ

Expt
fusion(E∗

CN) for each and every reaction, allows us
to relate in a simple way the V (Ra, �) at R = Ra to the top
of the barrier VB (�) for each �, by defining the difference
�VB (�) = V (Ra, �) − VB (�) as the effective “lowering of the
barrier.”

To calculate the cross sections for non-coplanar, � �= 0◦
nuclei (refer to Fig. 1), we use the same formalism as for
� = 0◦ [31], but by replacing for the out-of-plane nucleus
(i = 1 or 2) the corresponding radius parameter Ri (αi ) (=
R0i[1 + ∑

λ βλiY
(0)
λ (αi )], i = 1, 2, R0i being the equivalent

spherical nucleus radius), with its projected radius parameter
RP

i (αi ) in both Coulomb and nuclear proximity potentials
[12]. For the Coulomb potential, it enters via Ri (αi ), and
for the proximity potential via the definitions of both the
mean curvature radius R̄ and the shortest distance s0, i.e.,
the compact configurations with orientations θci and �c. For
further details, see Refs. [6,32].

Using the DCM, we present in Fig. 2, our calculated pure
CN or fusion cross sections (σ Cal

CN ), compared with experi-
mental data (σ Expt

fusion), of the six chosen compound systems,
mentioned above, three being strongly fissioning radioac-
tive CN (202Po∗, 220Th∗, and 246Bk∗) and the other three
weakly fissioning nonradioactive CN (105Ag∗, 164Yb∗, and
196Pt∗). The main aim here is to see the role of includ-
ing higher-multipole deformations (βλi , λ = 2–4) and non-
coplanarity (� �= 0◦) degrees-of-freedom toward estimating
the nCN content σnCN in σfusion, and hence establishing the
nature of the two variables (βλi , λ = 2–4 and �) as inde-
pendent degrees-of-freedom which must be considered in all
heavy-ion-reaction studies, otherwise the net result could be
erroneous.
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FIG. 1. Two unequal nuclei (one β2 deformed and the other up
to β4), oriented at angles θ1 and θ2, with their principal planes X′Z′

and XZ making an azimuthal angle �. The angle � is shown by
a dashed line, since it is meant to be an angle coming out of plane
XZ. Nucleus 2 is in the XZ plane and for the out-of-plane nucleus 1,
another principal plane Y ′Z′, perpendicular to X′Z′, is also shown.
Only the lower halves of the two nuclei are shown. This figure is
based on Fig. 1 of Ref. [12].

The interesting result of Fig. 2 is that the effect of non-
coplanarity (� �= 0◦) is different in different reactions. In the
studied cases of � = 0o configurations with β2 deformations
and θopt orientations, the σnCN content in σfusion is different for
different reactions, i.e., it is zero or of a considerable amount
which gets reduced or remains constant in going from β2 alone
to βλi , λ = 2–4.

Let us first take up in detail the three (strongly fission-
ing) radioactive nuclei in Figs. 2(d)–2(f). In Fig. 2(d) for
246Bk∗ formed via the 11B + 235U reaction, we notice that for
� = 0o, the nCN contribution is nonzero both for β2i alone,
θopt as well as for higher-multipole deformations included,
i.e., β2i-β4i , θci (compare empty squares with empty stars),
and that it goes successively to zero for � �= 0◦ together
with β2i-β4i (compare empty triangles with experimental data
shown as filled circles). Thus, a description in terms of
quadrupole deformed, optimally oriented, coplanar nuclei is
not sufficient, i.e., the appearance of the nCN effect here
is apparently an artefact of our calculations, seen only at
the highest two CN excitation energies E∗

CN, which gets
reduced to zero for β2i-β4i and � �= 0◦, thereby calling for
both higher-multipole deformations (β3i and β4i ; i = 1, 2) and
non-coplanarity (� �= 0◦) as the possible essential degrees-of-
freedom in such HIR studies.

On the other hand, in Fig. 2(e) for 220Th∗ formed via
the 48Ca + 172Yb reaction, the nCN content (due to the 4n-
decay channel) is very large (∼95%) of channel cross section
σ Cal

xn , i.e., the magnitude of σnCN/σ Cal
xn =σnCN/(σ CN

xn + σ Cal
nCN) as

a function of E∗
CN remains nearly a constant (�0.95) for

x = 4 in the present case, out of the measured x = 3–5
decay channels, and is further same for adding or not adding
higher-multipole deformations β3i , β4i in coplanar (� = 0o)
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FIG. 2. Calculated CN cross sections σ Cal
CN for three cases of quadrupole (β2i) deformed and optimally oriented (θopt

i ), � = 0o configuration,
and higher-multipole deformations (β3i , β4i) included, “compact” oriented (θci) nuclei for both �c = 0o and �c �= 0o configurations compared
with experimental data for various CN formed in different entrance channels. The σnCN content in each case is also shown. For 105Ag∗ and
164Yb∗, calculations are available for only two of the three cases, and the nCN content is more than 90%.

or non-coplanar (� �= 0◦) configuration [see Fig. 3(c)]. Thus,
the role of including or not including multipole deformations
and using coplanar or non-coplanar degrees-of-freedom in
CN 220Th∗ is different from, say, the CN 246Bk∗, and σnCN

is of a large constant value as a function of E∗
CN and hence

a real, measurable effect. Similarly, in Fig. 2(f) for another
radioactive CN 202Po∗, formed via the 48Ca + 154Gd reaction,

FIG. 3. Same as Fig. 2, but for nCN cross sections σ Cal.
nCN and

for different entrance channels forming (a) 246Bk∗ and (b) 220Th∗.
(c) Relative σnCN/σ Cal

xn for 220Th∗ vs 202Po∗ CN.

we observe that its behavior is nearly the same as for the
above studied 220Th∗ CN, i.e., the nCN content is the same
for adding or not adding higher-multipole deformations in
coplanar (� = 0o) or non-coplanar (� �= 0◦) configuration,
but instead its magnitude with E∗

CN varies from zero to a
maximum of ∼70% of the channel cross section σ Cal

xn ; x = 4
[see Fig. 3(c)]. The similarity of the above result is possibly
due to the same projectile (48Ca) and target nucleus belonging
to the same strongly deformed rare-earth mass region, though
the variation of σnCN with E∗

CN in Fig. 3(c) is still CN specific.
Next, including the weakly fissioning nonradioactive nu-

clei (105Ag∗, 164Yb∗, and 196Pt∗) in the discussion, we first
notice that the characterization of CN into radioactive and
nonradioactive CN is irrelevant, since the nonradioactive CN
196Pt∗ formed via 132Sn + 64Ni in Fig. 2(a) behaves exactly
the same as the radioactive 246Bk∗ formed via 11B + 235U in
Fig. 2(d), both behaving as pure CN reactions for the β2i-β4i ,
� �= 0◦ configuration, and 12C + 93Nb → 105Ag∗ in Fig. 2(b)
the same (95 ± 5% impure) as 48Ca + 172Yb → 220Th∗ in
Fig. 2(e). Furthermore, 164Yb∗ formed via the 64Ni + 100Mo
reaction in Fig. 2(c) fits the measured data nearly exactly, with
a strongly reduced nCN contribution in going from � = 0o

to β2i-β4i , � �= 0◦. Thus, for 164Yb∗, the nCN content is
reduced almost to zero, and hence the reaction 64Ni + 100Mo
for � �= 0◦ could be taken as a pure CN reaction, similar to
246Bk∗ in Fig. 2(d). Thus, the result of Fig. 2 is clearly CN
specific, irrespective of being radioactive or nonradioactive,
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or adding or not adding the higher-multipole deformations and
non-coplanar degrees-of-freedom.

Finally, considering the entrance channel effect, we notice
in Figs. 3(a) and 3(b) that in the case of 220Th∗ [Fig. 3(b)],
for each entrance channel, the σnCN value (refer to open
square, open star, and open triangle symbols) remains exactly
the same, i.e., independent of adding or not adding higher-
multipole deformations and non-coplanarity � degrees-of-
freedom, whereas for 246Bk∗ [Fig. 3(a)] formed via entrance
channel 14N + 232Th, the σnCN = 0 for all three cases of
β2i-alone, θopt, higher-multipole deformations included, i.e.,
β2i-β4i , θci , �c = 0◦, or �c �= 0◦, and that for 246Bk∗ formed
via another entrance channel 11B + 235U, the σnCN reduces
successively to zero. In other words, with higher-multipole de-
formations and non-coplanarity �c included, 246Bk∗ formed
via both entrance channels is a pure CN decay, which revokes
the experimental result [33] that one of the entrance channels

(14N + 232Th) contain nCN content, though no data were
recorded. Thus, once again, our result is CN specific.

Concluding, the higher-multipole deformations (β3i , β4i)
together with non-coplanar (�c �= 0) configurations are very
important additional degrees-of-freedom for analyzing a true
and real outcome of a compound nucleus fusion reaction, i.e.,
its CN-specific character. Thus, putting this result together
with our earlier result for spontaneous exotic cluster radioac-
tivity, the above-stated two additional variables of higher-
multipole deformations and non-coplanarity must be included
in each and every HIR and spontaneous (T = 0) decay
study.
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