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Magnetic field effect on nuclear matter from a Skyrmion crystal model
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We explore magnetic field effects on the nuclear matter based on the Skyrmion crystal approach for the first
time. It is found that the magnetic effect plays the role of a catalyzer for the topology transition in the baryonic
matter. Furthermore, we observe that in the presence of the magnetic field, the inhomogeneous chiral condensate
persists in both the Skyrmion and the half-Skyrmion phases. Explicitly, as the strength of magnetic field gets
larger, the inhomogeneous chiral condensate in the Skyrmion phase tends to be drastically localized, while
in the half-Skyrmion phase the inhomogeneity configuration is hardly affected. It also turns out that a large
magnetic effect in a low-density region distorts the baryon shape to an elliptic form but the crystal structure is
intact. However, in a high-density region, the crystal structure is strongly affected by the strong magnetic field.
A possible correlation between the chiral inhomogeneity and the deformation of the Skyrmion configuration
is also addressed. The results obtained in this article might be realized in the deep interior of compact
stars.
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I. INTRODUCTION

Exploring the phase diagram of QCD under an external
magnetic source is an active and a significant field in high-
energy physics relevant to the heavy-ion physics, compact
stars, and the evolution of the early universe (see, e.g.,
Ref. [1] for a recent review and references therein). Studies
of this kind have been performed using various effective
theories and models based on chiral perturbation theory [2–5]
and the Nambu-Jona-Lasinio model [6–10]. In the present
work, we make the first attempt to study the magnetic ef-
fect on the nuclear matter based on the Skyrmion crystal
model.

In the Skyrmion crystal approach baryons arise as the
topological objects in a nonlinear mesonic theory—the
Skyrmions-Skyrme model [11], and the nuclear matter is
simulated by putting the Skyrmions onto the crystal lat-
tice and regarding the nuclear matter as the Skyrmion mat-
ter [12]. [In the present analysis, we specifically choose
the face-centered-cubic (fcc) crystal.] In this approach, the
nuclear matter, medium-modified hadron properties and the
symmetry-breaking patterns in a dense system can be ac-
cessed in a unified way [13–16] (for a recent review, see, e.g.,
Ref. [17]).

In this article, we include the magnetic field in the
Skyrmion crystal approach for the first time to study the mag-
netic effect on the nuclear matter with interest particularly in
the topology transition in the baryonic matter (to be specified
later), the inhomogeneous quark condensate, and the shape of
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a single baryon (Skyrmion). What we have done and found
can be summarized as follows.

(i) The magnetic effect plays the role of a catalyzer
for the topology transition in the baryonic mat-
ter (deformation of the crystal configuration from
a face-centered-cubic Skyrmion crystal to a cubic-
centered half-Skyrmion crystal1). The baryon energy
per Skyrmion (soliton mass) is enhanced by the pres-
ence of the magnetic field.

(ii) Regarding the magnetic field dependence of the in-
homogeneity of the chiral condensate in a medium
modeled by the Skyrmion crystal, it turns out that,
even in the presence of the magnetic field, the in-
homogeneous chiral condensate persists in both the
Skyrmion and the half-Skyrmion phases. Interestingly
enough, as the strength of the magnetic field gets
larger, the inhomogeneous chiral condensate in the
Skyrmion phase tends to be drastically localized,
while in the half-Skyrmion phase the inhomogeneity
configuration is almost intact. (Similar observations,
regarding the deformation of inhomogeneities for the
chiral condensate by magnetic effects, have been
made in different models [18–21].)

(iii) As to the magnetic effect on the Skyrmion configura-
tion and the single baryon’s shape in the medium, it is
found that a large magnetic strength in a low-density

1Actually, this topology transition is not like an ordinary phase
transition, because it is not characterized by a continuous symme-
try structure, i.e., an order parameter for spontaneous symmetry
breaking. Nevertheless, we conventionally call it a phase transition
throughout this article.
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region (in the Skyrmion phase) makes the baryon’s
shape be elliptic, while the crystal configuration es-
sentially holds. In contrast, in a high-density region
(in the half-Skyrmion phase), the crystal structure
is significantly affected by the existence of a large
magnetic field.

(iv) A correlation between the chiral inhomogeneity and
the deformation of the Skyrmion crystal configuration
can be seen through a nontrivial deformation due to a
large magnetic field, which would be a novel indirect
probe for the presence of the inhomogeneity of the
chiral condensate in the half-Skyrmion phase.

We anticipate that our findings as listed above might affect
the equation of state of dense nuclear matter or compact stars
having a strong magnetic field. Such characteristic features
possibly emergent in dense matter or compact stars could be
(indirectly) tested by future astronomical observations.

This article is organized as follows. In Sec. II we intro-
duce the basic setup for studying magnetic properties of the
Skyrmion crystal. With this preliminary setup at hand, in
Sec. III we show our numerical analysis for the magnetic
dependencies on the Skyrmion crystal and some related phe-
nomena such as the topology transition in the baryonic matter,
the inhomogeneous chiral condensates, and the deformation
of a single baryon’s shape. Section IV is devoted to a summary
of our study and findings. The Appendix provides detailed
computations regarding some prescriptions for the crystal
configuration under the magnetic effect.

II. THE MODEL OF SKYRMION CRYSTAL
IN A MAGNETIC FIELD

In this section, we first give a brief summary of the basics
of the Skyrmion crystal model related to the present work
following Ref. [13], and then we introduce the basic strategy
for studying the magnetic properties of the Skyrmion crystal.

A. Skyrmion crystal

We begin by considering the following Skyrme model
Lagrangian [11]:

LSkyr = f 2
π

4
tr[∂μU∂μU †] + 1

32g2
tr[U †∂μU,U †∂νU ]2, (1)

where U is the chiral field embedding the pion fields,
fπ is the pion-decay constant, and g is the dimensionless
coupling constant, the Skyrme parameter. In the Skyrmion
crystal approach, it is convenient to parametrize the chiral
field U as

U = φ0 + iτaφa, (2)

with a = 1, 2, and 3 and the unitary constraint (φ0)2 +
(φa )2 = 1. Note that with this parametrization (2), φα (α = 0,
1, 2, and 3) can be rephrased in terms of quark bilinear

configurations as

φ0 ∼ q̄q, φa ∼ q̄iγ5τaq. (3)

For later convenience, we further introduce the unnormalized
fields φ̄α , which are related to the normalized fields φα through

φα = φ̄α√∑3
β=0 φ̄β φ̄β

. (4)

For a crystal lattice with size 2L, one can parametrize the
unnormalized field φ̄α in terms of the Fourier series as [13]

φ̄0(x, y, z) =
∑
a,b,c

β̄abc cos(aπx/L) cos(bπy/L) cos(cπz/L),

φ̄1(x, y, z) =
∑
h,k,l

ᾱ
(1)
hkl sin(hπx/L) cos(kπy/L) cos(lπz/L),

φ̄2(x, y, z) =
∑
h,k,l

ᾱ
(2)
hkl cos(lπx/L) sin(hπy/L) cos(kπz/L),

φ̄3(x, y, z) =
∑
h,k,l

ᾱ
(3)
hkl cos(kπx/L) cos(lπy/L) sin(hπz/L),

(5)

where ᾱ and β̄ are free parameters that are determined by
minimizing the energy of the system.

For a particular crystal lattice, the Fourier coefficients ᾱ
and β̄ are not independent of each other. For example, the
fcc crystal, which is used in the present work, possesses the
following symmetry structure in position space and corre-
sponding isospin space:

(i) reflection symmetry, in position space (x, y, z) ↔
(−x, y, z) and in isospin space (φ0, φ1, φ2, φ3) ↔
(φ0,−φ1, φ2, φ3);

(ii) threefold symmetry, in position space (x, y, z) ↔
(z, x, y) and in isospin space (φ0, φ1, φ2, φ3) ↔
(φ0, φ3, φ1, φ2);

(iii) fourfold symmetry, in position space (x, y, z) ↔
(y,−x, z) and in isospin space (φ0, φ1, φ2, φ3) ↔
(φ0, φ2,−φ1, φ3); and

(iv) translational symmetry, in position space
(x, y, z) ↔ (x + L, y + L, z) and in isospin space
(φ0, φ1, φ2, φ3) ↔ (φ0,−φ1,−φ2, φ3).

Hence the Fourier coefficients β̄abc and ᾱ
(1,2,3)
hkl have the

following relations [13]:

(i) from threefold symmetry, β̄abc = β̄bca = β̄cab,

ᾱ
(1)
hkl = ᾱ

(2)
hkl = ᾱ

(3)
hkl ;

(ii) from fourfold symmetry, β̄abc = β̄acb = β̄cba =
β̄bac ᾱhkl = ᾱhlk; and

(iii) from translational symmetry, a, b, and c are all even
numbers or odd numbers, and if h is even, then k
and l are restricted to odd numbers, otherwise even
numbers.

Note that there is a possibility that the constraint on
the translational symmetry as above appears: From the
translational symmetry, a, b, and c are all odd numbers,
and h is odd, then k and l are restricted even numbers.
This indicates that the Skyrmion crystal is invariant
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under the following additional symmetry: In position
space (x, y, z) ↔ (x + L, y, z) and in isospin space
(φ0, φ1, φ2, φ3) ↔ (−φ0,−φ1, φ2, φ3). This configuration is
nothing but the centered-cubic (cc) crystal.

This implies that the Skyrmion configuration is deformed
from a fcc crystal to a cc crystal by changing the matter
density, as will be seen in a later section.

B. Introducing the magnetic field in the Skyrmion crystal

Next, let us discuss how to introduce the magnetic field in
the Skyrmion crystal model.

The magnetic field can be incorporated into the Skyrme
model (1) by replacing the derivative operator with the gauge
covariant one,

DμU = ∂μU − ieAμ[QE,U ], (6)

where e is the electromagnetic coupling constant and QE =
1
6 + 1

2τ3 is the electric charge matrix, with τ3 being the third

component of the Pauli matrix. In the present work, we
consider a constant magnetic field B along the z direction.
Then, taking into account the residual O(2) symmetry for
the x-y plane perpendicular to the B axis, we choose the
following symmetric gauge:2

Aμ = − 1
2Byδ 1

μ + 1
2Bxδ 2

μ . (7)

In terms of the parametrization (2), we can write the
covariant derivative operator as

DμU = ∂μφ0 + iDμφ1τ1 + iDμφ2τ2 + i∂μφ3τ3, (8)

where Dμφ1 = ∂μφ1 − eAμφ2 and Dμφ2 = ∂μφ2 + eAμφ1.
In the Skyrmion crystal model with the electromagnetic

charge turned on, a covariant derivative operator such as Dxφ1

should be discretized to hold the translational invariance in the
x-y plane. Then, with the help of the Fourier transformation,
yφ̄2(x, y, z) goes as follows:

yφ̄2(x, y, z) = y

∫ ∞

−∞

dpx

(2π )

∫ ∞

−∞

dpy

(2π )

∫ ∞

−∞

dpz

(2π )
φ̄2(px, py, pz)ei �p·�x

=
∫ ∞

0

dpx

(2π )

∫ ∞

0

dpy

(2π )

∫ ∞

0

dpz

(2π )
φ̄2(px, py, pz)8i cos(pxx)

[−∂py
cos(pyy)

]
cos(pzz)

discretization−−−−−−→ −
∑
h,k,l

ᾱ
(2)
h,k,l cos(lπx/L)

cos{(h + 2)πy/L} − cos(hπy/L)

2π/L
cos(kπz/L)

≡ [yφ̄2]disc(x, y, z), (9)

where the second equality was obtained by the reflection symmetry. One can easily check the translational covariance
for [yφ̄2]disc(x, y, z). After making the translation (x, y, z) → (x + L, y + L, z), for instance, [yφ̄2]disc(x, y, z) obviously
transforms to

[yφ̄2]disc(x, y, z) → − [yφ̄2]disc(x, y, z). (10)

Similarly, the translational covariance holds in the following discretized forms:

[xφ̄1]disc(x, y, z) = −
∑
h,k,l

ᾱh,k,l

cos{(h + 2)πx/L} − cos(hπx/L)

2π/L
cos(kπy/L) cos(lπz/L),

[yφ̄1]disc(x, y, z) =
∑
h,k,l

ᾱh,k,l sin(hπx/L)
sin{(k + 2)πy/L} − sin(kπy/L)

2π/L
cos(lπz/L),

[xφ̄2]disc(x, y, z) =
∑
h,k,l

ᾱh,k,l

sin{(l + 2)πx/L} − sin(lπx/L)

2π/L
sin(hπy/L) cos(kπz/L). (11)

Let us check whether the other symmetries in the fcc crystal are kept in the presence of a magnetic field. For instance, the
covariant derivative of φ1 is transformed as

[Diφ1]disc(x, y, z)
reflection:(x,y,z)→(−x,y,z)−−−−−−−−−−−−−−→

⎧⎨
⎩

(i = x) [Dxφ1]disc(x, y, z),
(i = y) − [Dyφ1]disc(x, y, z),
(i = z) − [Dzφ1]disc(x, y, z),

[Diφ1]disc(x, y, z)
translation:(x,y,z)→(x+L,y+L,z)−−−−−−−−−−−−−−−−−−→ − [Diφ1]disc(x, y, z),

2Because we model the nuclear matter by the Skyrmion crystal, it is necessary to choose the symmetric gauge that keeps the O(2) symmetry
appropriate to form the crystal. This kind of gauge dependence can also be seen in the ladder approximations, where, as is well known,
QCD observables are modeled and computed with some specific gauge choice to be consistent with the associated chiral symmetry (e.g., see
Refs. [22–26]).
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[Diφ1]disc(x, y, z)
twofold for z axis: (x,y,z)→(y,−x,z)−−−−−−−−−−−−−−−−−−−→

⎧⎨
⎩

(i = x) (∂yφ2 + eAyφ1)disc(x, y, z),
(i = y) − (∂xφ2 + eAxφ1)disc(x, y, z),
(i = z) [Dzφ2]disc(x, y, z),

[Diφ1]disc(x, y, z)
twofold for x axis: (x,y,z)→(x,z,−y)−−−−−−−−−−−−−−−−−−−→

⎧⎨
⎩

(i = x) (∂xφ1 − eAxφ3)disc(x, y, z),
(i = y) (∂zφ1 − eAzφ3)disc(x, y, z),
(i = z) − (∂yφ1 − eAyφ3)disc(x, y, z),

[Diφ1]disc(x, y, z)
threefold: (x,y,z)→(z,x,y)−−−−−−−−−−−−−−→

⎧⎨
⎩

(i = x) (∂zφ3 − eAzφ1)disc(x, y, z),
(i = y) (∂xφ3 − eAxφ1)disc(x, y, z),
(i = z) (∂yφ3 − eAyφ1)disc(x, y, z).

(12)

One can see easily that, as naively expected, the two-fold
symmetry for x(y) axis and the three-fold symmetry are
explicitly broken by the magnetic field in the z direction.

C. Baryon-number density of a Skyrmion crystal
in a magnetic field

In the presence of a magnetic field, the baryon-number
current is evaluated as [27]

j
μ
B = j

μ
W + J μ

eB, (13)

where

j
μ
W = 1

24π2
εμνρσ tr[(∂νU · U †)(∂ρU · U †)(∂σU · U †)],

J μ
eB = 1

16π2
εμνρσ tr[ie(∂νAρ )QE (∂σU · U † + U †∂σU )

+ ieAνQE (∂ρU∂σU † − ∂ρU
†∂σU )], (14)

in which j
μ
W corresponds to the winding-number current and

J μ
eB is the induced current by the magnetic field. Under the

symmetric gauge, the time component of the induced current
takes the form

J 0
eB = − eB

4π2
[(∂zφ3)φ0 − (∂zφ0)φ3]

+ eB

8π2

({[y∂yφ3]disc(∂zφ0) − [y∂yφ0]disc(∂zφ3)}
− {(∂zφ3)[x∂xφ0]disc − (∂zφ0)[x∂xφ3]disc}

)
. (15)

Explicit expressions of the discretized form involving a
derivative as above are given in the Appendix. Then the total
baryon-number density ρB (x, y, z) is written as

ρB (x, y, z) = j 0
W (x, y, z) + J 0

eB (x, y, z)

≡ ρW (x, y, z) + ρ̃eB (x, y, z), (16)

where ρW (z, y, z) is the winding-number density and
ρ̃eB (x, y, z) is the baryon-number density induced by a mag-
netic field. The baryon number is obtained by performing the
spacial integration NB = ∫

cube d3xρB . As in the case without
a magnetic field, the baryon number in a single fcc crystal is
normalized as

NB =
∫

cube
d3xρB = 4, (17)

because
∫

cube d3xρ̃eB = 0.3

III. MAGNETIC FIELD EFFECT
IN A SKYRMION CRYSTAL

With the above setup, we are now ready to numerically
simulate the magnetic effect on the nuclear matter. For this
purpose, we take the following typical values4 [29]

fπ = 92.4 MeV, g = 5.93. (18)

A. Per-baryon energy E/NB

The per-baryon energy is given by

E/NB = 1

4

∫
cube

d3xHB
Skyr, (19)

with HB
Skyr being the static Skyrmion energy in the presence of

the external magnetic field introduced as above. In Eq. (19),
the per-baryon energy is given as a function of the Fourier
coefficients β̄abc and ᾱ

(i)
hkl , the crystal size L, and the mag-

netic field strength eB. For the chosen crystal size L and
the magnetic strength eB, we use the Fourier coefficients as
variational parameters to minimize the per-baryon energy. In
this way, the per-baryon energy can be calculated as a function
of the crystal size L and the magnetic field strength eB.

In Fig. 1 we plot the per-baryon energy as a function of the
crystal size with typical values for the magnetic field strengths

3By using Eq. (5) and the symmetry relations, one can derive∫
cube

d3x (∂zφ3)φ0 =
∫

cube
d3x φ3∂zφ0 = 0,

∫
cube

d3x [y(∂yφ3)]disc(∂zφ0) =
∫

cube
d3x [y(∂yφ0 )]disc(∂zφ3) = 0,

∫
cube

d3x [x(∂xφ3)]disc(∂zφ0) =
∫

cube
d3x [x(∂xφ0 )]disc(∂zφ3) = 0.

Here we used the same Fourier expansion form for φα as that for φ̄α ,
as in Eq. (5). Thus one can find

∫
cube J 0

B (eB ) = 0; hence the baryon
number is conserved under a magnetic field.

4We determine the Skyrme parameter g by integrating out the
vector mesons from the chiral effective theory of vector mesons
based on the hidden local symmetry approach (see, e.g., Ref. [28]).
In such a way, the Skyrme parameter can be related to the ρ-π -π
coupling through g = gρππ = mρ/(

√
2fπ ) 	 5.93 [29].
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FIG. 1. The per-baryon energy in the magnetic field as a function
of the crystal size L.

fixed. Note first that the bottommost curve in Fig. 1 precisely
reproduces the crystal-size dependence of the per-baryon en-
ergy in Ref. [29] without the magnetic field (eB = 0), which
manifests a check of our numeric code. From Fig. 1 we
see that, for a fixed crystal size L, the per-baryon energy
monotonically increases as the magnetic field increases. In
the low-density region (large crystal size L), this tendency
can be compared with the result obtained in Ref. [27] for
an isolated Skyrmion (not in the Skyrmion crystal). One can
also see an interesting discrepancy in comparison with the
reference: the Skyrmion energy analyzed in Ref. [27] has a
minimum with respect to eB, due to a destructive interference
between the O(eB ) and O((eB )2) terms in the per-baryon
energy functional. On the contrary, this is not the case for our
present work. In the Skyrmion crystal approach, the O(eB )
terms disappear when the per-baryon energy functional is
integrated over the volume of the crystal, which is due to
the crystal structure symmetry,5 so that only O((eB )2) terms
survive. This observation is supported from the magnetic field
dependence of the per-baryon energy at low density in Fig. 1.

Unlike the low-density region, in the high-density region
(small L), the per-baryon energy hardly gets affected by the
magnetic field. To understand this tendency we rescale the po-
sition space by the crystal size x = x ′/L and rewrite the
covariant derivative as Dxφ1 = (∂x ′φ1 + eB L2

2 y ′φ2)/L. This
shows that the magnetic effect becomes weaker when the
crystal size is reduced.6

5For example, the Lagrangian has an O(eB ) term such as
eAiφ2∂iφ1 = eAxφ2∂xφ1 + eAyφ2∂yφ1. By using Eq. (5) and sym-
metry relations, one finds∫

d3xeAxφ2∂xφ1 = − eB

2

∫
d3x [yφ2]disc∂xφ1 = 0.

Also, the integration for eAyφ2∂yφ1 becomes 0 in a way similar to
that of footnote 3.

6Note also from Fig. 1 that, as the magnetic field increases, the per-
baryon energy gets enhanced for every crystal size L. This could be
related to the generation of the magnetic moment for the Skyrmion,
when the Skyrmion is quantized to be endowed with spin and isospin
quantum numbers.

FIG. 2. 〈φ0〉, in the magnetic field, as a function of the crystal
size L.

B. Topology transition in baryonic matter and its related
phenomena: Inhomogeneity of the chiral condensate

In the Skyrmion approach to nuclear matter, a novel phe-
nomenon, which is not observed in other approaches, is the
so-called Skyrmion to half-Skyrmion transition, where the
fcc crystal with one Skyrmion (baryon number 1) at each
vertex factorizes to the cc crystal with a half-skymrion (having
baryon number 1/2) at each crystal vertex [30,31]. (The pres-
ence of the half-Skyrmion is a robust prediction that has arisen
along the maximal (discrete) symmetry [32].) We will call this
phenomenon “topological transition in the baryonic matter.”
The space-averaged value 〈φ0〉 = 1

(2L)3

∫ 2L

0 d3xφ0 vanishes at
some critical crystal size, which signals the topology transi-
tion, as we will see through the baryon-number density later.
Hereafter we refer to the Skyrmion crystal of the fcc crystal
as the Skyrmion phase and the cc crystal of the half-Skyrmion
as the half-Skyrmion phase.

Figure 2 shows the magnetic dependence of 〈φ0〉, the
vanishing of which signals the topology transition in the
baryonic matter. Again, without a magnetic field (

√
eB = 0),

the critical point at 〈φ0〉 = 0 agrees with that obtained in
Ref. [29] (see the bottommost curve in the figure). From
Fig. 2, one can see that as the magnetic field increases, the
phase transition point is shifted to a high-density region and
the value of the order parameter 〈φ0〉 gets larger. Moreover,
this enhancement can be rephrased as a magnetic catalysis for
the chiral condensate, because φ0 can be associated with q̄q
[see Eq. (3)].

In addition to the topology transition in the baryonic mat-
ter, the spatial distribution of φ0 can actually be thought of
as an inhomogeneous chiral condensate with φa as its chiral
partner. We plot in Figs. 3 and 4 the magnetic dependence of
the distributions of φ0(x, y, z) and φ1(x, y, z) at L = 2.0 fm
(in the Skyrmion phase). Figures 3(a) and 4(a) show the
inhomogeneities of φ0 and φ1 in the absence of the magnetic
field, where the inhomogeneous configurations take a form
like a “pulse” for φ0(∼ q̄q ) and a “wave” for φ1(∼q̄iγ5τ

1q ).
Figures 3(a) and 4(a) agree with the analysis in Ref. [33].
Turning on the magnetic field [panels (b) and (c) in
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FIG. 3. The distributions of φ0(x, y, 0) at L = 2.0 fm (in the Skyrmion phase) for
√

eB = 0 (a),
√

eB = 400 MeV (b), and
√

eB =
800 MeV (c).

Figs. 3 and 4], one notices a striking phenomenon: as eB gets
bigger, the φ0 and φ1 inhomogeneities tend to be drastically
localized at the vertices of the crystal (keeping each shape
of the “pulselike” and “wavelike” forms). Because of the
dramatic localization, the density n1/2 at which the Skyrmion
matter transits to the half-Skyrmion matter becomes larger.
This novel tendency can more easily be captured by zoom-
ing in the y = z = 0 plane, as depicted in Fig. 5. Similar
observations, regarding the deformation of inhomogeneities
for the chiral condensate by magnetic effects, have been made
in different models [18–21].

We next show in Figs. 6 and 7 the magnetic dependence
on the distributions of φ0(x, y, z) and φ1(x, y, z) in the half-
Skyrmion phase at L = 1.0 fm. Figures 6(a) and 7(a) show the
inhomogeneities of φ0 and φ1 without the magnetic field. The
results seen in Figs. 6(a) and 7(a) are, again, consistent with
the analysis in Ref. [33]. When the magnetic field is turned on
[panels (b) and (c) in Figs. 6 and 7], one can see that the φ0

and φ1 inhomogeneities are hardly affected by the strength of
eB. This is in contrast to the situation in the Skyrmion phase.
This can also be illustrated by zooming in the y = z = 0 plane
in Fig. 8.

C. Pion decay constant

We next turn to the order parameter of the chiral symmetry
breaking, fπ , in the Skyrmion crystal with a magnetic effect.
We introduce the fluctuating pion field through

U = ŭŪ ŭ,

ŭ = exp[iπaτ a/(2fπ )], (20)

where Ū is the background Skyrmion field and πa describes
the fluctuating pion field. Thus, the medium-modified pion-
decay constant, f ∗

π , is obtained as [13]

f ∗
π

fπ

=
√

1 − 2

3

(
1 − 〈

φ2
0

〉)
. (21)

In Fig. 9 we plot f ∗
π /fπ as a function of the crystal size of

L with the magnetic field varied. The density dependence at√
eB = 0 agrees with the result of Ref. [13].7 Furthermore,

in the presence of the magnetic field, the magnitude of the

7f ∗
π /fπ can be vanishing at the chiral-phase transition point if one

takes into account a chiral-singlet (“dilaton”) effect as discussed in
Ref. [34].

FIG. 4. The distributions of φ1(x, y, 0) at L = 2.0 fm (in the Skyrmion phase) for
√

eB = 0 (a),
√

eB = 400 MeV (b), and
√

eB =
800 MeV (c).
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FIG. 5. The distributions of φ0(x, 0, 0) (a) and φ1(x, 0, 0) (b) at L = 2.0 fm (in the Skyrmion phase) with
√

eB varied.

FIG. 6. The distributions of φ0(x, y, 0) at L = 1.0 fm (in the half-Skyrmion phase) for
√

eB = 0 (a),
√

eB = 400 MeV (b), and
√

eB =
800 MeV (c).

FIG. 7. The distributions of φ1(x, y, 0) at L = 1.0 fm (in the half-Skyrmion phase) for
√

eB = 0 (a),
√

eB = 400 MeV (b), and
√

eB =
800 MeV (c).

FIG. 8. The distributions of φ0(x, 0, 0) (a) and φ1(x, 0, 0) (b) at L = 1.0 fm (in the half-Skyrmion phase) with
√

eB varied.
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FIG. 9. The pion-decay constant normalized to the matter-free
value, f ∗

π /fπ , as a function of the crystal size L with a different
choice of the magnetic field.

chiral symmetry breaking gets larger when the strength of the
magnetic field is increased. Again this implies the magnetic
catalysis for the chiral symmetry breaking, as discussed in
Ref. [35].

D. Deformation of the Skyrmion configuration

We finally in this section discuss the deformation of the
Skyrmion configuration and the baryon shape in the presence
of a magnetic field.

In the Skyrmion crystal approach the Skyrmion configu-
ration can be extracted by plotting the position dependence
of the the baryon-number density distribution functions in
Eq. (16). From Eq. (16) one can check that the winding-
number density ρW (x, y, z) keeps the crystal symmetries for
the FCC and CC structures in the presence of a magnetic field.
However, the induced baryon-number density ρ̃eB does not
have this feature. This implies that the Skyrmion configura-
tions in both phases would be significantly deformed by the
presence of the magnetic field.

In Figs. 10 and 11, we plot the Skyrmion configurations in
the Skyrmion phase. First, it is interesting to note that even for

a large magnetic field eB, the fcc crystal structure essentially
holds (see, in particular, Fig. 11 for

√
eB = 800 MeV). For

the single baryon’s shape (corresponding to higher-intense
objects in Figs. 10 and 11), one also finds that it is deformed to
be an elliptic form by the magnetic field. The deformation of
this kind has also been found in the isolated Skyrmion analysis
in matter-free space [27].

We now move on to the half-Skyrmion phase. We make
plots of the half-Skyrmion configurations in Figs. 12 and 13.
One can immediately see that the half-Skyrmion configuration
is dramatically deformed by the presence of a magnetic field
and the magnetic effect not only breaks the cc form, but also
makes a multiple-peak structure (Fig. 13). Those nontrivial
deformations in the half-Skyrmion phase would be indirect
probes for the presence of inhomogeneous chiral condensate
shown in Fig. 7.

IV. SUMMARY

In this article, we analyzed magnetic field effects on nu-
clear matter based on the Skyrmion crystal approach for the
first time. As was listed in the Introduction, several interesting
phenomena have been found which would be relevant to
the equation of state of compact stars. We will not repeat
them here.

In closing, we shall make a few comments on what we
have found and the related prospect on its phenomenological
implications. As is well known, the Skyrmion crystal model
is not appropriate to simulate nuclear matter in a low-density
region such as a region below the normal nuclear density
where the nuclear matter is expected to be made of liquid
drops or hadron gas. In contrast, in a high-density region
our crystalline description for nuclear matter could be valid,
because in such a region nucleons are nearly compressed at
a certain fixed position, being treated as static objects, and
hence can be qualitatively well described by solitons in a large
Nc limit.

Though it might quantitatively be somewhat away from
the realistic situation for nuclear matter, magnetic effects on
the phase transition, such as the magnetic catalysis, would
qualitatively involve curious enough aspects for high dense

FIG. 10. The Skyrmion configurations at
√

eB = 400 MeV and L = 2.0 fm (in the Skyrmion phase). (a) The density contour plot on the
x-y plane. (b) The density contour plot on the x-z plane. (c) The distribution along the x axis or the z axis including the size rescaled by
L = 2.0 fm.
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FIG. 11. The Skyrmion configurations at
√

eB = 800 MeV and L = 2.0 fm (in the Skyrmion phase). (a) The density contour plot on the
x-y plane. (b) The density contour plot on the x-z plane. (c) The distribution along the x axis or the z axis including the size rescaled by
L = 2.0 fm.

FIG. 12. The Skyrmion configurations at
√

eB = 400 MeV and L = 1.0 fm (in the half-Skyrmion phase). (a) The density contour plot on
the x-y plane. (b) The density contour plot on the x-z plane. (c) The distribution along the x axis or the z axis including the size of the shift by
L = 1.0 fm.

FIG. 13. The Skyrmion configurations at
√

eB = 800 MeV and L = 1.0 fm (in half-Skyrmion phase). (a) The density contour plot on x-y
plane. (b) The density contour plot on x-z plane. (c) The distribution along the x axis or the z axis including the size of the shift by L = 1.0 fm.
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matter physics in a strong magnetic field. A strong mag-
netic field might be generated in the core of neutron stars
or magnetars in correlation with a chiral dynamics, as was
discussed in Refs. [36,37]. In that case, the remnant of
the topology transition in the baryonic matter including the
characteristic magnetic effect may be incorporated into the
equation of state for the neutron stars, as in Refs. [38–40], to
simulate the compact star properties, which might be observed
in the near future.
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APPENDIX: DISCRETIZATION OF x∂iφa

In this appendix, we present the method for discretizing the
quantity including a derivative. For example, we consider the
quantity x∂xφ3:

[x∂xφ3]disc = [x∂xφ̄3]disc√
φ̄aφ̄a

− (φ̄b[x∂xφ̄b]disc)φ̄3

(φ̄aφ̄a )3/2
. (A1)

We make discretizations for the square bracket parts denoted
as [ ]disc. The [x∂xφ̄0]disc part is computed as

x∂xφ̄0(x, y, z) = x∂x

∫ ∞

0

dpx

(2π )

∫ ∞

0

dpy

(2π )

∫ ∞

0

dpz

(2π )
φ̄0(p)8 cos(pxx) cos(pyy) cos(pzz)

=
∫ ∞

0

dpx

(2π )

∫ ∞

0

dpy

(2π )

∫ ∞

0

dpz

(2π )
φ̄0(p)8[px∂px

cos(pxx)] cos(pyy) cos(pzz)

discretization−−−−−−→
∑
a,b,c

β̄abc

aπ

L

cos{(a + 2)πx/L} − cos(aπx/L)

2π/L
cos(bπy/L) cos(cπz/L)

≡ [x∂xφ̄0]disc(x, y, z). (A2)

Similarly, for other terms, we have

[x∂xφ̄1]disc =
∑
h,k,l

ᾱ
(1)
hkl

hπ

L

sin{(h + 2)πx/L} − sin(hπx/L)

2π/L
cos(kπy/L) cos(lπz/L),

[x∂xφ̄2]disc =
∑
h,k,l

ᾱ
(2)
hkl

lπ

L

cos{(l + 2)πx/L} − cos(lπx/L)

2π/L
sin(hπy/L) cos(kπz/L),

[x∂xφ̄3]disc =
∑
h,k,l

ᾱ
(3)
hkl

kπ

L

cos{(k + 2)πx/L} − cos(kπx/L)

2π/L
cos(lπy/L) sin(hπz/L). (A3)

Putting those terms into the right-hand side of Eq. (A1), we thus obtain the discretized form of x∂xφ3.
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