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We analyze the electron-energy and angular distribution of neutron β− decay with a polarized neutron and
electron and an unpolarized proton, calculated by Ivanov et al. [Phys. Rev. C 95, 055502 (2017)] within
the standard model (SM), by taking into account the contributions of interactions beyond the SM. After the
absorption of vector and axial-vector contributions by the axial coupling constant and Cabibbo-Kobayashi-
Maskawa (CKM) matrix element [Bhattacharya et al., Phys. Rev. D 85, 054512 (2012) and so on] these are
the contributions of scalar and tensor interactions only. The neutron lifetime, correlation coefficients and their
averaged values, and asymmetries of neutron β− decay with a polarized neutron and electron are adapted to the
analysis of experimental data in search of contributions of interactions beyond the SM. Using the obtained results
we propose some estimates of the values of the scalar and tensor coupling constants of interactions beyond the
SM. We use the estimate of the Fierz interference term b = −0.0028 ± 0.0026 by Hardy and Towner [Phys. Rev.
C 91, 025501 (2015)], the neutron lifetime τn = 880.2(1.0) s [Particle Data Group, Chin. Phys. C 40, 100001
(2016)] and the experimental data Nexp = 0.067 ± 0.011stat. ± 0.004syst. for the averaged value of the correlation
coefficient of the neutron-electron spin-spin correlations, measured by Kozela et al. [Phys. Rev. C 85, 045501
(2012)]. The contributions of G-odd correlations are calculated and found at the level of 10−5 in agreement with
the results obtained by Gardner and Plaster [Phys. Rev. C 87, 065504 (2013)].

DOI: 10.1103/PhysRevC.98.035503

I. INTRODUCTION

Recently [1] we calculated in the standard model (SM) the
electron-energy and angular distribution of neutron β− decay
with a polarized neutron and electron and an unpolarized
proton by taking into account the contributions of the weak
magnetism and proton recoil of order O(Ee/M ), where M is
an averaged nucleon mass and Ee is the electron energy, and
the radiative corrections of order O(α/π ), where α is the fine-
structure constant [2]. These contributions define a complete
set of corrections of order 10−3 to the correlation coefficients
of neutron β− decay with a polarized neutron and electron
and an unpolarized proton. The obtained results together with
Wilkinson’s corrections of order 10−5 [3], which we have
also adapted to the correlation coefficients of the neutron
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β− decay under consideration [1], may provide a robust SM
theoretical background for the analysis of experimental data
in search of contributions of interactions beyond the SM at
the level of 10−4 [4] or even better [5] (see also [1,6]) if they
are supplemented by a complete set of corrections of order
10−5. This set of corrections is caused by the weak magnetism
and proton recoil of order O(E2

e /M
2), calculated to next-to-

next-to-leading order in the large nucleon mass expansion,
the radiative corrections of order O(αEe/M ), calculated to
next-to-leading order in the large nucleon mass expansion,
and the radiative corrections of order O(α2/π2), calculated to
leading order in the large nucleon mass expansion [7,8]. The
first steps towards the experimental search for contributions
of interactions beyond the SM in neutron β− decay with a
polarized neutron and electron and an unpolarized proton have
been done by Kozela et al. [9,10].

The paper is organized as follows. In Sec. II we give the
electron-energy spectrum and angular distribution of neutron
β− decay with a polarized neutron and electron and an un-
polarized proton, which has been calculated within the SM
in [1]. The correlation coefficients AW (Ee ), G(Ee ), N (Ee ),
Qe(Ee ) and R(Ee ) [see Eq. (1)] are calculated at the level
of 10−3 by taking into account the contributions of the
weak magnetism and proton recoil to next-to-leading order
in the large proton mass expansion and radiative correc-
tions of order O(α/π ) calculated to leading order in the
large proton mass expansion [1,6]. In Sec. III we calculate
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TABLE I. Scalar and tensor coupling constants of interactions beyond the SM and their contributions to the neutron lifetime and the
measurable correlation coefficients of neutron β− decay with a polarized neutron and electron for the correlation coefficient bE = −0.0107.
With an accuracy of about 7 × 10−5 the values of the correlation coefficient bF define the values of the Fierz interference term b.

bF bE CS CT �τ (BSM)
n /τn 〈N̄ (BSM)(Ee )〉SM 〈N (BSM)(Ee )〉SM 〈A(BSM)

W (Ee )〉SM

−0.0002 −0.0107 0.0186 0.0050 6.0 × 10−5 −0.00944 −0.01067 4.0 × 10−5

−0.0054 −0.0107 0.0149 0.0080 3.5 × 10−3 −0.00942 −0.01066 6.3 × 10−5

−0.0017 −0.0107 0.0175 0.0059 10−3 −0.00944 −0.01067 4.7 × 10−5

−0.0004 −0.0107 0.0184 0.0051 1.9 × 10−4 −0.00944 −0.01067 4.1 × 10−5

the contributions of interactions beyond the SM to the cor-
relation coefficients AW (Ee ), G(Ee ), N (Ee ), Qe(Ee ), and
R(Ee ), calculated to leading order in the large nucleon
mass expansion, and arrive at the correlation coefficients
AW,eff (Ee ) Geff (Ee ), Neff (Ee ), Qe,eff (Ee ), and Reff (Ee ) [11–
23] (see also [6]). In the linear approximation for vec-
tor and axial-vector interactions beyond the SM, the ob-
tained contributions are defined by scalar and tensor nucleon-
lepton four-fermion couplings beyond the SM only in agree-
ment with [18–23] (see also [6]). A possible dominant
role of scalar and tensor interactions beyond the SM has
been also discussed by Jackson et al. [12]. In Sec. IV
we give the neutron lifetime, correlation coefficients
AW,eff (Ee ), Geff (Ee ), Neff (Ee ), Qe,eff (Ee ) and Reff (Ee ) and
asymmetries of neutron β− decay with a polarized neutron
and electron in a form suitable for the analysis of experimental
data in search of interactions beyond the SM, including the
complete set of the SM corrections of order 10−3, Wilkinson’s
corrections of order 10−5 [1], and contributions of interactions
beyond the SM. The contributions of interactions beyond the
SM agree well with the results obtained by Jackson et al.
[12,13] and Severijns et al. [17] up to redefinition of the
metric and normalization. In Sec. V we calculation the G-odd
corrections to the neutron lifetime and correlation coefficients
of neutron β− decay with a polarized neutron and electron

and an unpolarized proton. We estimate these corrections
to be at the level of 10−5 and even smaller, in agreement
with the results obtained by Gardner and Plaster [23]. In
Sec. VI we discuss the obtained results and propose some
estimates of the values of scalar and tensor coupling constants
of interactions beyond the SM. We follow Severijns et al. [17]
and use for simplicity a real coupling constant approximation
and nucleon-lepton four-fermion couplings with left-handed
neutrinos only. The obtained results are given in Tables I and
II. For the analysis of experimental data in search of contri-
butions of interactions beyond the SM at the level of 10−4

and even better [5], we argue that there is an important role
of the theoretical background with SM corrections of order
10−5, including Wilkinson’s corrections [1] and corrections
caused by the weak magnetism and proton recoil of order
O(E2

e /M
2), radiative corrections of order O(αEe/M ), and

radiative corrections of order O(α2/π2) [7,8].

II. ELECTRON ENERGY AND ANGULAR
DISTRIBUTION IN THE SM

The electron-energy and angular distribution of neutron β−
decay with a polarized neutron and electron, introduced for
the first time by Jackson et al. [12,13] but using in notations
as in [1], is given by

d3λn(Ee, �ke, �ξn, �ξe )

dEed�e

= (1 + 3λ2)
G2

F |Vud |2
8π4

(E0 − Ee )2
√

E2
e − m2

e Ee F (Ee,Z = 1) ζ (Ee )

{
1 + AW (Ee )

�ξn · �ke

Ee

+G(Ee )
�ξe · �ke

Ee

+ N (Ee ) �ξn · �ξe + Qe(Ee )
(�ξn · �ke )(�ke · �ξe )

Ee(Ee + me )
+ R(Ee )

�ξn · (�ke × �ξe )

Ee

}
, (1)

where GF = 1.1664 × 10−11 MeV−2 is the Fermi weak
constant; Vud = 0.97417(21) is the Cabibbo-Kobayashi-
Maskawa (CKM) matrix element [2], extracted from the
0+ → 0+ transitions; λ = −1.2750(9) is the axial coupling
constant, which is real [6]; E0 = (m2

n − m2
p + m2

e )/2mn =
1.2927 MeV is the endpoint energy of the electron-energy
spectrum, calculated for mn = 939.5654 MeV, and mp =
938.2721 MeV, and me = 0.5110 MeV [2]; �ξn and �ξe are
unit polarization vectors of the neutron and electron, respec-
tively; and F (Ee,Z = 1) is the relativistic Fermi function

[13,24–26]

F (Ee,Z = 1) =
(

1 + 1

2
γ

)
4(2rpmeβ )2γ

�2(3 + 2γ )

e πα/β

(1 − β2)γ

∣∣∣∣�
×

(
1 + γ + i

α

β

)∣∣∣∣
2

, (2)

where β = ke/Ee = √
E2

e − m2
e/Ee is the electron velocity,

γ = √
1 − α2 − 1, and rp is the electric radius of the proton.
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TABLE II. Scalar and tensor coupling constants of interactions beyond the SM and their contributions to the neutron lifetime and the
measurable correlation coefficients of neutron β− decay with a polarized neutron and electron for the correlation coefficient bE taken at the
level of 10−4.

bF bE CS CT �τ (BSM)
n /τn 〈N̄ (BSM)(Ee )〉SM 〈N (BSM)(Ee )〉SM 〈A(BSM)

W (Ee )〉SM

−0.0002 −0.0002 +2.1 × 10−4 +2.1 × 10−4 1.3 × 10−4 −1.77 × 10−4 −2.00 × 10−4 +2.95 × 10−8

−0.0002 +0.0002 −4.9 × 10−4 +2.5 × 10−5 1.3 × 10−4 +1.77 × 10−4 +2.00 × 10−4 −3.99 × 10−9

−0.0002 −0.0001 +3.3 × 10−5 +1.6 × 10−4 1.3 × 10−4 −8.85 × 10−5 −1.00 × 10−4 +1.08 × 10−8

−0.0002 +0.0001 −3.2 × 10−4 +7.1 × 10−5 1.3 × 10−4 +8.85 × 10−5 +1.00 × 10−4 −5.93 × 10−9

In the numerical calculations we will use rp = 0.841 fm [27]
used in [7], which is smaller than rp = 0.875 fm reported
in [28] and used in [1]. The Fermi function (2) describes
the contribution of the electron-proton final-state Coulomb
interaction. The analysis of different approximations of the

Fermi function (2) has been carried out by Wilkinson [3]
(see also [1]). In the SM the correlation coefficients of the
electron-energy and angular distribution, Eq. (1), we calculate
with the Hamiltonian of V -A weak interactions and the weak
magnetism [6]:

HW (x) = GF√
2

Vud

{
[ψ̄p(x)γμ(1 + λγ 5)ψn(x)] + κ

2M
∂ν[ψ̄p(x)σμνψn(x)]

}
[ψ̄e(x)γ μ(1 − γ 5)ψνe

(x)], (3)

where ψp(x), ψn(x), ψe(x) and ψνe
(x) are the field operators of the proton, neutron, electron, and antineutrino, respectively; γ μ,

σμν = i
2 (γ μγ ν − γ νγ μ), and γ 5 are the Dirac matrices; κ = κp − κn = 3.7058 is the isovector anomalous magnetic moment of

the nucleon, defined by the anomalous magnetic moments of the proton κp = 1.7928 and neutron κn = −1.9130 and measured
in nuclear magnetons [2]; and M = (mn + mp )/2 is the average nucleon mass. The correlation coefficients ζ (Ee ) and AW (Ee )
have been calculated in [6]. They read

ζ (Ee ) =
(

1 + α

π
gn(Ee )

)
+ 1

M

1

1 + 3λ2

[
−2 (λ2 − (κ + 1) λ) E0 + (10λ2 − 4(κ + 1) λ + 2) Ee

− 2 (λ2 − (κ + 1) λ)
m2

e

Ee

]
,

ζ (Ee ) AW (Ee ) = ζ (Ee )

(
A(Ee ) + 1

3
Qn(Ee )

)
= A0

(
1 + α

π
gn(Ee ) + α

π
fn(Ee )

)
+ 1

M

1

1 + 3λ2

×
[{

4

3
λ2 −

(
4

3
κ + 2

3

)
λ − 2

3
(κ + 1)

}
E0 −

{
22

3
λ2 −

(
10

3
κ − 4

3

)
λ − 2

3
(κ + 1)

}
Ee

]
, (4)

where the correlation coefficients A(Ee ) and Qn(Ee ) are given in [6] (see also [29]). The correlation coefficient AW (Ee ) without
the contribution of the radiative corrections, defined by the function fn(Ee ), has been calculated by Wilkinson [3]. We would
like to remind the reader that for the first time the calculation of corrections to order O(Ee/M ) to the correlation coefficients of
neutron β− decay with a polarized neutron and an unpolarized proton and electron, caused by the weak magnetism and proton
recoil, has been carried out by Bilen’kii et al. [30,31]. The radiative corrections gn(Ee ) and fn(Ee ) have been calculated by
Sirlin [32] and Shann [33], respectively (for details of these calculations one may consult [29] and [6]). The calculation of the
contributions of the W -boson and Z-boson exchanges and the QCD corrections to the function gn(Ee ) have been performed
by Czarnecki et al. [34]. The other correlation coefficients in the electron-energy and angular distribution Eq. (1) have been
calculated in [1]. They are equal to

G(Ee ) = −
(

1 + α

π
fn(Ee )

)(
1 + 1

M

1

1 + 3λ2
(2λ2 − 2(κ + 1) λ)

m2
e

Ee

)
,

N (Ee ) = +
(

1 + α

π
h(1)

n (Ee )

)
me

Ee

{
− A0 + 1

M

1

1 + 3λ2

[(
16

3
λ2 −

(
4

3
κ − 16

3

)
λ − 2

3
(κ + 1)

)
Ee

−
(

4

3
λ2 −

(
4

3
κ − 1

3

)
λ − 2

3
(κ + 1)

)
E0

]
− 1

M

A0

1 + 3λ2

[
−(10λ2 − 4(κ + 1) λ + 2) Ee

+ (2λ2 − 2(κ + 1) λ)

(
E0 + m2

e

Ee

)]}
,
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Qe(Ee ) =
(

1 + α

π
h(2)

n (Ee )

) {
− A0 + 1

M

1

1 + 3λ2

[(
22

3
λ2 −

(
10

3
κ − 10

3

)
λ − 2

3
(κ + 1)

)
Ee

−
(

4

3
λ2 −

(
4

3
κ − 1

3

)
λ − 2

3
(κ + 1)

)
E0 + (2λ2 − 2(κ + 1) λ)me

]
− 1

M

A0

1 + 3λ2

×
[
−(10λ2 − 4(κ + 1) λ + 2) Ee + (2λ2 − 2(κ + 1) λ)

(
E0 + m2

e

Ee

)]}
,

R(Ee ) = −α
me

ke

A0, A0 = −2
λ(1 + λ)

1 + 3λ2
, (5)

where the terms of order (α/π )(Ee/M ) < 3 × 10−6 are neglected. The correlation coefficients in Eq. (5) are defined at the level
of 10−3 of a complete set of contributions, caused by the weak magnetism and proton recoil of order O(Ee/M ) and radiative
corrections of order O(α/π ) [1]. The functions h(1)

n (Ee ) and h(2)
n (Ee ), defining the radiative corrections to the correlation

coefficients of N (Ee ) and Qe(Ee ), were calculated for the first time in [1].

III. ELECTRON-ENERGY AND ANGULAR DISTRIBUTION BEYOND THE SM

For the calculation of contributions of interactions beyond the SM we use the effective low-energy Hamiltonian of weak
nucleon-lepton four-fermion local interactions, taking into account all phenomenological couplings beyond the SM [11–17].
Using notation as in [6], such a Hamiltonian takes the form

HW (x) = GF√
2

Vud

{
[ψ̄p(x)γμψn(x)][ψ̄e(x)γ μ(CV + C̄V γ 5)ψνe

(x)] + [ψ̄p(x)γμγ 5ψn(x)][ψ̄e(x)γ μ(C̄A + CAγ 5)ψνe
(x)]

+ [ψ̄p(x)ψn(x)][ψ̄e(x)(CS + C̄Sγ
5)ψνe

(x)] + [ψ̄p(x)γ 5ψn(x)][ψ̄e(x)(CP + C̄P γ 5)ψνe
(x)]

+ 1

2
[ψ̄p(x)σμνγ 5ψn(x)][ψ̄e(x)σμν (C̄T + CT γ 5)ψνe

(x)

}
. (6)

This is the most general form of the effective low-energy weak interactions, where the phenomenological coupling constants Ci

and C̄i for i = V , A, S, P , and T can be induced by the left-handed and right-handed hadronic and leptonic currents [12–17].
They are related to the phenomenological coupling constants, analogous to those which were introduced by Herczeg [16], as
follows:

CV = 1 + ah
LL + ah

LR + ah
RR + ah

RL, C̄V = −1 − ah
LL − ah

LR + ah
RR + ah

RL,

CA = −λ + ah
LL − ah

LR + ah
RR − ah

RL, C̄A = λ − ah
LL + ah

LR + ah
RR − ah

RL,

CS = Ah
LL + Ah

LR + Ah
RR + Ah

RL, C̄S = −Ah
LL − Ah

LR + Ah
RR + Ah

RL,

CP = −Ah
LL + Ah

LR + Ah
RR − Ah

RL, C̄P = Ah
LL − Ah

LR + Ah
RR − Ah

RL,

CT = 2
(
αh

LL + αh
RR

)
, C̄T = 2

(−αh
LL + αh

RR

)
, (7)

where the index h means that the phenomenological coupling constants are introduced at the hadronic level but not at the quark
level, as was done by Herczeg [16]. In the SM the phenomenological coupling constants Ci and C̄i for i = V , A, S, P , and T are
equal to CS = C̄S = CP = C̄P = CT = C̄T = 0, CV = − C̄V = 1, and CA = − C̄A = −λ [6]. The phenomenological coupling
constants ah

ij , Ah
ij , and αh

jj for i (j ) = L or R are induced by interactions beyond the SM. The coupling constants in Eq. (6) are
related to the coupling constants by Gudkov et al. [29]) as follows:

CV = CV , C̄V = C ′
V , C̄A = −CA, CA = −C ′

A, CS = CS, C̄S = C ′
S,

CP = C ′
P , C̄P = CP , CT = CT , C̄T = C ′

T . (8)

Thus, our definition of the coupling constants of interactions beyond the SM, used in [6,35], differs from Gudkov’s definition
only for the axial-vector coupling constants. However, the contributions to the correlation coefficients, obtained in the linear
approximation with respect to deviations of the vector and axial-vector coupling constants from their values in the SM and
expressed in terms of the scalar and tensor coupling constants, are related by the redefinition (Cj , C̄j ) → (Cj , C

′
j ) for j = S, T

[see Eq. (15) and Sec. IV].
The structure of the phenomenological coupling constants in Eq. (7) agrees well with the coupling constants of interactions

beyond the SM used by Cirigliano et al. [20] for consideration of the role of precision measurements of β decays and light meson
semileptonic decays in probing physics beyond the SM in the Large Hadron Collider era. For this aim, using an effective field
theory framework, all low-energy charged-current processes within and beyond the SM were described, and theoretical hadronic
input, which in these precision tests plays a crucial role in setting the baseline for new physics searches, was discussed.
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The contribution of interactions beyond the SM, given by the Hamiltonian of weak interactions Eq.(6), to the amplitude of
neutron β− decay, calculated to leading order in the large nucleon mass expansion, takes the form

M (n → pe−ν̄e ) = −2mn

GF√
2

Vud {[ϕ†
pϕn][ūeγ

0(CV + C̄V γ 5)vν̄] − [ϕ†
p �σ ϕn] · [ūe �γ (C̄A + CAγ 5)vν̄]

+ [ϕ†
pϕn][ūe(CS + C̄Sγ

5)vν̄] + [ϕ†
p �σ ϕn] · [ūeγ

0 �γ (C̄T + CT γ 5)vν̄]}. (9)

The Hermitian conjugate amplitude is

M†(n → pe−ν̄e ) = −2mn

GF√
2

V ∗
ud{[ϕ†

nϕp][v̄ν̄γ
0(C∗

V + C̄∗
V γ 5)ue] − [ϕ†

n �σ ϕp] · [v̄ν̄ �γ (C̄∗
A + C∗

Aγ 5)ue]

+ [ϕ†
nϕp][v̄ν̄ (C∗

S − C̄∗
Sγ 5)ue] − [ϕ†

n �σ ϕp] · [v̄ν̄γ
0 �γ (C̄∗

T − C∗
T γ 5)ue]}. (10)

The contributions of interactions with the strength defined by the phenomenological coupling constants CP and C̄P may appear
only of order O(CP Ee/M ) and O(C̄P Ee/M ) and can be neglected to leading order in the large nucleon mass expansion. We
have also neglected the contributions of the neutron-proton mass difference. The squared absolute value of the amplitude (9),
summed over polarizations of massive fermions, is equal to∑

pol.

|M (n → pe−ν̄e )|2

= 8m2
nG

2
F |Vud |2EνEe

{
1

2
(|CV |2 + |C̄V |2 + 3|CA|2 + 3|C̄A|2 + |CS |2 + |C̄S |2 + 3|CT |2 + 3|C̄T |2)

+ me

Ee

Re(CV C∗
S + C̄V C̄∗

S − 3CAC∗
T − 3C̄AC̄∗

T ) +
�ξn · �ke

Ee

Re(2CAC̄∗
A − 2CT C̄∗

T − CV C̄∗
A − C̄V C∗

A − CSC̄
∗
T − C̄SC

∗
T )

+
�ke · �ξe

Ee

Re(CV C̄∗
V + 3CAC̄∗

A − CSC̄
∗
S − 3CT C̄∗

T ) + �ξn · �ξe Re

[
me

Ee

(|CA|2 + |C̄A|2 − CV C∗
A − C̄V C̄∗

A + |CT |2 + |C̄T |2

+CSC
∗
T + C̄SC̄

∗
T ) + CV C∗

T + C̄V C̄∗
T − CAC∗

S − C̄AC̄∗
S − 2CAC∗

T − 2C̄AC̄∗
T

]
+ (�ξn · �ke )(�ke · �ξe )

Ee(Ee + me )
Re(|CA|2 + |C̄A|2

−CV C∗
A − C̄V C̄∗

A − CV C∗
T − C̄V C̄∗

T + CAC∗
S + C̄AC̄∗

S + 2CAC∗
T + 2C̄AC̄∗

T + |CT |2 + |C̄T |2 + CSC
∗
T + C̄SC̄

∗
T )

+
�ξn · (�ke × �ξe )

Ee

Im(CV C̄∗
T + C̄V C∗

T − CAC̄∗
S − C̄AC∗

S − 2CAC̄∗
T − 2C̄AC∗

T )

}
. (11)

In Eq. (11) the structure of the contributions of interactions beyond the SM agrees well with the structure of the corresponding
expressions obtained by Jackson et al. [12,13]. The first term on the second line of Eq. (11) is the Fierz interference term. It
appears as a result of the calculation of the traces over the Dirac matrices on the same footing as that in the paper by Lee and
Yang [36] (see the Appendix of Refs. [36] and [38]). In the linear approximation for coupling constants of vector and axial-vector
interactions beyond the SM [6], we get∑

pol.

|M (n → pe−ν̄e )|2

= 8m2
nG

2
F |Vud |2EνEe (1 + 3λ2)

{[
1 + 1

2

1

1 + 3λ2
(|CS |2 + |C̄S |2 + 3|CT |2 + 3|C̄T |2)

]

+ me

Ee

1

1 + 3λ2
Re((CS − C̄S ) + 3λ (CT − C̄T )) +

�ξn · �ke

Ee

(
A0 − 1

1 + 3λ2
Re(CSC̄

∗
T + C̄SC

∗
T + 2CT C̄∗

T )

)

+
�ke · �ξe

Ee

(
− 1 − 1

1 + 3λ2
Re(CSC̄

∗
S + 3CT C̄∗

T )

)
+ �ξn · �ξe

[
me

Ee

(
− A0 + 1

1 + 3λ2
Re(CSC

∗
T + C̄SC̄

∗
T

+ |CT |2 + |C̄T |2)

)
+ 1

1 + 3λ2
Re(λ(CS − C̄S ) + (1 + 2λ)(CT − C̄T ))

]
+ (�ξn · �ke )(�ke · �ξe )

Ee(Ee + me )

[
− A0 + 1

1 + 3λ2

× Re(−λ(CS − C̄S ) − (1 + 2λ)(CT − C̄T ) + CSC
∗
T + C̄SC̄

∗
T + |CT |2 + |C̄T |2)

]

+
�ξn · (�ke × �ξe )

Ee

1

1 + 3λ2
Im(λ(CS − C̄S ) + (1 + 2λ)(CT − C̄T ))

}
, (12)
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where we have replaced Cj and C̄j with j = V,A by CV = 1 + δCV , C̄V = −1 + δC̄V , CA = −λ + δCA, and C̄A = λ + δC̄A

[29] (see also [6]) and neglected the contributions of the products (δCj )2, δCjδC̄j , δCjCk , and δC̄jCk for j = V,A and k =
S, T . Following [19] (see also [6]) we have absorbed the contributions the vector and axial vector interactions beyond the SM
by the axial coupling constant λ and the CKM matrix element Vud .

Thus, the electron-energy and angular distribution, Eq. (1), taking into account the contributions of interactions beyond the
SM, can be transcribed into the following standard form [12] (see also [29] and [19–23]):

d3λn(Ee, �ke, �ξn, �ξe )

dEed�e

= (1 + 3λ2)
G2

F |Vud |2
8π4

(E0 − Ee )2
√

E2
e − m2

e EeF (Ee,Z = 1)ζ (SM)(Ee )

× (1 + ζ (BSM)(Ee ))g

{
1 + b

me

Ee

+ AW,eff (Ee )
�ξn · �ke

Ee

+ Geff (Ee )
�ξe · �ke

Ee

+ Neff (Ee )�ξn · �ξe

+Qe,eff (Ee )
(�ξn · �ke )(�ke · �ξe )

Ee(Ee + me )
+ Reff (Ee )

�ξn · (�ke × �ξe )

Ee

g

}
, (13)

where the indices “SM” and “BSM” mean “standard model” and “beyond standard model,” respectively. The correlation
coefficient ζ (SM)(Ee ) is given by Eq. (4), whereas the analytical expressions for the correlation coefficient ζ (BSM)(Ee ) are given
in Eq. (15). Other correlation coefficients are defined by

b = bF

1 + ζ (BSM)(Ee )
, AW,eff (Ee ) = A

(SM)
W (Ee ) + A

(BSM)
W (Ee )

1 + ζ (BSM)(Ee )
,

Geff (Ee ) = G(SM)(Ee ) + G(BSM)(Ee )

1 + ζ (BSM)(Ee )
, Neff (Ee ) = N (SM)(Ee ) + N (BSM)(Ee )

1 + ζ (BSM)(Ee )
,

Qe,eff (Ee ) = Q(SM)
e (Ee ) + Q(BSM)

e (Ee )

1 + ζ (BSM)(Ee )
, Reff (Ee ) = R(SM)(Ee ) + R(BSM)(Ee )

1 + ζ (BSM)(Ee )
, (14)

where b is the Fierz interference term. The correlation coefficients with index “SM” are given by Eqs. (4) and (5). These
expressions should be also supplemented by Wilkinson’s corrections of order 10−5 [3], calculated for the neutron β− decay
under consideration in [1]. The correlation coefficients bF , bE and others with index “BSM” are given by

bF = 1

1 + 3λ2
Re[(CS − C̄S ) + 3λ (CT − C̄T )],

bE = 1

1 + 3λ2
Re[λ (CS − C̄S ) + (1 + 2λ) (CT − C̄T )],

ζ (BSM)(Ee ) = 1

2

1

1 + 3λ2
(|CS |2 + |C̄S |2 + 3|CT |2 + 3|C̄T |2),

A
(BSM)
W (Ee ) = − 1

1 + 3λ2
Re(CSC̄

∗
T + C̄SC

∗
T + 2CT C̄∗

T ),

G(BSM)(Ee ) = − 1

1 + 3λ2
Re(CSC̄

∗
S + 3CT C̄∗

T ),

N (BSM)(Ee ) = me

Ee

1

1 + 3λ2
Re(CSC

∗
T + C̄SC̄

∗
T + |CT |2 + |C̄T |2) + bE,

Q(BSM)
e (Ee ) = 1

1 + 3λ2
Re(CSC

∗
T + C̄SC̄

∗
T + |CT |2 + |C̄T |2) − bE,

R(BSM)(Ee ) = 1

1 + 3λ2
Im[λ(CS − C̄S ) + (1 + 2λ)(CT − C̄T )]. (15)

The correlation coefficients in Eq. (15) can be redefined in Gudkov’s notation [29]) by the replacement (C,C̄j ) → (Cj , C
′
j ) for

j = S, T [see Eq. (8)]. In Eq. (15) the structure of the contributions of interactions beyond the SM agrees well with the structure
of corresponding expressions taken in the linear approximation with respect to vector and axial-vector interactions beyond the
SM obtained by Jackson et al. [12,13]. For the calculation of Eq. (13) we have carried out the integration over the directions of
the antineutrino momentum. This gives the correlation coefficient A

(SM)
W (Ee ) equal to A

(SM)
W (Ee ) = A(SM)(Ee ) + 1

3 Q(SM)
n (Ee )

[3,6] [see also Eq. (26)].
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IV. NEUTRON LIFETIME, AVERAGED VALUES OF CORRELATION COEFFICIENTS, AND ASYMMETRIES
OF NEUTRON β− DECAY WITH A POLARIZED NEUTRON AND ELECTRON

For the analysis of experimental data in search of interactions beyond the SM in neutron β− decay with a polarized neutron
and electron, we propose to use a complete set of contributions of scalar and tensor interactions beyond the SM including linear,
crossing, and quadratic terms, which are given in Eq. (15).

A. Neutron lifetime

Having integrated the electron-energy and angular distribution, Eq. (13), with contributions of interactions beyond the SM
we get

τ−1
n (�ξn, �ξe ) = τ−1

n

(
1 + 1

2

1

1 + 3λ2
(|CS |2 + |C̄S |2 + 3|CT |2 + 3|C̄T |2) +

〈
me

Ee

〉
SM

bF + 〈N̄eff (Ee )〉 �ξe · �ξe

)
. (16)

Here we have denoted

〈N̄eff (Ee )〉 = 〈N (SM)(Ee ) + 1

3

(
1 − me

Ee

)
Q(SM)

e (Ee )〉SM + 〈N̄ (BSM)(Ee )〉SM. (17)

For the calculation of the averaged value 〈N̄eff (Ee )〉 we use the electron-energy density

ρe(Ee ) = ρ (SM)
e (Ee )

(
1 + 1

2

1

1 + 3λ2
(|CS |2 + |C̄S |2 + 3|CT |2 + 3|C̄T |2)

)
, (18)

where the electron-energy density ρ (SM)
e (Ee ) is defined by Eq. (D-59) of Ref. [6]. The notation 〈· · · 〉SM means that the integration

over the electron-energy spectrum is carried out with the electron-energy density ρ (SM)
e (Ee ). Then, 〈N̄ (BSM)(Ee )〉SM is equal to

〈N̄ (BSM)(Ee )〉SM =
(

2

3
+ 1

3

〈
me

Ee

〉
SM

)
bE +

(
1

3
+ 2

3

〈
me

Ee

〉
SM

)
1

1 + 3λ2
Re(CSC

∗
T + C̄SC̄

∗
T + |CT |2 + |C̄T |2), (19)

where 〈me/Ee〉SM = 0.6556 and τn = 879.6(1.1) s [6]. Recent analysis of experimental data on the neutron lifetime, carried out
by Czarnecki et al. [39], has led to the favored neutron lifetime τ (favored) = 879.4(6) s and the favored axial coupling constant
λ(favored) = −1.2755(11), which agree very well with τn = 879.6(1.1) s and λ = −1.2750(9), respectively [6].

B. Averaged values of correlations coefficients

In terms of the correlation coefficients bF and bE the phenomenological scalar and tensor coupling constants Re(CS − C̄S )
and Re(CT − C̄T ) are defined by

Re(CS − C̄S ) = 3λ2 + 1

3λ2 − 2λ − 1
[−(1 + 2λ) bF + 3λ bE],

Re(CT − C̄T ) = 3λ2 + 1

3λ2 − 2λ − 1
(λ bF − bE ). (20)

The averaged values of the correlation coefficients AW,eff (Ee ), Geff (Ee ), Neff (Ee ), Qe,eff (Ee ), and Reff (Ee ), taking into account
the contributions of the SM and interactions beyond the SM, are given by

〈AW,eff (Ee )〉 = 〈
A

(SM)
W (Ee )

〉
SM − 1

1 + 3λ2
Re(CSC̄

∗
T + C̄SC

∗
T + 2CT C̄∗

T )

= −0.12121 − 1

1 + 3λ2
Re(CSC̄

∗
T + C̄SC

∗
T + 2CT C̄∗

T ),

〈Geff (Ee )〉 = 〈G(SM)(Ee )〉SM − 1

1 + 3λ2
Re(CSC̄

∗
S + 3CT C̄∗

T )

= −1.00242 − 1

1 + 3λ2
Re(CSC̄

∗
S + 3CT C̄∗

T ),

〈Neff (Ee )〉 = 〈N (SM)(Ee )〉SM +
〈
me

Ee

〉
SM

1

1 + 3λ2
Re(CSC

∗
T + C̄SC̄

∗
T + |CT |2 + |C̄T |2) + bE

= 0.07767 + 0.6556
1

1 + 3λ2
Re(CSC

∗
T + C̄SC̄

∗
T + |CT |2 + |C̄T |2) + bE,
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〈Qe,eff (Ee )〉 = 〈
Q(SM)

e (Ee )
〉
SM + 1

1 + 3λ2
Re(CSC

∗
T + C̄SC̄

∗
T + |CT |2 + |C̄T |2) − bE

= 0.12279 + 1

1 + 3λ2
Re(CSC

∗
T + C̄SC̄

∗
T + |CT |2 + |C̄T |2) − bE,

〈Reff (Ee )〉 = 〈R(SM)(Ee )〉SM + 1

1 + 3λ2
Im[λ(CS − C̄S ) + (1 + 2λ)(CT − C̄T )]

= 0.00089 + 1

1 + 3λ2
Im[λ(CS − C̄S ) + (1 + 2λ)(CT − C̄T )]. (21)

For the calculation of 〈Xeff (Ee )〉, where X = AW , G, N , Qe, and R, we have used the electron-energy density from Eq. (18).

C. Asymmetries of neutron β− decay with a polarized neutron and electron

Asymmetry of neutron-electron spin-momentum correlations: Electron asymmetry

For the electron asymmetry Aexp(Ee ) [4,40–47] we obtain the following expression (see [6]):

Aexp(Ee ) = N+
A (Ee ) − N−

A (Ee )

N+
A (Ee ) + N−

A (Ee )
= 1

2
β AW,eff (Ee )Pn(cos θ1 + cos θ2), (22)

where Pn = |�ξn| � 1 is the neutron spin polarization, β is the electron velocity, and N±
A (Ee ) are the numbers of events of

the emission of the electron forward (+) and backward (−) with respect to the neutron spin into the solid angle ��12 =
2π (cos θ1 − cos θ2) with 0 � ϕ � 2π and θ1 � θe � θ2. They are determined by [4] (see also [6])

N+
A (Ee ) = 2πN (Ee )

∫ θ2

θ1

(1 + AW,eff (Ee ) Pn β cos θe ) sin θe dθe

= 2πN (Ee )

(
1 + 1

2
AW,eff (Ee ) Pn β (cos θ1 + cos θ2)

)
(cos θ1 − cos θ2),

N−
A (Ee ) = 2πN (Ee )

∫ π−θ2

π−θ1

(1 + ĀW,eff (Ee ) Pn β cos θe ) sin θe dθe

= 2πN (Ee )

(
1 − 1

2
ĀW,eff (Ee ) Pn β (cos θ1 + cos θ2)

)
(cos θ1 − cos θ2), (23)

where N (Ee ) is the normalization factor equal to

N (Ee ) = (1 + 3λ2)
G2

F |Vud |2
8π4

(E0 − Ee )2
√

E2
e − m2

e Ee F (Ee,Z = 1) ζ (SM)(Ee )

×
(

1 + 1

2

1

1 + 3λ2
(|CS |2 + |C̄S |2 + 3|CT |2 + 3|C̄T |2) + bF

me

Ee

)
. (24)

The correlation coefficient AW,eff (Ee ) in Eq. (22) is given by

AW,eff (Ee ) = A
(SM)
W (Ee ) − 1

1+3λ2 Re(CSC̄
∗
T + C̄SC

∗
T + 2CT C̄∗

T )

1 + 1
2

1
1+3λ2 (|CS |2 + |C̄S |2 + 3|CT |2 + 3|C̄T |2) + bF

me

Ee

= AW,eff (Ee )

1 + b me

Ee

, (25)

with the correlation coefficient A
(SM)
W (Ee ) equal to [6]

A
(SM)
W (Ee ) =

(
1 + α

π
fn(Ee )

)
A0

{
1 − 1

M

1

2λ(1 + λ)(1 + 3λ2)

(
A

(W )
1 E0 + A

(W )
2 Ee + A

(W )
3

m2
e

Ee

)}
,

A
(W )
1 = 2

3
(−3λ3 + (3κ + 5) λ2 − (2κ + 1) λ − (κ + 1)) = −2(λ − (κ + 1))

(
λ2 − 2

3
λ − 1

3

)
,

A
(W )
2 = 2

3
(−3λ4 + (3κ + 12) λ3 − (9κ + 14) λ2 + (5κ + 4) λ + (κ + 1)) = −2(λ − (κ + 1))

(
λ3 − 3λ2 + 5

3
λ + 1

3

)
,

A
(W )
3 = −4 λ2(λ + 1) (λ − (κ + 1)). (26)

The electron asymmetry, Eq. (25), can be used for the extraction of contributions of interactions beyond the SM from new
experimental data, which can be obtained in new runs of experiments in search of interactions beyond the SM with cold and
ultracold neutrons [5].
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Asymmetry of electron spin-momentum correlations

For a polarized electron and an unpolarized neutron and proton the correlation coefficient Geff (Ee ) defines the following
electron-energy and angular distribution:

d3λn(Ee, �ke, �ξe )

dEed�e

= (1 + 3λ2)
G2

F |Vud |2
8π4

(E0 − Ee )2
√

E2
e − m2

e Ee F (Ee,Z = 1) ζ (SM)(Ee )

×
(

1 + 1

2

1

1 + 3λ2
(|CS |2 + |C̄S |2 + 3|CT |2 + 3|C̄T |2)

)(
1 + b

me

Ee

+ Geff (Ee )
�ξe · �ke

Ee

)
. (27)

Following Kozela et al. [10] (see also [48]) the corresponding asymmetry can be defined as follows:

Gexp(Ee ) =
d3λn(Ee,�ke,�ξe )

dEed�e

∣∣
+ − d3λn(Ee,�ke,�ξe )

dEed�e

∣∣
−

d3λn(Ee,�ke,�ξe )
dEed�e

∣∣
+ + d3λn(Ee,�ke,�ξe )

dEed�e

∣∣
−

= β Geff (Ee ) Pe‖, (28)

where Pe‖ is the longitudinal polarization of the electron. The signs (|±) mean parallel and antiparallel polarizations of the
electron with respect to its momentum. For a comparison with Ref. [10] we have to set Pe‖ = σL. The correlation coefficient
Geff (Ee ) is equal to

Geff (Ee ) = G(SM)(Ee ) − 1
1+3λ2 Re(CSC̄

∗
S + 3CT C̄∗

T )

1 + 1
2

1
1+3λ2 (|CS |2 + |C̄S |2 + 3|CT |2 + 3|C̄T |2) + bF

me

Ee

= Geff (Ee )

1 + b me

Ee

, (29)

where G(SM)(Ee ) is given in Eq. (5).

Asymmetry of neutron-electron spin-spin correlations

For the decay electrons in polarization states with polarization Pe⊥ or σT1 in the notation of Ref. [10], lying in the decay
plane spanned by the neutron spin polarization vector �ξn and electron momentum �ke (see Fig. 1 of Ref. [10]), we may define the
asymmetry [48], caused by the neutron-electron spin-spin correlations

Nexp(Ee ) = Neff (Ee ) Pn Pe⊥ cos γ, (30)

where we have denoted �ξn · �ξe = Pn Pe⊥ cos γ . The correlation coefficient Neff (Ee ) in Eq. (30) is given by

Neff (Ee ) =
N (SM)(Ee ) + me

Ee

1
1+3λ2 Re(CSC

∗
T + C̄SC̄

∗
T + |CT |2 + |C̄T |2) + bE

1 + 1
2

1
1+3λ2 (|CS |2 + |C̄S |2 + 3|CT |2 + 3|C̄T |2) + bF

me

Ee

= Neff (Ee )

1 + b me

Ee

, (31)

where N (SM)(Ee ) is defined in Eq.(5). The results, obtained in this section, can be used for the analysis of experimental data
in search of interactions beyond the SM in neutron β− decay with a polarized neutron and electron and an unpolarized proton.
The expressions for the correlations coefficients and asymmetries obtained in this section can be trivially defined in Gudkov’s
notation [29] (see also [19]) by a replacement (Cj , C̄j ) → (Cj , C

′
j ) for j = S, T [see Eq. (8)].

V. G-ODD CORRELATIONS

The G-parity transformation, i.e., G = C e iπI2 , where C and I2 are the charge conjugation and isospin operators, was
introduced by Lee and Yang [49] as a symmetry of strong interactions. According to the G-transformation properties of hadronic
currents, Weinberg divided hadronic currents into two classes: G-even first-class and G-odd second-class currents [50]. Thus,
in agreement with Weinberg’s classification of hadronic currents, the effective phenomenological interactions beyond the SM,
Eq. (6), are induced by the first-class hadronic currents.

Following Weinberg [50] and Gardner and Plaster [23], the G-odd contributions or the contributions of the second-class
hadronic currents to the matrix element of the hadronic n → p transition in the V -A theory of weak interactions can be taken in
the following form:

〈p(�kp, σp )|J (+)
μ (0)|n(�kn, σn)〉G-odd = ūp(�kp, σp )

(
qμ

M
f3(0) + i

1

M
σμνγ

5qνg2(0)

)
un(�kn, σn), (32)

where J (+)
μ (0) = V (+)

μ (0) − A(+)
μ (0), ūp(�kp, σp ) and un(�kn, σn) are the Dirac wave functions of the proton and neutron [51],

and f3(0) and g2(0) are the phenomenological coupling constants defining the strength of the second-class currents in the weak
decays. The contribution of the second-class currents, Eq. (32), to the amplitude of neutron β− decay in the nonrelativistic
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baryon approximation is defined by

M (n → pe−ν̄e )G-odd = − 2mn

GF√
2

Vud

{
f3(0)

me

M
[ϕ†

pϕn][ūe(1 − γ 5)vν̄] + g2(0)
1

M
[ϕ†

p(�σ · �kp )ϕn][ūeγ
0(1 − γ 5)vν̄]

− g2(0)
E0

M
[ϕ†

p �σϕn] · [ūe �γ (1 − γ 5)vν̄]

}
, (33)

where we have kept only the leading 1/M terms in the large baryon mass expansion. The Hermitian conjugate contribution is

M†(n → pe−ν̄e )G-odd = − 2mn

GF√
2

Vud

{
f ∗

3 (0)
me

M
[ϕ†

nϕp][v̄ν (1 + γ 5)ue] + g∗
2 (0)

1

M
[ϕ†

n(�σ · �kp )ϕp][v̄νγ
0(1 − γ 5)ue]

− g∗
2 (0)

E0

M
[ϕ†

n �σϕp] · [v̄ν �γ (1 − γ 5)ue]

}
. (34)

The contributions of the G-odd correlations to the squared absolute value of the amplitude of neutron β− decay of a polarized
neutron and electron and an unpolarized proton, summed over polarizations of massive fermions, are equal to∑

pol.

(M†(n → pe−ν̄e )M (n → pe−ν̄e )G−odd + M†(n → pe−ν̄e )G-oddM (n → pe−ν̄e ))

= 8m2
nG

2
F |Vud |2 1

M

{
2 Ref3(0)

m2
e

Ee

+ 2 λ Ref3(0) me

(
�ξn · �ξe − (�ξn · �ke )(�ke · �ξe )

Ee(Ee + me )

)
+ 2 λ Imf3(0) me

�ξn · (�ke × �ξe )

Ee

+ 2 Reg2(0)

[
−

(
4

3
E0 + 2

3
Ee

) �ξn · �ke

Ee

+
(

4

3
E0 − 1

3
Ee

)
me

Ee

(�ξn · �ξe ) +
(

4

3
E0 + 2

3
Ee + me

)
(�ξn · �ke )(�ke · �ξe )

Ee(Ee + me )

]

+ 2 λ Reg2(0)

[(
4E0 − m2

e

Ee

)
− 4 E0

�ξe · �ke

Ee

+
(

− 8

3
E0 + 2

3
Ee

) �ξn · �ke

Ee

+
(

8

3
E0 − 2

3
Ee

)
me

Ee

(�ξn · �ξe )

+
(

8

3
E0 − 2

3
Ee

)
(�ξn · �ke )(�ke · �ξe )

Ee(Ee + me )

]
− 2 λ Img2(0) me

�ξn · (�ke × �ξe )

Ee

}
. (35)

For the relative G-odd contributions to the correlation coefficients we obtain the following expressions:

δζ (Ee )G-odd

ζ (SM)(Ee )
= 2

1 + 3λ2

1

M

{
Ref3(0)

m2
e

Ee

+ λ Reg2(0)

(
4E0 − m2

e

Ee

)}
,

δAW (Ee )G-odd

A
(SM)
W (Ee )

= 2

1 + 3λ2

1

M

Reg2(0)

A0

{(
− 8

3
λ − 4

3

)
E0 +

(
2

3
λ − 2

3

)
Ee

}
− δζ (Ee )G-odd,

δG(Ee )G-odd

G(SM)(Ee )
= 2λ

1 + 3λ2

4E0

M
Reg2(0) − δζ (Ee )G-odd,

δN (Ee )G-odd

N (SM)(Ee )
= − 2

1 + 3λ2

1

M

1

A0

{
λ Ref3(0) Ee + Reg2(0)

[(
8

3
λ + 4

3

)
E0 −

(
2

3
λ + 1

3

)
Ee

]}
− δζ (Ee )G-odd,

δQe(Ee )G-odd

Q
(SM)
e (Ee )

= − 2

1 + 3λ2

1

M

1

A0

{
− λ Ref3(0) me + Reg2(0)

[(
8

3
λ + 2

3

)
E0 −

(
2

3
λ − 2

3

)
Ee + me

]}
−δζ (Ee )G-odd,

δR(Ee )G-odd

R
(SM)
e (Ee )

= − 2λ

1 + 3λ2

ke

M

1

αA0
Im[f3(0) − g2(0)]. (36)

For λ = −1.2750 [40] we get

δζ (Ee )G-odd

ζ (SM)(Ee )
= 1.85 × 10−4 Ref3(0)

me

Ee

+
(

− 2.39 × 10−3 + 2.36 × 10−4 me

Ee

)
Reg2(0),

δAW (Ee )G-odd

A
(SM)
W (Ee )

= −1.85 × 10−4 Ref3(0)
me

Ee

+
(

− 5.73 × 10−3 + 5.96 × 10−3 Ee

E0
− 2.36 × 10−4 me

Ee

)
Reg2(0),

δG(Ee )G-odd

G(SM)(Ee )
= −1.85 × 10−4 Ref3(0)

me

Ee

− 2.36 × 10−4 Reg2(0)
me

Ee

,
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δN (Ee )G-odd

N (SM)(Ee )
=

(
− 5.00 × 10−3 Ee

E0
− 1.85 × 10−4 me

Ee

)
Ref3(0)

+
(

−5.73 × 10−3 + 2.03 × 10−3 Ee

E0
− 2.36 × 10−4 me

Ee

)
Reg2(0),

δQe(Ee )G-odd

Q
(SM)
e (Ee )

=
(

1.98 × 10−3 − 1.85 × 10−4 me

Ee

)
Ref3(0)

+
(

−6.79 × 10−3 + 5.96 × 10−3 Ee

E0
− 2.36 × 10−4 me

Ee

)
Reg2(0),

δR(Ee )G-odd

R
(SM)
e (Ee )

= −0.69
ke

E0
Im[f3(0) − g2(0)]. (37)

The G-odd correction to the neutron lifetime is

1

τ
(eff)
n

= 1

τn

{
1 + 2

1 + 3λ2

1

M

[
Ref3(0)

〈
m2

e

Ee

〉
SM

+ λ Reg2(0)

(
4E0 −

〈
m2

e

Ee

〉
SM

)]}

= 1

τn

[1 + 1.21 × 10−4 Ref3(0) − 22.35 × 10−4 Reg2(0)], (38)

where 〈me/Ee〉SM = 0.6556. For |Ref3(0)| < 0.1 and |Reg2(0)| < 0.01 the contributions of the G-odd correlations to the
neutron lifetime and correlation coefficients can appear at the level of 10−5 or even smaller. This agrees well with results
obtained by Gardner and Plaster [23].

VI. CONCLUSION

In this paper we have continued our work on the precision
analysis of the neutron lifetime and the correlation coefficients
of the electron-energy and angular distribution of neutron β−
decay with a polarized neutron and electron and an unpolar-
ized proton. The correlation coefficients, calculated within the
SM with Wilkinson’s corrections [1], we have supplemented
by the contributions of interactions beyond the SM. Since the
contributions of vector and axial-vector interactions beyond
the SM, calculated to linear approximation, can be absorbed
by the axial coupling constant λ and the CKM matrix element
Vud [6], the observable contributions of interactions beyond
the SM are defined by scalar and tensor interactions only.
We have taken into account a complete set of contributions
of scalar and tensor interactions, which have been calculated
in the linear approximation for the vector and axial-vector
interactions beyond the SM [6] and to leading order in the
large nucleon mass expansion. The neutron lifetime and asym-
metries of neutron β− decay with a polarized neutron and
electron, calculated in Sec. IV, can be used for the analysis
of experimental data in search of contributions of interactions
beyond the SM.

Numerical estimates of contributions
of interactions beyond the SM

Using the results obtained in this paper, we attempt to make
some estimates of the values of scalar and tensor coupling
constants and contributions of scalar and tensor interactions
to observables. Following [6] and [5] we assume that the
contributions of scalar and tensor interactions beyond the SM
to neutron lifetime are at the level 10−4. As we have shown
[see Eq. (20)], the real parts of the scalar and tensor coupling
constants are defined in terms of the correlation coefficients

bF and bE . According to recent analysis by Hardy and Towner
[52], the value of the Fierz interference term is equal to
b = −0.0028 ± 0.0026. This allows us to analyze the values
of the Fierz interference term from the interval −0.0054 �
b � −0.0002. Of course, we understand that the estimate of
the Fierz interference term b = −0.0028 ± 0.0026 is obtained
from the pure Fermi 0+ → 0+ transitions, caused by the
vector part of the effective V -A weak interactions. Thus,
according to the definition of the Fierz interference term
[see Eqs. (14) and(15)], it should be induced only by scalar
interactions beyond the SM. Nevertheless, in spite of this fact
we propose to use such an estimate b = −0.0028 ± 0.0026
in a more extended interpretation, allowing us to understand
the order of contributions of interactions beyond the SM to
the neutron lifetime and correlation coefficients of neutron β−
decays at the level of 10−4.

For an estimate of the strengths of the scalar and tensor
interactions beyond the SM, we accept for simplicity the ap-
proximation by real scalar and tensor coupling constants and
nucleon-lepton four-fermion interactions with the left-handed
neutrinos only [17], i.e., CS = −C̄S and CT = −C̄T . In order
to fit the mean value of the experimental data on the averaged
value of the correlation coefficient of the neutron-electron
spin-spin correlations, 〈Neff (Ee )〉 = 0.0670, we have to set
bE = −0.0107. In Table I we give the values of the scalar
and tensor coupling constants and their contributions to the
neutron lifetime and measurable correlation coefficients.

Below, without loss of generality, instead of the Fierz
interferance term b we use the correlation coefficients bF .
From Table I one may see that the correlation coefficient bF

coincides with the Fierz interference term with an accuracy
of about 7 × 10−5. Setting bF = −0.0054 we find that the
contribution of interactions beyond the SM to the neutron
lifetime is at the level of 3σ with respect to the world
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FIG. 1. The theoretical electron asymmetry, calculated in the
SM (blue dotted curve) and with interactions beyond the SM (red
dotted curve) for bF = −0.0002 and (green dotted curve) for bF =
−0.0004.

averaged value τn = 880.2(1.0) s [2] and the experimental
one τn = 880.2(1.2) s [53]. This provides sufficiently strong
deviation of the theoretical value of the neutron lifetime of
about 3 s from the experimental one τn = 880.2(1.2) s [53],
and a deviation of about 5 s from the recent experimental
value τn = 877.7 ± 0.7stat.

+0.3
−0.1syst. s, which was reported by

the UCNA Collaboration [54]. If we want to keep the contri-
bution of interactions beyond the SM to the neutron lifetime
at the level of 1σ or 10−3 we have to restrict the values of
the correlation coefficients bF to −0.0017 � bF � −0.0002.
However, in order to keep the contribution of interactions
beyond the SM to the neutron lifetime at the level of 10−4

or even smaller we have to analyze the contributions of the
correlation coefficient bF with values taken from the interval
−0.0004 � bF � −0.0002.

In Fig. 1 we plot the theoretical electron asymmetry,
calculated within the SM (blue dotted line) with
AW,eff (Ee ) = A

(SM)
W (Ee ) [see Eq. (26)] only and within

the SM with the contributions of interactions beyond
the SM, given by Eq. (25) and calculated for the
correlation coefficients bF = −0.0002 (red dotted line)
and bF = −0.0004 (green dotted line). The vertical lines in
Fig. 1 define the experimental electron-energy region of the
electron asymmetry observation. We would like to emphasize
that the obtained estimates of contributions of scalar and
tensor interactions beyond the SM to the electron asymmetry
do not contradict the experimental data on the correlation
coefficient A0 and the axial coupling constant λ extracted
from recent measurements of the electron asymmetry,
namely A0 = −0.11933(34) [λ = −0.12750(9)] [40], A0 =
−0.11966(89)(+123

−140 ) [λ = −1.27590(239)(+331
−377 )] [44], A0 =

−0.11972(45)stat.(
+32
−44 )syst. [λ = −1.2761(12)stat.(

+9
−12)syst.]

[43], A0 = −0.11954(55)stat.(98)syst. [λ = −1.2756(30)]
[45], and A0 = −0.12015(34)stat.(63)syst. [λ = −1.2772(20)]
and A0 = −0.12054(44)stat.(68)syst. [λ = −1.2783(22)] [47].
Varying the axial coupling constant from λ = −1.2750 [40]
to λ = −1.2783 [47] and keeping bF = −0.0002 and bE =
−0.0107, one may show that the scalar and tensor coupling
constants change their values by �CS = 3.56 × 10−5 and
�CT = −2.99 × 10−6, respectively.

It is important to emphasize that the contributions of scalar
and tensor interactions beyond the SM to the correlation co-
efficients N̄eff (Ee ) and Neff (Ee ), caused by neutron-electron
spin-spin correlations, are of order 10−2 and do not practically
depend on the values of the correlation coefficient bF (or
the Fierz interference term b at the level of accuracy of
about 7 × 10−5) taken from the interval −0.0054 � bF �
−0.0002. The contributions of interactions beyond the SM
to these correlation coefficients are practically defined by
the correlation coefficient bE , which we have set equal to
bE = −0.0107. Of course, our estimate depends strongly
on the experimental mean value Nexp = 0.067 ± 0.011stat. ±
0.004syst. of the correlation coefficient of the neutron-electron
spin-spin correlations, which we have accepted as a signal for
a trace of contributions of interactions beyond the SM. Of
course, such an assumption seems to be sufficiently strong
if we take into account that the experimental value Nexp =
0.067 ± 0.011stat. ± 0.004syst. agrees with the theoretical one
〈N (SM)(Ee )〉SM = 0.07767, calculated in the SM [1], within
one standard deviation.

Of course, the contributions of interactions beyond the
SM of order 10−2 to the correlation coefficients Neff (Ee ),
Qeeff (Ee ), and N̄eff (Ee ) seem to be unreal, and we have to
keep them at the level of 10−4. In Table II we give some esti-
mates of the scalar and tensor coupling constants obtained for
the correlation coefficients bF = −0.0002 and |bE| ∼ 10−4.

It is interesting that for bF = −0.0002, and keeping the
value of the correlation coefficient bE at the level of 10−4,
i.e., |bF | ∼ |bE| ∼ 10−4, we get the results in Table II. One
may see that for the correlation coefficients bF and bE kept
at the level of 10−4 the values of scalar and tensor coupling
constants are at the level of 10−5–10−4. In this case the
contributions of scalar and tensor interactions beyond the SM
can be taken in the linear approximation and fully defined
by bF and bE . As a result, expected experimental mean
values of the correlation coefficient 〈Neff (Ee )〉 of the neutron-
electron spin-spin correlations, averaged over the electron-
energy spectrum, may appear, for example, from the interval
0.07747 � 〈Neff (Ee )〉 � 0.07787.

Towards a robust SM theoretical background with corrections
to order 10−5 for analysis of experimental data in search of

interactions beyond the SM at the level of 10−4

It is obvious that the analysis of experimental data in
search of contributions of interactions beyond the SM at
the level of 10−4 or even better [5] demands a robust SM
theoretical background with corrections at the level of 10−5.
These are (i) Wilkinson’s corrections [1] and (ii) corrections
of order O(E2

e /M
2) defined by the weak magnetism and

proton recoil, calculated to next-to-next-to-leading order in
the large nucleon mass expansion, the radiative corrections of
order O(αEe/M ), calculated to next-to-leading order in the
large nucleon mass expansion, and the radiative corrections
of order O(α2/π2), calculated to leading order in the large
nucleon mass expansion [8]. These theoretical corrections
should provide, for the analysis of experimental data of “dis-
covery” experiments, the required 5σ level of experimental
uncertainties of a few parts in 10−5 [1]. An important role of
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strong low-energy interactions for a correct gauge invariant
calculation of radiative corrections of order O(αEe/M ) and
O(α2/π2) as functions of the electron energy Ee has been
pointed out in [8]. This agrees with Weinberg’s assertion
about the important role of strong low-energy interactions in
decay processes [55]. A procedure for the calculation of these
radiative corrections to neutron β− decays with a consistent
account for contributions of strong low-energy interactions,
leading to gauge invariant observable expressions dependent
on the electron energy Ee determined at the confidence level
of Sirlin’s radiative corrections [32], has been proposed in [8].

The contributions of the G-odd correlations or the contri-
butions of the second-class hadronic currents [50] we have
found to be at the level of 10−5 or even smaller. Such
an estimate does not contradict the estimates performed by
Gardner and Plaster [23]. It is just the level of the SM correc-
tions by Wilkinson [3] and corrections of order O(αEe/M ),
O(α2/π2), and O(E2

e /M
2) pointed out in [8]. These SM

corrections should be taken into account for experimental
searches for interactions beyond the SM of order 10−4, caused
by the contributions of the first-class hadronic currents [see
Eq. (6)] [50], whereas a “discovery” experiment with the
required 5σ sensitivity will require experimental uncertainties
of a few parts in 10−5 [1]. An estimate of the G-odd correla-
tions or contributions of the second-class hadronic currents at
the level of 10−5 implies an urgent necessity of the robust the-
oretical background, caused by the Wilkinson corrections and

corrections of order O(αEe/M ), O(α2/π2), and O(E2
e /M

2).
A specific dependence of the G-odd corrections on the elec-
tron energy should allow us to distinguish them from the SM
background corrections of order 10−5 and the contributions
of interactions beyond the SM of order 10−4, caused by the
first-class hadronic currents. Thus, one may argue that just
after the calculation of the theoretical background of order
10−5, caused by the Wilkinson corrections and corrections
O(αEe/M ), O(α2/π2), and O(E2

e /M
2), a perspective of an

experimental discovery of the contributions of the second-
class hadronic currents (or the G-odd corrections), as well as
the contributions of the first-class hadronic currents beyond
the SM, should not be illusive and unfeasible.
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