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Asymmetric relativistic Fermi gas model for quasielastic lepton-nucleus scattering
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We develop an asymmetric relativistic Fermi gas model for the study of the electroweak nuclear response in
the quasielastic region. The model takes into account the differences between neutron and proton densities in
asymmetric (N > Z) nuclei, as well as differences in the neutron and proton separation energies. We present
numerical results for both neutral and charged-current processes, focusing on nuclei of interest for ongoing and
future neutrino oscillation experiments. We point out some important differences with respect to the commonly
employed symmetric Fermi gas model.
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I. INTRODUCTION

The relativistic Fermi gas (RFG) is currently the main model
used in the analysis of long baseline experiments, aiming
at high-precision measurements of the neutrino oscillation
parameters (see [1] for a recent review of the subject). Since
the detectors of these experiments are made of complex nuclei,
a good control of the nuclear effects is essential in order to
achieve this goal. In particular, the next generation experiment
DUNE [2] will be using liquid argon time-projection chamber
technology; hence a reliable description of neutrino interac-
tions with 40Ar is needed.

Although the RFG is clearly inadequate to describe the de-
tails of the nuclear dynamics at the required level of precision,
and several more refined calculations have been developed in
recent years to provide a better modeling of neutrino-nucleus
scattering [1,3–13], the model has some merits in providing the
gross features of inclusive lepton-nucleus cross sections, which
are the subject of the present work. First, it is fully relativistic,
and relativity plays an essential role in the kinematical domain
of present and future neutrino experiments, covering an energy
range of few to several GeV. Second, in spite of its simplicity,
the RFG is capable of predicting the behavior of the inclusive
cross section as a function of the momentum transfer q and
of the Fermi momentum kF , the so-called scaling of first and
second kind [14–16]. This feature is the basis of the SuSAv2
model [4,17,18], which has been proved to give an excellent
description of both electron and neutrino cross sections on
symmetric (N = Z) nuclei, in particular carbon and oxygen.
The extension of the RFG model to asymmetric (N �= Z)
nuclei will provide the basis for the development of the SuSAv2
model for these nuclei.

With these motivations, in this work we develop the for-
malism of a fully relativistic Fermi gas model for asymmetric

nuclear matter and apply this to the study of quasielastic
(QE) electron and neutrino scattering on a selected set of
nuclei. A similar approach was taken in Refs. [19–23], how-
ever, using a nonrelativistic model, to study various response
functions. Specifically, we focus on a typical N = Z nucleus
12C, on a slightly asymmetric nucleus 40Ar, both of which
are of practical interest for studies of neutrino oscillations
[1], and on a very asymmetric case, 208Pb. Neutral current
electron and (anti)neutrino scattering results are given for
these three nuclei, although other cases may be treated in a
similar manner. For charge-changing neutrino and antineutrino
reactions, of course, the neighboring nuclei 12B/12N, 40Cl/40K,
and 208Tl/208Bi, respectively, are also modeled using the
same asymmetric Fermi gas approach. Here we focus on QE
processes, although the formalism can easily be extended to
include the one-particle–one-hole (1p1h) inelastic spectrum,
namely, meson production, production of baryon resonances,
and Deep Inelastic Scattering, following the developments in
Ref. [24]. The 2p2h excitations will be treated in future work.

The paper is organized as follows. In Sec. II we introduce the
formalism for the asymmetric relativistic Fermi gas (ARFG)
model, both for neutral current (Sec. II A) and charged-current
(Sec. II B) reactions. In Sec. III we present a selection of
numerical results, again for neutral (Sec. III A) and charged-
current (Sec. III B) reactions. Finally, in Sec. IV we draw our
conclusions.

II. FORMALISM: ARFG MODEL

We consider a nucleus (N,Z) having N neutrons and Z
protons, where N and Z need not be equal, and assume that the
nuclear volume V for protons and neutrons is the same. Here
we are assuming that the cases typically of interest in such
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studies are in the valley of stability where the equal-volume
assumption is a reasonable approximation (in the case of
lead, for instance, this is known to be the case); cases far
from the valley of stability where, for instance, neutron skins
may come into play, go beyond the present modeling and are
not considered here. Thus we can define two different Fermi
spheres for protons and neutrons, with corresponding Fermi
momenta

k
p
F (Z) =

(
3π2Z

V

)1/3

, kn
F (N ) =

(
3π2N

V

)1/3

. (1)

Defining the ratio between the two Fermi momenta

ρ0 ≡ kn
F (N )

k
p
F (Z)

=
(

N

Z

)1/3

(2)

and the average Fermi momentum

k0
F (N,Z) ≡ 1

N + Z

[
Zk

p
F (Z) + Nkn

F (N )
]
, (3)

we can write

kn
F (N ) = ρ0k

p
F (Z) = ρ0(Z + N )

Z + ρ0N
k0
F (N,Z). (4)

In the study of charged-current (CC) quasielastic neutrino
(or antineutrino) scattering, where a neutron is converted
into a proton (or vice versa), one also has to consider the
neighboring nuclei, (N + 1, Z − 1) and (N − 1, Z + 1). The
corresponding Fermi momenta for protons and neutrons can
be written as

k
p
F (Z ± 1) = k

p
F (Z)

(
1 ± 1

Z

)1/3

, (5)

kn
F (N ± 1) = kn

F (N )

(
1 ± 1

N

)1/3

. (6)

In the RFG model a nucleon having 3-momentum k has
on-shell energy

Ep(n)(k) =
√

k2 + m2
p(n). (7)

A well-known shortcoming of the RFG is that the model has
states starting with 3-momentum equal to zero (energy equal
to the proton or neutron mass) and going up to the Fermi levels.
This corresponds to an unrealistic negative separation energy
[25]. In fact, the Fermi levels in a bound nucleus are negative
and have positive separation energies Sn(N ), Sp(Z), Sn(N +
1), Sp(Z − 1), Sn(N − 1), and Sp(Z + 1), respectively, for the
six cases of interest. In order to correct for this flaw, we shift
the energies of the protons and neutrons in the triplet of nuclei
using the following prescriptions:

Hn(N ; k) = En(k) − Dn(N ),

Hp(Z; k) = Ep(k) − Dp(Z),

Hn(N + 1; k) = En(k) − Dn(N + 1),

Hp(Z − 1; k) = Ep(k) − Dp(Z − 1),

Hn(N − 1; k) = En(k) − Dn(N − 1),

Hp(Z + 1; k) = Ep(k) − Dp(Z + 1), (8)

TABLE I. Neutron and proton separation energies (Sn, Sp) and
Fermi momenta (kF ) used in this work.

X(A, Z, N ) Sn Sp k0
F kn

F k
p
F

(MeV) (MeV) (MeV/c) (MeV/c) (MeV/c)

C(12,6,6) 18.72 15.96 228 228 228
B(12,5,7) 3.37 14.10 240.02 214.56
N(12,7,5) 15.04 0.60 214.56 240.02
Ar(40,18,22) 9.87 12.53 241 248.23 232.17
Cl(40,17,23) 5.83 11.68 251.93 227.78
K(40,19,21) 7.80 7.58 244.41 236.39
Pb(208,82,126) 7.37 8.00 248 261.77 226.85
Tl(208,81,127) 3.79 7.55 262.46 225.92
Bi(208,83,125) 6.89 3.71 261.07 227.76

where the offsets are given by

Dn(N ) = En
F (N ) + Sn(N ),

Dp(Z) = E
p
F (Z) + Sp(Z),

Dn(N + 1) = En
F (N + 1) + Sn(N + 1),

(9)
Dp(Z − 1) = E

p
F (Z − 1) + Sp(Z − 1),

Dn(N − 1) = En
F (N − 1) + Sn(N − 1),

Dp(Z + 1) = E
p
F (Z + 1) + Sp(Z + 1),

and where the usual RFG Fermi energies are given by

En
F (N ) ≡ En

(
kn
F (N )

)
,

E
p
F (Z) ≡ Ep

(
k

p
F (Z)

)
,

En
F (N + 1) ≡ En

(
kn
F (N + 1)

)
,

E
p
F (Z − 1) ≡ Ep

(
k

p
F (Z − 1)

)
,

En
F (N − 1) ≡ En

(
kn
F (N − 1)

)
,

E
p
F (Z + 1) ≡ Ep

(
k

p
F (Z + 1)

)
. (10)

Clearly when at the true Fermi surfaces the energies in Eq. (8)
become minus the separation energies. For instance, when k =
kn
F (N ) one has

Hn
(
N ; kn

F (N )
) = En

(
kn
F (N )

) − [
En

F (N ) + Sn(N )
]

= −Sn(N ). (11)

In this work the values of the parameter k0
F (N,Z), in terms

of which all the different Fermi momenta can be calculated, are
taken from the superscaling analysis [16] of electron scattering
data, whileSp,n are the measured proton and neutron separation
energies, taken from the ENSDF database [26]. The numerical
values for the cases considered in this work are listed in Table I.
Note that although not explicitly indicated in our notation, for
sake of simplicity, all separation energies depend on both Z
and N .

Within this model, denoted as asymmetric relativistic Fermi
gas (ARFG), we can now calculate the quasielastic dou-
ble differential cross section with respect to the outgoing
lepton momentum k′ and scattering angle � corresponding
to inclusive electron scattering, (e, e′), neutral-current (NC)
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neutrino and antineutrino scattering, (ν, ν ′) and (ν̄, ν̄ ′), and
to charged-current (CC) neutrino and antineutrino scattering,
(ν, μ−) and (ν̄, μ+). In the Rosenbluth decomposition these
can be expressed as(

d2σ

d�dk′

)(e,e′ )

= σM

[
vLRL,em

p→p + vLRL,em
n→n + vT RT,em

p→p + vT RT,em
n→n

]
(12)(

d2σ

d�dk′

)(ν,ν ′ )

= σ
(NC)
0

[
vLRL,w

n→n + vT RT,w
n→n + vT ′RT ′,w

n→n

]
(13)(

d2σ

d�dk′

)(ν̄,ν̄ ′ )

= σ
(NC)
0

[
vLRL,w

p→p + vT RT,w
p→p − vT ′RT ′,w

p→p

]
(14)(

d2σ

d�dk′

)(ν,μ− )

= σ
(CC)
0

[
VCCRCC,w

n→p + VCLRCL,w
n→p + VLLRLL,w

n→p

+VT RT,w
n→p + VT ′RT ′,w

n→p

]
(15)(

d2σ

d�dk′

)(ν̄,μ+ )

= σ
(CC)
0

[
VCCRCC,w

p→n + VCLRCL,w
p→n + VLLRLL,w

n→n

+VT RT,w
p→n − VT ′RT ′,w

p→n

]
, (16)

where vK and VK are leptonic kinematic factors (see [27,28]
for their explicit expressions), σM is the Mott cross section,
and σ

(NC)
0 , σ

(CC)
0 the corresponding elementary weak cross

sections for NC and CC reactions, respectively. The response
functions RK ≡ RK (q, ω), where the labels “em” and w
stand for “electromagnetic” and “weak”, respectively, embody
the nuclear structure and dynamics and are functions of the
momentum q and energy ω transferred to the nucleus. They
are related to the specific components of the corresponding
hadronic tensor Wμν :

RL ≡ RCC = W 00, (17)

RCL = −1

2
(W 03 + W 30), (18)

RLL = W 33, (19)

RT = W 11 + W 22, (20)

RT ′ = − i

2
(W 12 − W 21). (21)

The general expression for the nuclear tensor in the ARFG
model is

W
μν
i→f (q, ω)

= 3m2N
4π

(
ki
F

)3

∫
dh

θ
(
ki
F − |h|) θ

(|h + q| − k
f
F

)
Hi (h)Hf (h + q)

× f
μν
i→f (h, h + q) δ[Hf (h + q) − Hi (h) − ω], (22)

where the superscripts i and f refer to the initial and final
nucleons, respectively, m and N are the appropriate mass and
number of nucleons in the target nucleus, Hi,f are the nucleon
energies defined in Eqs. (8) and f

μν
i→f is the corresponding

single-nucleon tensor.
In the following sections we shall derive the explicit

expression of Wμν for the reactions listed in Eqs. (12)–(16),
distinguishing between the two cases of neutral and charged-
current reactions.

A. Electron scattering and NC (anti)neutrino scattering

In the case of neutral-current processes, Eqs. (12)–(14),
mediated by the exchange of a photon or a Z0 boson, the
energy-conserving delta-function appearing in Eq. (22) in-
volves the difference between the on-shell particle (p) and hole
(h) energies, where the hole is assumed to have 3-momentum
h, while the particle has 3-momentum h + q,

En→n(N ) = Hn(N ; h + q) − Hn(N ; h)

= En(h + q) − En(h), (23)

Ep→p(Z) = Hp(Z; h + q) − Hp(Z; h)

= Ep(h + q) − Ep(h), (24)

since the Dn(N ) and Dp(N ) offsets cancel in the particle-hole
energy differences; namely, the nucleon separation energies
introduced in the ARFG model have no impact on the results for
neutral-current processes. The only difference with respect to
the usual RFG arises from the different values of kF for protons
and neutrons. The corresponding nuclear tensors are then

Wμν
p→p(q, ω)

= 3m2
pZ

4π
[
k

p
F (Z)

]3

∫
dh

θ
(
k

p
F (Z) − |h|) θ

(|h + q| − k
p
F (Z)

)

Ep(h)Ep(h + q)

× f μν
p→p(h, h + q) δ[Ep(h + q) − Ep(h) − ω] (25)

for protons and

Wμν
n→n(q, ω)

= 3m2
nN

4π
[
kn
F (N )

]3

∫
dh

θ
(
kn
F (N ) − |h|) θ

(|h + q| − kn
F (N )

)

En(h)En(h + q)

× f μν
n→n(h, h + q) δ[En(h + q) − En(h) − ω] (26)

for neutrons, where

f
μν
j→j = −w1,j (τj )

(
gμν − QμQν

Q2

)
+ w2,j (τj )V μ

j V ν
j

− i

mn

w3,n(τn)εμνρσQρVσ,j (27)

(with j = p, n) are the single-nucleon tensors, with

τj ≡ |Q2|
4m2

j

and

V
μ
j = 1

mj

(
P μ − PQ

Q2
Qμ

)
= 1

mj

(
P μ + 1

2
Qμ

)
, (28)

having used the on-shell condition PQ
Q2 = − 1

2 .
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For (e, e′) the electromagnetic structure functions are

w1,j (τ ) = τG2
M,j (τ ), (29)

w2,j (τ ) = G2
E,j (τ ) + τG2

M,j (τ )

1 + τ
, (30)

and w3 = 0, while for (ν, ν ′) and (ν̄, ν̄ ′) they are

w1,j (τ ) = τG̃2
M,j (τ ) + (1 + τ )G̃2

A,j (τ ), (31)

w2,j (τ ) = G̃2
E,j (τ ) + τG̃2

M,j (τ )

1 + τ
+ G̃2

A,j (τ ), (32)

w3,j (τ ) = G̃M,j (τ )G̃A,j (τ ), (33)

with τ = τn,p as is appropriate. By performing the angular
integration in Eqs. (25) and (26) one gets

Wμν
p→p(q, ω) = 3m2

pZ

2
[
k

p
F (Z)

]3
q

∫ E
p
F (Z)

E
p
0 (Z)

dE
[
f μν

p→p

]
x=x

p
0 (E)

, (34)

Wμν
n→n(q, ω) = 3m2

nN

2
[
kn
F (N )

]3
q

∫ En
F (N )

En
0 (N )

dE
[
f μν

n→n

]
x=xn

0 (E), (35)

where

E
p
0 (Z) = max

{
E

p
F (Z) − ω,

q

2

√
1 + 1

τp

− ω

2

}
, (36)

En
0 (N ) = max

{
En

F (N ) − ω,
q

2

√
1 + 1

τn

− ω

2

}
, (37)

and

x
n,p
0 (E) = ωE − |Q2|

2

q
√

E2 − m2
n,p

. (38)

Finally, the analytic integration over E yields

Wμν
p→p(q, ω) = 3m2

pZ

2[kF (Z)]3q

[
E

p
F (Z) − E

p
0 (Z)

]
Uμν

p , (39)

Wμν
n→n(q, ω) = 3m2

nN

2[kF (N )]3q

[
En

F (N ) − En
0 (N )

]
Uμν

n . (40)

In particular, the relevant components for the calculation of the
L, T, and T ′ responses turn out to be

U 00
j = κ2

τj

[−w1,j (τj ) + (1 + τj )w2,j (τj )

+w2,j (τj )�j ], (41)

U 11
j + U 22

j = 2w1,j (τj ) + w2,j (τj )�j , (42)

U 12
j = 2i

√
τj (1 + τj ) w3,j (τj )(1 + �′

j ), (43)

with

�j = τp

κ2

1

m2
j

[
1

3

(
E

j2
F (Z) + E

j
0 (Z)Ej

F (Z) + E
j2
0 (Z)

)
+ ω

2

(
E

j
F (Z) + E

j
0 (Z)

) + ω2

4

]
− 1 − τj , (44)

�′
j = 1

κ

√
τj

1 + τj

1

mj

[
ω

2
+ 1

2

(
E

j
F (Z) + E

j
0 (Z)

)] − 1. (45)

The corresponding numerical results will be shown in Sec. III.

B. CC (anti)neutrino scattering

In the case of (anti)neutrino-induced CC reactions, where
neutrons (protons) are converted into protons (neutrons)
through the absorption of a W+ (W−) boson, the energy
differences appearing in the delta function of Eq. (22) are

En→p(N,Z; ph) = Hp(Z + 1; p) − Hn(N ; h)

= [Ep(p) − En(h)] +�Dn→p(N,Z),

(46)

with

�Dn→p(N,Z) ≡ Dn(N ) − Dp(Z + 1)

= [
En

F (N ) − E
p
F (Z + 1)

]
+ [Sn(N ) − Sp(Z + 1)], (47)

for CC neutrino reactions, and

Ep→n(N,Z; k′k) = Hn(N + 1; k′) − Hp(Z; k)

= [En(k′) − Ep(k)] +�Dp→n(N,Z),

(48)

with

�Dp→n(N,Z) ≡ Dp(Z) − Dn(N + 1)

= [
E

p
F (Z) − En

F (N + 1)
]

+ [
εp
s (Z) − εn

s (N + 1)
]
, (49)

for CC antineutrino reactions. The numerical values for these
energy offsets are given in Table II.

TABLE II. Energy offsets used in this work for CC neutrino
(Dn→p) and antineutrino (Dp→n) scattering.

X(A, Z, N ) Dn→p (MeV) Dp→n (MeV)

C(12,6,6) 15.21 9.68
Ar(40,18,22) 5.25 1.77
Pb(208,82,126) 12.24 −4.77
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The corresponding nuclear tensors are then

Wμν
n→p(q, ω) = 3m2

nN

4π
[
kn
F (N )

]3

∫
dh

θ
(
kn
F (N ) − |h|) θ

(|h + q| − k
p
F (Z + 1)

)

En(h)Ep(h + q)

× f μν
n→p(h, h + q) δ[Ep(h + q) − En(h) + �Dn→p(N,Z) − ω], (50)

Wμν
p→n(q, ω) = 3m2

pZ

4π
[
k

p
F (Z)

]3

∫
dh

θ
(
k

p
F (Z) − |h|) θ

(|h + q| − kn
F (N − 1)

)

Ep(h)En(h + q)

× f μν
p→n(h, h + q) δ[En(h + q) − Ep(h) + �Dp→n(N,Z) − ω], (51)

for neutrino and antineutrino scattering, respectively, where the elementary isovector tensor f
μν
n→p = f

μν
p→n ≡ f μν(1) is

f μν(1) = −w
(1)
1 (τ )

(
gμν − QμQν

Q2

)
+ w

(1)
2 (τ )V μV ν + u

(1)
1 (τ )

QμQν

Q2
− i

m
w

(1)
3 (τ )εμνρσQρVσ , (52)

and the structure functions wi are the appropriate isovector ones:

w
(1)
1 (τ ) = τ

[
G

(1)
M (τ )

]2 + (1 + τ )
[
G

(1)
A (τ )

]2
, (53)

w
(1)
2 (τ ) =

[
G

(1)
E (τ )

]2 + τ
[
G

(1)
M,i (τ )

]2

1 + τ
+ [

G
(1)
A (τ )

]2
, (54)

u
(1)
1 (τ ) = −[

G
′(1)
A (τ )

]2
, (55)

w
(1)
3 (τ ) = G

(1)
M (τ )G(1)

A (τ ), (56)

where

G
′(1)
A (τ ) = G

(1)
A (τ ) − τG

(1)
P (τ ). (57)

In the case of CCν reactions we set mn
∼= mp

∼= m ≡ (mn + mp )/2 and define a single dimensionless 4-momentum transfer
τ ≡ |Q2|/4m2.

Similar to what we did for the NC case, we perform the angular integral, obtaining

Wμν
n→p(q, ω) = 3m2

nN

2
[
kn
F (N )

]3
q

∫ En
F (N )

E
n→p
0 (N )

dE
[
f μν

n→p

]
x=x

n→p
0 (E), (58)

Wμν
p→n(q, ω) = 3m2

pZ

2
[
k

p
F (Z)

]3
q

∫ E
p
F (Z)

E
p→n
0 (Z)

dE
[
f μν

p→n

]
x=x

p→n
0 (E)

, (59)

where now

x
n→p
0 (E) = ω̃n→pE − |Q̃2

n→p |
2

q
√

E2 − m2
n

and x
p→n
0 (E) = ω̃p→nE − |Q̃2

p→n|
2

q
√

E2 − m2
p

, (60)

having defined

ω̃n→p ≡ ω − �Dn→p(N,Z) and Q̃2
n→p ≡ ω̃2

n→p − q2, (61)

ω̃p→n ≡ ω − �Dp→n(N,Z) and Q̃2
p→n ≡ ω̃2

p→n − q2. (62)

The lower limits of integration in Eqs. (58) and (59) are

E
n→p
0 (N ) = max

{
E

p
F (Z + 1) − ω̃n→p,�n→p

}
, (63)

E
p→n
0 (Z) = max

{
En

F (N + 1) − ω̃p→n,�
p→n

}
, (64)

with

�n→p = q

2

√
1 + 1

τ̃n→p

− ω̃n→p

2
and �p→n = q

2

√
1 + 1

τ̃p→n

− ω̃p→n

2
, (65)

together with τ̃n→p ≡ |Q̃2
n→p |

4m2 and τ̃p→n ≡ |Q̃2
p→n|

4m2 .
Although in principle also in this case, as in the NC one, it is possible to obtain fully analytic results, for practical purposes it

is easier to perform the energy integral numerically. The corresponding results will be shown in the next section.
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FIG. 1. Electromagnetic response functions of 40Ar in the SRFG and ARFG for momentum transfer q = 300 (left column) and 800 (right
column) MeV/c. The separate contributions of protons and neutrons are also displayed.

III. RESULTS

In this section we present and compare the nuclear response
functions evaluated in the symmetric (SRFG) and asymmetric
(ARFG) relativistic Fermi gas models.

As anticipated, in the case of neutral-current reactions,
(e, e′), (ν, ν ′), and (ν̄, ν̄ ′), the ARFG results differ from the
SRFG ones only due to the different neutron and proton Fermi
momenta. On the contrary, for charged-current reactions,

(ν, μ−) and (ν̄, μ+), the energy offsets related to the different
separation energies in the initial and final nuclei also play a
role.

A. Neutral-current reactions

In Figs. 1 and 2 we show the electromagnetic (e, e′)
longitudinal and transverse response functions for 40Ar and
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FIG. 2. Electromagnetic response functions of 208Pb in the SRFG and ARFG. The separate contributions of protons and neutrons are also
displayed.
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FIG. 3. Weak NC response functions for ν-40Ar in the SRFG and ARFG. The separate contributions of protons and neutrons are also
displayed.

208Pb as functions of the energy transfer ω and two values
of the momentum transfers q. We also show the separate
contributions of protons and neutrons. We observe that, as
expected from the different values of the Fermi momentum,
the proton ARFG responses are higher than the SRFG ones
and limited to a narrower region of ω, whereas the opposite
occurs for neutrons. These two effects tend to cancel in the total
transverse nuclear response RT , which is affected only mildly
by the N/Z asymmetry. On the other hand, in the longitudinal
channel RL, where the proton response dominates, asymmetry
effects can be non-negligible. Specifically, at q = 800 MeV/c
the ratios of the ARFG/SRFG responses at the quasielastic
peak for argon are of the order of 1.03 (1.01) for L (T ) and
are of the order of 1.07 (1.03) for L (T ) for lead. Roughly, the
ratios are similar as functions of the momentum transfer.

In Figs. 3 and 4 we show the weak neutral-current (WNC)
longitudinal (L) and transverse (both T and T ′) response
functions for 40At and 208Pb, obtained in the usual way [27,28]
by replacing the EM couplings by WNC couplings and adding
the T ′ V A-interference response; recall that the last enters with
the opposite sign for neutrinos and antineutrinos in the total
cross section. Also, note that in this study we have ignored the
effects from strangeness content in the nucleons.

The effects are similar to what was found above for electron
scattering, but not exactly the same for the cases which
can be directly compared (viz., L and T ), implying that for
asymmetric nuclei there are effects to be taken into account in
using input from electron scattering to obtain parts of the WNC
cross section, as is often done in scaling analyses. The purpose
of the present study is to get some idea about how significant
such effects can be. Specifically, again at q = 800 MeV/c the
ratios of the ARFG/SRFG responses at the quasielastic peak
for argon are of the order of 0.98 (1.01) for L (T ) and are of
the order of 0.96 (1.02) for L (T ) for lead, while the ratios for
the T ′ response are of the order of 1.00 and 1.01 for argon and
lead, respectively. Furthermore, in (ν, ν ′) the ARFG responses
are lower and more extended than the SRFG ones, while the
opposite occurs for (ν̄, ν̄ ′).

B. Charged-current reactions

Let us now consider CC neutrino and antineutrino reactions.
In this case the inclusive cross section is the combination of
five, instead of three, response functions, as a consequence of
the nonconservation of the axial current and of the nonvanish-
ing mass of the outgoing charged lepton.
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FIG. 4. Weak NC response functions for ν-208Pb in the SRFG and ARFG. The separate contributions of protons and neutrons are also
displayed.

The numerical results for (νμ, μ−) and (ν̄μ, μ+) scattering
corresponding to carbon, argon, and lead targets are shown
in Figs. 5–10. Although not shown here, oxygen and iron,
used as well in neutrino oscillation experiments, have also been
considered. The results are very similar to those obtained for
carbon and argon, respectively.

The main observation here is that the differences between
the SRFG and ARFG results are much larger than was seen
above for the NC processes. As noted in Sec. II A, for NC
processes in the ARFG model the energy offsets cancel and
the differences between the SRFG and ARFG arise entirely
from the different Fermi momenta entering for protons and
neutrons. In contrast, for charge-changing weak interactions
this is not the case because the relative offsets for protons
and neutrons (which are usually different) do enter. Hence the
results corresponding to symmetric target nuclei, such as 12C
and 16O, will also differ from the usual SRFG results, since the
final nucleus will have Z �= N . In order to disentangle these
two effects, we also show in each plot the results, labeled as
“ARFG, no shift,” where the separation energies Sp and Sn are
set to zero.

We observe the following:

(i) For 12C the effect of the energy offsets is large, as could
be anticipated looking at Table II, while the difference
in kF plays a minor role; these effects are generally
larger for neutrinos than for antineutrinos.

(ii) For 40Ar, which is relevant for neutrino oscillation
studies, the two effects are comparable and both
contribute to a slight shift of the responses to higher
energy transfers, in particular for low q.

(iii) For 208Pb the main differences between SRFG and
ARFG are due to Fermi momentum effects, which shift
the neutrino (antineutrino) responses to higher (lower)
energy transfers.

As was done in the NC case, to get an idea of the importance
of the asymmetry effects we list in Table III the ratios between
the ARFG and SRFG responses for neutrino and antineutrino
scattering at q = 800 MeV/c. We observe that the effects are
minor for argon, while they are important for carbon and lead.
Moreover, due to the different origin of the effects illustrated
above, in the case of carbon the asymmetric model yields
higher responses at the quasielastic peak for both neutrino
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FIG. 5. Neutrino charged-current weak response functions per neutron of 12C in the SRFG and ARFG. The ARFG results with no energy
shift (see text) are also shown. Each column corresponds to a fixed value of the momentum transfer q.

035501-9



M. B. BARBARO et al. PHYSICAL REVIEW C 98, 035501 (2018)

ARFG
ARFG, no shift

SRFG

ω(MeV)

R
C

C
(M

eV
− 1

) (a)

12C, q=300 MeV/c

140120100806040200

0.01

0.008

0.006

0.004

0.002

0

ω(MeV)

R
C

C
(M

eV
− 1

) (b)

12C, q=800 MeV/c

500450400350300250200150100

0.0005

0.0004

0.0003

0.0002

0.0001

0

ω(MeV)

R
C

L
(M

eV
−1

)

(c)

140120100806040200

0

−0.0005

−0.001

−0.0015

−0.002

ω(MeV)
R

C
L
(M

eV
−1

)

(d)

500450400350300250200150100

0

−5 × 10−5

−0.0001

−0.00015

−0.0002

−0.00025

ω(MeV)

R
L

L
(M

eV
− 1

)

(e)

140120100806040200

0.001

0.0008

0.0006

0.0004

0.0002

0

ω(MeV)

R
L

L
(M

eV
− 1

)

(f)

500450400350300250200150100

0.0001

8 × 10−5

6 × 10−5

4 × 10−5

2 × 10−5

0

ω(MeV)

R
T
(M

eV
−1

)

(g)

140120100806040200

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0

ω(MeV)

R
T
(M

eV
−1

)

(h)

500450400350300250200150100

0.006

0.005

0.004

0.003

0.002

0.001

0

ω(MeV)

R
T

′ (M
eV

−1
)

(i)

140120100806040200

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0

ω(MeV)

R
T

′ (M
eV

−1
)

(j)

500450400350300250200150100

0.003

0.0025

0.002

0.0015

0.001

0.0005

0

FIG. 6. Same as Fig. 5, but for the antineutrino functions.
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FIG. 7. Neutrino CC weak response functions per neutron of 40Ar in the SRFG and ARFG. The ARFG results with no energy shift (see
text) are also shown. Each column corresponds to a fixed value of the momentum transfer q.
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FIG. 8. Same as Fig. 7, but for the antineutrino functions.
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FIG. 9. Neutrino CC weak response functions per neutron of 208Pb in the SRFG and ARFG. The ARFG results with no energy shift (see
text) are also shown. Each column corresponds to a fixed value of the momentum transfer q.
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FIG. 10. Same as Fig. 9, but for antineutrino functions.
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TABLE III. Ratios between the ARFG and SRFG weak response functions at the QEP for q = 800 MeV/c for neutrino (left table) and
antineutrino (right table) CC scattering.

(νμ, μ−) CC CL LL T T ′ (ν̄μ, μ+) CC CL LL T T ′

12C 1.24 1.31 1.37 1.02 1.03 12C 1.15 1.19 1.22 1.02 1.01
40Ar 1.06 1.08 1.11 0.98 0.98 40Ar 1.05 1.05 1.05 1.04 1.04
208Pb 1.15 1.21 1.27 0.96 0.97 208Pb 0.98 0.95 0.92 1.09 1.08

and antineutrino scattering and in all five channels, while
for lead the asymmetry effects have the opposite sign for
neutrinos and antineutrinos and they depend on the channel:
they increase (decrease) the neutrino (antineutrino) charge
and/or longitudinal responses, whereas the opposite occurs for
the transverse T and T ′ responses.

IV. CONCLUSIONS

In the present study we have developed an extension
of the familiar relativistic Fermi gas model for inclusive
semileptonic electroweak processes. Specifically, we have
developed the model for neutral-current scattering of electrons
or (anti)neutrinos and for charge-changing (anti)neutrino re-
actions with nuclei. The new element in this work has been to
allow for effects arising from differences between protons and
neutrons within the context of the relativistic Fermi gas in order
to evaluate how significant such effects may be in progressing
from light N = Z (i.e., symmetric) nuclei to asymmetric
nuclei having N > Z. We denote the usual relativistic Fermi
gas model, typically abbreviated RFG, to be the symmetric
relativistic Fermi gas (SRFG), while the new extension to
asymmetric nuclei we denote as the asymmetric relativistic
Fermi gas (ARFG).

Two types of extensions have been studied: first, we con-
sider only nuclei in the valley of stability where typically the
volume occupied by protons and neutrons in the ground states
of such nuclei is the same, and hence where the densities scale
by the numbers of neutrons and protons. In the context of the
Fermi gas this implies that the Fermi momenta for n and p will
be different, scaling by (N/Z)1/3. Second, we adjust the Fermi
energies of the proton and neutron gases of the parent nucleus,
and its neighbors in the case of CC (anti)neutrino reactions,
to agree with the measured values. We note that this is a basic
assumption in the present ARFG model and not the only way
one might proceed. For instance, one might develop a different
model where the energy offsets involved are allowed to be
chosen by forcing agreement with experiment. The motivation
in the present work is to explore the typical size of these second
effects to see if they are typically negligible or if they should
be taken seriously in future more sophisticated modeling.

One conclusion is that the density effect (leading to different
Fermi momenta for neutrons and protons) plays no role at
all for NC scattering from symmetric nuclei and a relatively
minor role for CC (anti)neutrino reactions in such systems
where there is some effect since neighboring nuclei which have
slightly different Fermi momenta are involved. In contrast, for
very asymmetric nuclei such as 208Pb the effects from having
differing neutron and proton Fermi momenta are somewhat

larger, although still relatively minor, for NC scattering, but
much more significant for CC (anti)neutrino reactions.

A second observation is that in NC scattering (electrons or
neutrinos) the energy offsets do not play a role; simply put,
only energy differences between particles and holes enter and,
since the 1p1h states involve only excitations of protons or
neutrons individually, the offsets cancel. In contrast, for CC
(anti)neutrino reactions neutrons change into protons or vice
versa and thus the offsets do play a role. For the last type of
reaction one sees that the energy offset effect is dominant in
light symmetric nuclei such as 12C, roughly comparable to the
density effect for 40Ar, and subdominant to the density effect
in very asymmetric nuclei such as 208Pb.

The ARFG model developed in this study can be extended
straightforwardly to include inelastic processes following pre-
vious work done along these lines for the SRFG. Finally, while
much more involved than the 1p1h focus of the present work,
it is possible to extend the previous 2p2h SRFG studies of
two-body Meson-Exchange Currents contributions [29,30] to
incorporate asymmetric nuclei; such a study is in progress.

We believe that this study will give valuable indications on
how to extend more sophisticated nuclear models to asymmet-
ric nuclei. Moreover, it will provide relatively simple recipes
for the implementation of asymmetry effects in Monte Carlo
generators used to analyze neutrino oscillation experiments.
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