
PHYSICAL REVIEW C 98, 035202 (2018)

Electron scattering from a deeply bound nucleon on the light-front
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We calculate the cross section of the electron scattering from a bound nucleon within light-front approxi-
mation. The advantage of this approximation is the possibility of systematic account for the off-shell effects,
which become essential in high-energy electronuclear processes aimed at probing the nuclear structure at small
distances. We derive a new dynamical parameter, which allows us to control the extent of the off-shellness
of electron–bound-nucleon electromagnetic current for different regions of momentum transfer and initial
light-cone momenta of the bound nucleon. The derived cross section is compared with the results of other
approaches in treating the off-shell effects in electron-nucleon scattering.
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I. INTRODUCTION

High-energy electronuclear processes ranging from in-
clusive A(e, e′)X to the double A(e, e′Nf )X and triple
A(e, e′Nf ,Nr )X coincidence reactions, in which e′ is the
scattered electron, Nf and Nr are struck and recoil nucleons
are the main processes used to probe the short-range structure
of nuclei. During the last two decades a multitude of dedicated
experiments have been performed that significantly advanced
our understanding of the dynamics of short-range nucleon
correlations in nuclei (for recent reviews on this subject see
Refs. [1–6]). All of these experiments were performed at
quasielastic kinematics in which electrons are scattered off
the deeply bound nucleon producing a struck nucleon (Nf )
in the final state. Here, deeply bound nucleon is defined as
an off-shell nucleon with momentum pi � 300 MeV/c and

removal energy, Em ∼
√

m2
N + p2

i − mN . The observed ex-
perimental signatures were in agreement with the expectations
that deeply bound nucleons emerge from short-range nucleon-
nucleon correlations (SRCs). These signatures included the
onset of scaling for the inclusive A(e, e′)X cross section ratios
of nucleus A to the deuteron or 3He [7–10], strong angular
correlation between momenta of struck Nf and recoil Nr

nucleons [11,12] as well as significant dominance of the pn
correlations [13–16] in the domain of 2N SRCs.

The next stage of SRC studies requires the exploration
of quantitative properties of the nuclear structure describing
nucleons in the SRC. This research can be both experimental,
performing extraction of nuclear spectral and decay functions
in the region of high momentum and removal energy of the
struck nucleon, or theoretical, by modeling these structure
functions (see, e.g., Ref. [17]) and predicting electroproduc-
tion cross sections in large missing momentum and removal
energy kinematics. One of the outstanding problems in such
research is the understanding of the reaction mechanism and
final-state interaction (FSI) effects associated with the elec-
tron scattering from a deeply bound nucleon in the nucleus.

During the last two decades significant efforts have been
made in the calculation of FSI effects in high Q2 elec-

tronuclear processes (see, e.g., Refs. [18–27]). One of the
approaches, referred to as generalized eikonal approximation
[18,25], self-consistently treated the relativistic effects associ-
ated with the large momentum of the bound nucleon involved
in the reaction, as such these approach provided a theoretical
framework for calculating FSI effects relevant to studies of the
nuclear structure at short distances.

However, not much theoretical attention is given currently
to the studies of the reaction mechanism of elastic scattering
from the high-momentum bound nucleon in the nucleus. The
problem of the proper description of electromagnetic scatter-
ing from deeply bound nucleon in the nucleus was realized
in the 1980’s with the advent of the intermediate energy
A(e, e′Nf ) experiments at SACLAY [28,29] and NIKHEF
[30]. The first approaches in describing electron–deeply-
bound-nucleon scattering were based on different methods of
interpreting the spinor of the bound (off-shell) nucleon. In one
of the earlier models [31] the on-shell nucleon spinors were
used with the mass estimated as m∗2

N = E2 − p2. Currently
the most popular model is that of de Forest [32] in which dif-
ferent expressions for the eNbound cross sections are obtained
based on the different assumptions for effective γ ∗Nbound

vertices with on-shell spinors used for the bound nucleon. No
preference is given to any of the considered eight expressions
of the eNbound cross section and as such these approximations
allowed us to check uncertainty due to the binding effects
rather than calculating their actual values. Such an approach
was characteristic to the intermediate energy (few hundred
MeV of incoming beam energy) scattering processes in which
no small parameters existed in treating the strong binding
effects in nucleon electromagnetic current.

The situation has recently changed with the emergence of
high-energy and momentum transfer eA experiments (see,
e.g., Refs. [1,3,5]) in which deeply bound nucleons in the
nucleus are probed with high Q2 virtual photons producing
final nucleons with momenta above few GeV/c region.
The high-energy nature of the scattering process allows
for important simplifications in describing the scattering
process similar to those in hadronic physics. One of the main
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characteristics of high-energy scattering is that the process
evolves along the light-front (see, e.g., Refs. [33–37]),
which makes the light cone the most natural reference
frame to describe the reaction. The important advantage of
such description is the suppression of the negative energy
contribution in the propagator of bound nucleon as well
as the possibility of identifying the good component of
electromagnetic current for which the off-shell effects are
minimal. There have been several extensive studies of nuclear
dynamics on light-front (see, e.g., Refs. [36,38–40]) with
the main emphasis given to the description of the nuclear
structure in relativistic kinematics.

In the current work we focus on light-front treatment of the
electron–bound-nucleon interaction. Based on the effective
light-front perturbation theory, we calculate the cross section
of electron–bound-nucleon scattering by explicit separation of
the propagating (prop) and instantaneous (inst) contributions.
Within light-front approach we introduced a new, parame-
ter η, which allows us to quantify the off-shellness of the
γ ∗Nbound scattering universally for any kinematical situation.
The derived expressions are compared with the off-shell cross
sections, which are currently being used in the description of
electronuclear reactions. We also present numerical analysis
of our calculations where we identify kinematics in which
off-shell effects can be suppressed or isolated for dedicated
investigation of bound nucleon properties. The numerical
analysis allows us to conclude that by restricting the new off-
shell parameter η < 0.1 one can confine the off-shell effects
below 5% for any realistic values of bound nucleon momenta
at different Q2 of electroproduction reaction.

In Sec. II we set up the calculations isolating the electro-
magnetic hadronic tensor for exclusive d(e, e′N )N scattering
within plane wave impulse approximation (PWIA). We dis-
cuss here the main problems associated with probing deeply
bound nucleons, namely the increased role of the vacuum
fluctuations and identification of the nuclear wave function
for a bound nucleon. Section III presents the calculation of
the PWIA diagram within effective light-front perturbation
theory and identification of the propagating and instantaneous
components of the bound nucleon electromagnetic current.
We also introduce the boost invariant off-shell parameter
that naturally quantifies the off-shell effects in the light-front
approach. In Sec. IV we present the results in the form of the
electron–bound-nucleon cross section σeN , which is compared
with the predictions of other approaches in Sec. V. Section VI
presents the summary of the results and outlook on possible
extension beyond PWIA approximation. In Appendix A we
give the diagrammatic rules of effective light-front perturba-
tion theory. The details of derivation of the bound nucleon
structure functions are presented in Appendix B.

II. SETTING UP THE CALCULATION

The simplest case of electroproduction process involving
electron scattering from a bound nucleon is the reaction:

e + d → e′ + Nf + Nr, (1)

in which one of the nucleons is knocked out (Nf ) by the
virtual photon and the other is treated as a recoil (Nr ).

FIG. 1. Exclusive electrodisintegration of the deuteron in plane
wave impulse approximation.

Deuteron represents as testing ground for development of
many relativistic approaches in description of electronuclear
processes (see, e.g., Refs. [38,41–43]), which in principle can
be generalized for medium to heavy nuclei.

For our purpose of defining the cross section of electron–
bound-nucleon scattering we consider the single photon ex-
change case of the above reaction within covariant plane wave
impulse approximation (PWIA) corresponding to the diagram
of Fig. 1.

Here, within PWIA the off-shellness of the bound nucleon
is completely defined by the four-momentum of the deuteron,
pd and spectator nucleon pr : pi = pD − pr . The one-photon
exchange approximation allows us to factorize electron and
hadronic parts of the interaction in the invariant Feynman
amplitude presented as follows:

M = 〈λf |jν
e |λi〉e

2gνμ

q2
〈sf , sr |Aμ

0 |sd〉, (2)

where q2 is the virtual photon’s momentum squared. Here the
leptonic current jν

e is defined as:

〈λf |jν
e |λi〉 = ū(kf , λf )γ νu(ki, λi ), (3)

where 〈sf , sr |Aμ
0 |sd〉 represents the invariant amplitude of

γ ∗d → NN scattering,
Using Eq. (2) for the differential cross section of reaction

(1) one obtains:

dσ

d3kf /εf d3pf /Ef

= 1

4
√

(pd · ki )2

e4

q4
LμνHμν

δ
[
(q + pd − pf )2 − m2

N

]
4(2π )5

.

(4)

where terms proportional to electron’s mass squared (m2
e) are

neglected. Here the leptonic tensor is defined as:

Lμν = 1

2

∑
λ1λ2

(ū(kf , λf )γ νu(ki, λi ))
†ū(kf , λf )γ μu(ki, λi )

(5)

whereas the nuclear electromagnetic tensor is expressed
through the scattering amplitude A

μ
0 as follows:

Hμν = 1

3

∑
sd sr sf

〈sd |Aμ†
0 |sf , sr〉〈sf , sr |Aν

0|sd〉. (6)
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FIG. 2. Representation of the covariant scattering amplitude (a) as a sum of two time-ordered diagrams. (b) Virtual photon scattering from
the bound nucleon. (c) Production of the N̄N pair by the virtual photon with subsequent absorption of the antinucleon by the deuteron.

If one introduces �
μ
γ ∗ and �D invariant vertices (Fig. 1)

then within PWIA the amplitude A
μ
0 can be presented in the

form:

〈sf , sr |Aμ
0 |sd〉

= −ū(pf , sf )�μ
γ ∗

p/i + mN

p2
i − m2

N

· ū(pr, sr )�D · χsd , (7)

where χsd is the spin wave function of the deuteron.
As it follows from the above equation A

μ
0 contains neither

the electron–bound-nucleon scattering nor the nuclear wave
function in the explicit form. The eNbound scattering and the
nuclear wave function appears only when one considers the
amplitude of Fig. 1 in a time-ordered perturbation theory in
which case the invariant Feynman diagram splits into two time
orderings as presented in Fig. 2.

Here, Fig. 2(b) represents a scenario in which the virtual
photon interacts with the preexisting bound nucleon in the
deuteron with �DNN representing the vertex of D → NN
transition and �Nγ ∗N the γ ∗N → N electromagnetic interac-
tion. This contribution corresponds to the noncovariant PWIA
in which case the eA cross section is expressed through
the product of eN cross section and noncovariant nuclear
spectral function. Figure 2(c), however, represents a very
different scenario, in this case the virtual photon produces an
intermediate N̄N state at the �γ ∗N̄N vertex with subsequent
absorption of the antinucleon, N̄ in the deuteron at the �N̄DN

vertex. The latter is not related to the γ ∗N scattering and
the nucleon wave function in the deuteron. Figure 2(c) is
commonly referred to as a Z graph and is a purely relativistic
effect. As a result in the nonrelativistic limit one deals with
the diagram of Fig. 2(b) only, which allows us to express
the covariant scattering amplitude through the nonrelativistic
nuclear wave function and γ ∗Nbound scattering amplitude.
However, the situation becomes complicated when one is
interested in the bound nucleon momentum pi ∼ MN , which
can be probed at momentum transfer q � MN . In this case the
Z-graph contribution [Fig. 2(c)] becomes comparable with the
one in Fig. 2(b) preventing the straightforward introduction
of the nuclear wave function. Thus conventional noncovari-
ant PWIA is inapplicable for the description of electron
scattering from deeply bound (relativistic) nucleons in the
nucleus.

This situation is reminiscent of the QCD processes in
probing partonic structure of hadrons in which case due to
the relativistic nature of partons, vacuum diagrams can not

be neglected in the time-ordered perturbation theory defined
in the laboratory frame of the hadron [33]. The solution in
this case is to consider the scattering process in the infinite
momentum frame (or on the light-front), which allows us to
suppress the Z graphs and consider only the diagrams similar
to Fig. 2(b) for which one can introduce the wave function of
the constituents.

Our approach in probing deeply bound nucleon is similar
to that of the partonic model, in which we consider the
reaction (1) on the light-front allowing us to exclude the
contribution of the vacuum diagrams [Fig. 2(c)] and introduce
a light-front nuclear wave function.

III. DERIVATION WITHIN EFFECTIVE LIGHT-FRONT
PERTURBATION THEORY

A. Scattering amplitude in PWIA

We consider now the reaction (1) on the light-front, where
the light-cone time is defined as τ ≡ t + z. To calculate the
PWIA amplitude of the reaction (1) we apply effective light-
front perturbation theory (LFPT) in the τ -time-ordered rep-
resentation of the scattering amplitude A

μ
0 . In such approach

the scattering amplitude (7) is expressed as a sum of the
noncovariant diagrams presented in Fig. 3. Here in addition
to the two τ orderings analogous to the time ordering of Fig. 2
one has an additional contribution of Fig. 3(c) corresponding
to the instantaneous interaction due to the spinor nature of the
bound nucleon.

To proceed with the calculations we choose a reference
frame with z axis antiparallel to the transferred momentum,
ẑ‖ − q, such that the deuteron is aligned along ẑ.

The calculations are performed in the light-cone (LC)
reference frame in which case where the four-momenta are
defined as (p+, p−, px, py ), where p± = E ± pz with p+
representing the light-cone longitudinal momentum. We em-
ploy the γ -matrix algebra using the following light-cone
definitions:

γ μ = (γ +, γ −, γ1, γ2), where γ ± = γ0 ± γ3. (8)

The scalar products and other properties of four-vectors as
well as γ matrices on the light-front are given in Appendix A.

We also define the light-cone momentum fractions, which
are Lorentz invariant quantities with respect to boosts along
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FIG. 3. Representation of the covariant scattering amplitude as a sum of two light-cone (τ )-time -ordered diagrams as well as instantaneous
interaction. (a) Virtual photon scattering from the bound nucleon. (b) Production of the N̄N pair by the virtual photon with subsequent
absorption of the antinucleon by the deuteron. (c) Instantaneous interaction of virtual photon with the bound nucleon.

the z direction:

αr = 2p+
r

p+
d

, αq = 2q+

p+
d

,

αf = 2p+
f

p+
d

, αN = αf − αq = 2 − αr . (9)

Here αr , αq , and αf correspond to the fraction of LC “+”
component of the deuteron momentum carried by the re-
coil nucleon, virtual photon, and final knock-out nucleon,
respectively. The light-cone momentum fraction of the bound
nucleon αN is defined through the energy-momentum conser-
vation.

We proceed with the calculation of the scattering amplitude
corresponding to the diagrams of Fig. 3 by applying the
light-front perturbation rules [34,35] in an effective theory in
which one identifies effective vertices for nuclear transition
and electron–bound-nucleon scattering (see Appendix A). At
each vertices the transverse, p⊥ and plus, p+ components of
momenta are conserved. Because of the latter and the chosen
reference frame in which q+ = q0 − |q| < 0 the diagram of
the Fig. 3(b) will not contribute since the production of N̄N
pair, which requires q+ > 0 is kinematically forbidden.

The remaining diagrams represent the amplitudes in which
the virtual photon knocks out a bound nucleon, which prop-
agates from the d → NN transition vertex to the γ ∗N in-
teraction point, Aμ

prop [Fig. 3(a)], and the instantaneous am-
plitude, A

μ
inst [Fig. 3(c)] in which d → NN transition and

γ ∗N interaction take place at the same light-cone time τ . In
both diagrams the nucleus exposes its constituents and the
scattering takes place off the bound nucleon, which allows
us to introduce the light-front nuclear wave function and the
amplitude of γ ∗Nbound scattering.

We now apply the light-front diagrammatic rules [35]
(summarized in Appendix A), which yields for the propagat-
ing part of the scattering amplitude [Fig. 3(a)]:

〈sf , sr |Aμ
prop|sd〉

= −ū(pf , sf )�μ
γ ∗N

1

p+
i

(p/i + mN )on

(p−
d − p−

r − p−
i,on)

× ū(pr, sr )�DNNχsd , (10)

where p−
d , p−

r , and p−
i,on are defined from the on-energy

shell condition: p− = m2
j +p2

⊥,j

p+
j

with j = d, r, (i, on). The “on”

subscript in (p/i + mN )on indicates that all the components of
the bound nucleon light-cone momenta are taken on-energy
shell.

For the instantaneous diagram of Fig. 3(c) applying the
rules of Appendix A one obtains:

〈sf , sr |Aμ
inst|sd〉

= −ū(pf , sf )�μ
γ ∗N

1

p+
i

(
1

2
γ +

)
ū(pr, sr )�DNNχsd . (11)

Note that in both expressions (10) and (11) one has the same
nuclear, �DNN and electromagnetic, �γ ∗N vertices.

For further elaborations, we introduce the off-energy shell
“−” component of the bound nucleon p−

i = p−
d − p−

r , and

using the definition: p−
j = m2

j +pj,⊥2

p+
j

for the on-energy-shell

“−” component for j = d, r as well as Eq. (9) one obtains:

1

p−
d − p−

r − p−
i,on

= 1

p−
i − p−

i,on

= p+
d

M2
d − 4 (m2

N +p2
⊥ )

α(2−α)

. (12)

Using the above relation as well as the sum rule relation for
on-shell spinors:

(p/i + mN )on =
∑
si

[u(pi, si )ū(pi, si )]on, (13)

for the sum of the two amplitudes in Eqs. (10) and (11) one
obtains:

Aμ = Aμ
prop + A

μ
inst

= −ū(pf , sf )�μ
γ ∗N

∑
si

u(pi, si )ū(pi, si )

α
2

(
M2

d − 4 m2
N +pT

2

α(2−α)

)
× ū(pr, sr )�DNNχsd (14)

−ū(pf , sf )�μ
γ ∗N

1
2γ +(p−

i − p−
i,on)

α
2

(
M2

d −4 m2
N +pT

2

α(2−α)

) ū(pr, sr )�DNNχsd .

(15)

Within PWIA we can factorize the above expression in
the form of a product of electromagnetic current and the
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light-front nuclear wave function. For this we introduce the
light-front wave functions in the form [17,36]:

ψ
sisr sd

LF (α, pT) = − ū(pi, si )ū(pr, sr )�DNNχsd

1
2

(
M2

d − 4 m2
N +pT

2

α(2−α)

) 1√
2(2π )3

.

(16)

From the above definition one also obtains:
1

α
2

(
M2

d − 4 m2
N +pT

2

α(2−α)

) ū(pr, sr )�DNN χsd

= −
∑
si

u(pi, si )

2mN

ψ
sisr sd

LF (α, pT)

α

√
2(2π )3. (17)

Using now the above Eqs. (16) and (17) in Aμ
prop and A

μ
inst,

respectively, the Eq. (15) can be presented in the form:

Aμ = Aμ
prop + A

μ
inst

=
∑
si

J
μ
N (pf sf , pisi )

ψ
sisr sd

LF (α, pT)

α

√
2(2π )3, (18)

where we introduced the electromagnetic current of the bound
nucleon as follows:

J
μ
N (pf sf , pisi ) = ū(pf sf )�μ

γ ∗Nu(pisi )

+ ū(pf sf )�μ
γ ∗N

γ +(p−
i − p−

i on)

4mN

u(pisi ).

(19)

Here, the Dirac spinor of the initial nucleon u(pi, si ) is de-
fined for the on-shell momentum, pi,on = (p−

i,on, p
+
i , p⊥

i ). As
one observes from Eq. (18) the price one pays for eliminating
the vacuum diagram [Fig. 3(b)] on the light-front is the need to
calculate electron–bound-nucleon scattering and the nuclear
wave function in the light-front reference frame. The former
includes also the contribution from the instantaneous term
[Eq. (19)]. Calculation of the nuclear wave function on the
light-front is out of the scope of the present paper. Our main
focus in the following sections will be the calculation of the
electromagnetic current of Eq. (19).

B. Propagating and instantaneous components
of electromagnetic current

To identify the propagating and instantaneous parts of
the electromagnetic current in Eq. (19) we consider first
the electromagnetic vertex �

μ
γ ∗N . Since the final state of the

interacting nucleon is on mass shell, and only the positive
light-front energy projections enter in the amplitude, we are
led to the half-off-shell vertex function in the general form
(see, e.g., Refs. [44–46]:

�
μ
γ ∗N = γ μF1 + iσμνqνF2

κ

2mN

+ qμF3, (20)

where the form-factors F1,2,3 = F1,2,3(m2
N, p2

i , q
2) are func-

tions of Lorentz invariants constructed from the momenta of
initial and final nucleons and momentum transfer q. In general
one expects F1,2(m2

N, p2
i , q

2) not to be identical with the cor-
responding on-shell nucleon form factors [F1,2(m2

N,m2
N, q2)].

This difference is due to the modification of the internal struc-
ture of nucleons in the nuclear medium. Such modification,
in principle, should originate from the dynamics similar to
the one responsible for the medium modification of partonic
distributions of bound nucleon, commonly referred as the
EMC effect [47]. This, however, is out of the scope of our
discussion since we are interested only in the effects related
to the off-shellness of the interacting nucleon’s electromag-
netic current. Thus, in the numerical estimates we will use
unmodified nucleon form factors measured for free nucleons.
Concerning F3, it does not contribute to the cross section of
the process due to the gauge invariance of the leptonic current:
qμj

μ
e = 0. However, for consistency one can estimate the F3

form factor based on the fact that due to the conservation
of the momentum sum rule in the light-front approach the
electromagnetic current of the bound nucleon is conserved:

qμJ
μ
N = 0. (21)

Using Eq. (19) together with (20) one obtains: F3 = F1
q/

Q2 .
Inserting the latter into Eq. (20) one can separate the
propagating and instantaneous parts of the electromagnetic
vertex in the form

�
(prop)μ
γ ∗N = γ μF1 + iσμνqνF2

κ

2mN

, (22)

and

�
(inst)μ
γ ∗N =

(
γ μF1 + iσμνqνF2

κ

2mN

)
�p/i

2mN

−F1
qμ

q2
q/

(
1 + �p/i

2mN

)
, (23)

where, �p
μ
i = p

μ
i − p

μ
i,on and 2�p/i = γ +(p−

i − p−
i,on) since

�p+
i = �p⊥

i = 0. In the following derivations we will use
the relation:

�p−
i = −q− + (p−

f − p−
i,on)

= Q2

q+ − m2
N + pT

2

p+
f p+

i

q+

= 1

p+
d

(
M2

d − 4

(
m2

N + pT
2
)

α(2 − α)

)
, (24)

as well as:

2�pi · pi = �p−
i p+

i = p2
i − m2

N, (25)

which allow us to express the electromagnetic current in
boost-invariant variables.

The separation of the electromagnetic vertex into propa-
gating and instantaneous parts in Eqs. (22) and (23) allows
us to separate the electromagnetic current in Eq. (19) into
corresponding parts in the following form:

J
μ
N (pf sf , pisi ) = Jμ

prop(pf sf , pisi ) + J
μ
inst (pf sf , pisi ),

(26)

where,

Jμ
prop(pf sf , pisi ) = ū(pf sf )�(prop)μ

γ ∗N u(pisi )

J
μ
inst (pf sf , pisi ) = ū(pf sf )�(inst)μ

γ ∗N u(pisi ). (27)
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It is worth mentioning that even though the propagating vertex
in Eq. (22) has the same form as the free on-shell nucleon
vertex the corresponding electromagnetic current Jμ

prop does
not correspond to an on-shell scattering amplitude, since
qμ �= p

μ
f − p

μ
i,on. Also, the current conservation [Eq. (21)] is

satisfied only for the sum of the propagating and instantaneous
currents in Eq. (26).

C. Off-shell parameter of eNbound scattering

While the off-shell effects in the propagating vertex of
Eq. (22) are kinematical, due to the fact that qμ �= p

μ
f − p

μ
i,on,

the off-shell effects in the instantaneous vertex are dynamical.
The latter interaction arises exclusively due to the binding
of the nucleon. As it follows from Eq. (23) the strength of
the instantaneous vertex is proportional to the magnitude of
the factor �p−

i defined in Eq. (24). One can express the
�p−

i factor through boost-invariant quantities by defining
the light-front reference frame such that the four-momenta
of the deuteron, p

μ
d and momentum transfer qμ are:

p
μ
d =

(
Q2

mN

,
m2

dmN

Q2
, 0T

)

qμ =
⎛
⎝− Q2x

mN

(
1 +

√
1 + 4m2

N x2

Q2

) ,

mN

x

(
1 +

√
1 + 4m2

Nx2

Q2

)
, 0T

⎞
⎠. (28)

Using above definitions one introduces the off-shell parameter
η such that,

�p−
i = −mNη, (29)

where,

η = 1

Q2

(
4

(
m2

N + pT
2
)

α(2 − α)
− m2

d

)
. (30)

As it will be shown in the derivations bellow, the parameter η
provides the universal measure of the off-shell effect, which
combines both the resolution of the probe through the Q2

and the binding effects of the nucleon through the light-cone
variables, α and pT.

IV. ELECTRON-NUCLEON SCATTERING
CROSS SECTION

In many practical applications one needs to evaluate the
electron–bound-nucleon cross section σeN as it is defined in
Ref. [32]. Such a cross section is calculated within PWIA in
which case using Eq. (18) the nuclear electromagnetic tensor
of Eq. (6) can be expressed as follows:

Hμν = H
μν
N (pf , pi ) ρd (α, pT)

2 − α

α2
2(2π )3, (31)

where spin-averaged light-cone density matrix of the
deuteron ρd (α, pT ) and bound-nucleon electromagnetic ten-

sor H
μν
N (pf , pi ) are defined in the following forms:

ρd (α, pT) = 1

2sd + 1
· 1

2

∑
sd ,si ,sr

∣∣ψsisr sd

LF (α, pT)
∣∣2

2 − α
(32)

and

H
μν
N = 1

2

1/2∑
si sf =−1/2

J ν
N (pf sf , pisi )

†Jμ
N (pf sf , pisi ). (33)

Inserting now Eq. (31) into Eq. (4) the Lorentz invariant
cross section of the reaction (1) can be presented as follows:

dσ

d3kf /εf d3pf /Ef

= 1

2pd · ki

α2
EM

q4
LμνH

μν
N ρd (α, pT)

2 − α

α2
δ
(
p2

r − m2
N

)
, (34)

where αEM = e2/(4π ). Introducing the light-front nuclear
spectral function in the form:

SLF
d (α, pT) = ρd (α, pT)

2 − α

α2
δ
(
p2

r − m2
N

)
, (35)

similar to Ref. [32] one can present the differential cross
section as a product of σeN and the spectral function as
follows:

dσ

dεf d�kf
d3pf

= σeN SLF
d (α, pT), (36)

where

σeN = 1

2mDεi

εf

Ef

α2
EM

q4
LμνH

μν
N . (37)

Here εi , εf are initial and scattered electron energies. The Ef

represents the energy of the knock-out nucleon.
It is worth mentioning that the expression in Eq. (36) is

universal for any nuclei in which case one needs to replace the
deuteron spectral function by the light-front spectral function
of the nucleus being considered.

A. Structure functions of bound nucleon

In calculating σeN in Eq. (37) it is convenient to present
it through the four independent structure functions of the
nucleon wN

L , wN
T L, wN

T , and wN
T T in the form:

σeN = 1

2mDEf

σMott
(
vLwN

L + vT LwN
T L cos φ + vT wN

T

+ vT T wN
T T cos(2φ)

)
, (38)

where σMott = α2 cos( θ
2 )2

4ε2
i sin( θ

2 )4 with θ being scattered electron angle.

In the above equation:

vL = Q4

q4
vT = Q2

2q2
+ tan2 θ

2

vT T = Q2

2q2
vT L = Q2

q2

(
Q2

q2
+ tan2 θ

2

)1/2

, (39)
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FIG. 4. Definition of scattering and reaction planes of knock-out
reaction.

where Q2 = 4εiεf sin( θ
2 )2, and q is the three-momentum of

the virtual photon. The above-defined structure functions of
the bound nucleon can be related to the light-front compo-
nents of the nucleonic electromagnet tensor as follows (see
Appendix B):

wN
L = q2

4Q2

(
H++ Q2

(q+)2
+ 2H+− + (q+)2

Q2
H−−

)

wN
T L = |q|

q+

(
H

+‖
N + H

−‖
N

(q+)2

Q2

)

wN
T = H

‖‖
N + H⊥⊥

N

wN
T T = H

‖‖
N − H⊥⊥

N , (40)

where ± correspond to t ± ẑ directions on the light cone
with ẑ defined in the negative direction of of the transferred
three-momentum q. The transverse components are chosen as
follows: the perpendicular direction is defined by n⊥ = pf ×q

|pf ×q| ,
and the parallel unit vector projection is n‖ = q×n⊥

|q×n⊥| . The
scattering and reaction planes of the reaction are defined in
Fig. 4.

Using now the Eq. (33) and the expression of the bound
nucleon electromagnetic current from Eqs. (26) and (27) one
can calculate nucleon structure functions explicitly. In what
follows we split the structure functions into two terms:

wN
i = wN

i,prop + wN
i,inst for i = L, T L, T , T T , (41)

where subscript “prop” corresponds to the structure functions
calculated using the propagating part of the electromagnetic
current, Jμ

prop only, while the terms with the subscript “inst”
correspond to the contribution from J

μ
inst and its interference

with Jμ
prop.

Using the explicit forms of the currents from Eqs. (26)
(27) we calculate the above structure functions express-
ing them through the off-shell parameter η [Eq. (30)] as
follows:1

wN
L prop = q2

[
F 2

1 τ−1

(
1 + p2

T

m2
N

+ τηi (ηi + ηq )

)
− F1F2κ (2 + ηq ) + F 2

2 κ2

(
p2

T

m2
N

+ τ (1 + ηq )

)]
,

wN
L inst = q2

[
F 2

1 ηi (τηi (1 + ηq ) − 2 − ηq ) + F1F2κ (τηi (2 − 2ηi − ηq ) + ηq ) + F 2
2 κ2τ (τηi (ηi + ηq ) − ηq )

]
,

wN
TL prop = 2 |q| pT

(
F 2

1 + F 2
2 κ2τ

)[
2 + 4

αN

αq

+ 2ηi + ηq

]
,

wN
TL inst = 2|q|pT

(
F 2

1 + F 2
2 κ2τ

)
(1 − τηi )ηq,

wN
T prop = 4m2

N

[
F 2

1

(
p2

T

m2
N

+ 2τ (1 + ηq )

)
+ 2F1F2κτ (2 + ηq ) + F 2

2 κ2τ

(
2 + p2

T

m2
N

+ 2τηi (ηi + ηq )

)]
,

wN
T inst = 2Q2

[
F 2

1 (τηi (ηi + ηq ) − ηq ) + F1F2κ (τηi (2ηi + ηq − 2) − ηq ) + F 2
2 κ2τηi (τηi (1 + ηq ) − 2 − ηq )

]
,

wN
TT prop = 4p2

T

(
F 2

1 + F 2
2 κ2τ

)
,

wN
TT inst = 0, (42)

where, τ = Q2/(4m2
N ), ηi = η αN/2, ηq = η αq/2. Alternatively, one can write,

ηi = −2�pi · pi

Q2
=

(
m2

N + pT
2
)

Q2

αq

αf

− αN

αq

, (43)

ηq = −2�pi · q

Q2
=

(
m2

N + pT
2
)

Q2

α2
q

αf αN

− 1. (44)

1In Appendix B we also presented the same structure functions in more conventional form in terms of scalar products of kinematical variables
describing the reaction [see Eq. (B10)].
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FIG. 5. The θpiq dependence of ratios of the off-shell cross section of electron-bound proton scattering to that of the one-shell cross section.
The solid lines are LF approximation, dashed and dash-dotted curves corresponds to CC2 and CC1 versions of de Forest approximation [32].
The panels correspond to the bound nucleon momenta pi = 50, 200, 400, and 600 MeV/c for Q2 = 1 and 4 (GeV/c)2. The minus sign of
θpq indicates on kinematics corresponding to φ = 180◦ between scattering and reaction planes. Calculations done for initial electron energy
εi = 11 GeV.

The structure functions in Eq. (42) are Lorentz invariant
and expressed through the boost-invariant variables η, αi , αq ,
and αf . Since many experiments in probing high momentum
bound nucleons are performed in the fixed target experiments
it is convenient to express the above variables through the
four-momenta measured in the laboratory frame. Considering
a laboratory reference frame in which ẑ‖q, the αi , αq , and αf

parameters can be expressed as follows:

αi = 2 − αr = αf − αq, αr = 2(Er − prcosθr )

md

,

αq = 2(q0 − q)

md

, αf = 2(Ef − pf cosθf )

md

, (45)

where, pμ
d = (md, 0), qμ = (q0, q), pμ

r = (Er, pr ), and p
μ
f =

(Ef , pf ) are four-momenta of the target deuteron, virtual
photon, recoil, and struck nucleon measured in the laboratory
frame.

V. NUMERICAL ESTIMATES

We present numerical estimates for kinematics, which will
be explored in experiments planned for 12 GeV upgraded
Jefferson Lab. In all calculations below we take the initial
energy of the electron beam εi = 11 GeV.

To quantify the extent of the binding effects we consider
the ratio:

R = σeN

σ on
eN

, (46)

where σeN is the cross section of electron bound nucleon
scattering defined in Eq. (37) for given initial momenta pi or
(αi and pT ), while σ on

eN corresponds to the same cross section
for the electron scattering off the free-moving nucleon with
the same initial momenta.

First, we consider the dependence of R on traditional kine-
matical parameters, which define the electronuclear processes
such as initial momentum of the bound nucleon (pi) its rela-
tive angle with respect to the transferred three-momentum (q),
as well as the virtuality of the transferred momentum (Q2).
Additionally we compare the predictions of LF approximation
with that of the de Forest formalism [32], which is commonly
used in the analysis of the experimental data. In all these
estimates we use the same parametrization for the electric and
magnetic form factors of the nucleons. These parametrizations
are the same for the free nucleon. Thus we do not consider the
effects related to the possible modification of the charge and
magnetic current distributions in the bound nucleon.

In Figs. 5 and 6 we compare the angular dependences
of ratio R at different values of missing momenta at fixed
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FIG. 6. The same as in Fig. 5 but for scattering from bound neutron.

Q2 = 1 and 4 (GeV/c)2 for bound proton and neutron, re-
spectively. As Fig. 5 shows LF approximation predicts off-
shell effects for Q2 = 1 (GeV/c)2 as large as 40–250% for
bound proton momenta �400 MeV/c. Even larger effects
are expected within the de Forest approach [32]. We observe
also that the prediction within LF and de Forest approxima-
tions significantly diverge close to the kinematical limit of

the scattering process as it can be seen in calculations for
pi = 600 MeV/c.

Because of different magnitudes and signs of form factors
one predicts somewhat different off-shell effects for scattering
from a bound proton or neutron. However, qualitatively the
dependences of R for kinematical parameters of the reaction
for both proton and neutron are similar.

FIG. 7. The Q2 dependence of the off-shell effects for θpiq = −70◦ for proton and neutron targets.

035202-9



FRANK VERA AND MISAK M. SARGSIAN PHYSICAL REVIEW C 98, 035202 (2018)

FIG. 8. Off-shell effects expected for the experiment of Ref. [48] (left). The right panel is the similar effects for φ = 0 kinematics.

An important feature of LF calculations following from
Figs. 5 and 6 is the diminishing of the off-shell effects with
an increase of Q2. This reflects the dynamical nature of
the LF approximation in which case the harder the probe
(larger Q2), the lesser is the sensitivity to the binding effects
of the target nucleon. It is worth mentioning that no such
behavior exists in the de Forest approximation since in this
case part of the off-shell effects are kinematical in which
the energy of bound nucleon is taken to be equal to the
on-shell energy for the given momentum of the nucleon,
with the phase space of the initial nucleon being proportional
to 1√

m2
N+p2

i

.

To ascertain the extent of the Q2 suppression on the off-
shell effects, in Fig. 7 we present the Q2 dependence of the
ratio R for proton and neutron initial momenta of pi = 600
and 800 MeV/c. Here we choose θpiq = −70◦ for which
large off-shell effects are observed in Figs. 5 and 6. These
calculations indicate that already at Q2 � 4 GeV2 the off-
shell effects predicted in light-front approximation are not
more than 10% for such a large bound nucleon momenta.

For practical purposes in Fig. 8 we estimate the dependence
of the off-shell effects on the momentum of the bound nucleon
for kinematics relevant to the planned JLAB experiment [48],
which is aimed at probing deuteron structure at very large
internal momenta. As the figure shows for both cases of the
angles between scattering and reaction planes (φ) the light-
front approach predicts off-shell effects to be less than 8%
for all kinematics with the latter value happening at pi =
850 MeV/c.

At the end of the section we discuss whether the parameter
η introduced in Eq. (30) can be used as a universal parameter
for estimation of the off-shell effects for any kinematic con-
ditions of electroproduction reaction. For this, in Fig. 9 we
calculate the η dependence of |R − 1| for very large magni-
tudes of bound nucleon momenta (pi = 600 and 800 MeV/c)
at different values of transverse momentum pT . Note that the
expected off-shell effects will be much less for smaller values
of pi .

As Fig. 9 shows for any possible scenarios of kinematics
the off-shell effects can be confined below 5% as soon as
η < 0.1. This represents a strong indication that the variable η

FIG. 9. The η parameter dependence of the off-shell effects |R − 1| for pi = 0.6 and 0.8 GeV/c at different values of the transverse
momentum pT .

035202-10



ELECTRON SCATTERING FROM A DEEPLY BOUND … PHYSICAL REVIEW C 98, 035202 (2018)

can be considered as a universal parameter for controlling the
off-shell effects in the reaction mechanism of electron-nuclear
processes. The universality here is in the fact that, if our goal
is to probe a bound nucleon with very large momenta, we can
calculate the corresponding α and pT parameters and then find
the required Q2 such that it makes η < 0.1, thus allowing us
to neglect the off-shell effects in the electromagnetic current.

VI. SUMMARY AND OUTLOOK

Based on the light-front approach we calculated electron-
deuteron scattering within PWIA, which allowed us to iso-
late the electron–bound-nucleon scattering cross section, σeN .
Within LF approximation the vacuum contribution naturally
disappears while the off-shell nature of the nucleon results in
an appearance of an instantaneous term in the electromagnetic
current of electron–bound-nucleon scattering. In deriving σeN

we separated the propagating and instantaneous contributions
in the electromagnetic current, which allowed us to trace ex-
plicitly the effects associated with the binding of the nucleon.
Furthermore, in the LF approach we were able to identify
the parameter (defined as η) that universally characterizes the
extent of the off-shellness of electromagnetic current.

The derived σeN is used to estimate the expected off-shell
effects in electronuclear processes in kinematics relevant to
the 12 GeV energy upgraded Jefferson Lab experiments.
We compared the LF predictions with that of the de Forest
approximation widely used by experimentalists to estimate the
off-shell effects in the reaction mechanism of electronuclear
processes. These comparisons indicate that practically in all
kinematic cases the LF approach predicts less off-shell effects
at Q2 � 1 GeV2 than the de Forest approximation does. Most
importantly the LF approach predicts a significant drop of
the off-shell effects with an increase of Q2, which intuitively
can be understood as a decrease in the sensitivity of the hard
processes on the off-shellness of the target nucleon.

We also checked our conjecture that the η variable can be
considered as a universal parameter in controlling off-shell
effects. We found that for a wide range of kinematics the off-
shell effects can be suppressed on the level of 5% as as soon as
η < 0.1. The latter gives an effective method for controlling
the uncertainties in the reaction mechanism for large varieties
of electronuclear processes probing deeply bound nucleons in
the nucleus.

Finally, it is worth mentioning that even though we consid-
ered the eA scattering within PWIA the obtained expressions
for electromagnetic current are applicable also for scattering
amplitudes in which the final-state interaction between out-
going nucleons is considered within eikonal approximation.
In this case (see, e.g., Refs. [18,19]) the main part of the
rescattering amplitude is evaluated at the pole value of the
struck nucleon propagator in the intermediate state. As a result
the entered electromagnetic current is again half-off-shell as
the considered electromagnetic current in Eq. (26).
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APPENDIX A: LIGHT FRONT PERTURBATION
THEORY RULES

We present here a summary of the rules for computation of
amplitudes within light-front (LF) formalism.

The LF scalar product and notations are (Lepage-Brodsky
convention [35,37]):

x · p = 1
2 (x+p− + x−p+) − xT · pT

xμ = (x+, x−, x, y) = (x+, x−, xT),

pμ = (p+, p−, pT)

x± = t ± z. (A1)

Diagrammatic rules for effective light-front perturbation
theory can be formulated as follows:

(i) Draw all topologically distinct τ ≡ x+-ordered dia-
grams at the desired coupling power. In addition to
the usual advanced and retarded propagation between
two events one needs to include a third possibility
in which the two events connected by an internal
fermion or photon interact at the same LF τ time,
commonly referred as instantaneous term.

(ii) Assign to each line a four-momentum pμ and spin s
(or helicity λ) corresponding to a single on-mass-shell
particle, i.e., p2 = m2.

(iii) With spin-1/2 fermions associate on-mass-shell
spinors u(p, s), with antifermions v(p, s), with pho-
tons εμ(q, λ), etc., such that,

ū(p, s ′)u(p, s) = −v̄(p, s ′)v(p, s) = 2mδss ′∑
s

u(p, s)ū(p, s) = p/ + m

∑
s

v(p, s)v̄(p, s) = p/ − m (A2)

εμ(q, λ′)εμ(q, λ) = −δλ′λ , q · ε(q, λ) = 0∑
λ

εμ(q, λ)εν (q, λ) = −gμν + qμην + qνημ

q · η
,

where η is a null vector (η2 = 0), given in LC gauge
by, η = (0, 2, 0, 0).

(iv) Each intermediate state gets a factor (inverse of the
difference of the sums over initial and intermediate
LF energies p−):

1∑
ini p

− − ∑
int p

− + iε
, (A3)

where, ini stands for the initial state of the diagram
and int for intermediate states. All particles are on-

mass-shell, that is: p− = m2+p2
T

p+
i

> 0.
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(v) Internal lines account for two kind of interactions:
(1) Propagating, in which case, for a vertex like in

Fig. 10(a) one has:

� ū(p′, s ′)ε/(q, λ)u(p, s)δ2

(∑
in

pT −
∑
out

pT

)

× δ

(∑
in

p+ −
∑
out

p+
)

, (A4)

where, in and out mean flowing into and out of
the vertex. The δ functions at the vertex provide
an explicit conservation of the plus and transverse
components of in and out momenta.

(2) Instantaneous. For each vertex like in Fig. 10(b)
(fermionic), include,

�2 ū(p′, s ′)ε/(q ′, λ′)
γ +

2(q+ − p′+)
ε/(q, λ)u(p, s)

× δ2

(∑
in

pT −
∑
out

pT

)
δ

(∑
in

p+ −
∑
out

p+
)

(A5)

and, for each vertex like in Fig. 10(c) (vector),
include,

�2 ū(p′, s ′)γ +u(p, s)
1

(p′+ − p+)2
ū(k′, σ ′)

× γ +u(k, σ )δ2

(∑
in

pT −
∑
out

pT

)

× δ

(∑
in

p+ −
∑
out

p+
)

. (A6)

FIG. 10. Example of the scattering amplitude on the light-front
(τ = x+ flows from left to right).

Here � factors represent effective vertices, which can
be specified for the particular case of the scattering.
They can correspond to electron–bound-nucleon scat-
tering as well as nuclear transition to the constituent nu-
cleons. The conditions for for which such an effective
vertices can be introduced in the Feynman diagrams are
discussed in Ref. [19].

(vi) Sum over polarizations and integrate over each inter-
nal line with the factor,

∑
s

∫
dpTdp+

2(2π )3p+ �(p+),

which ensures the plus component positivity (all
particles move forward in LC time).

(vii) Include symmetry factors. Also, a factor of −1 for
each fermion loop, for fermion lines beginning and
ending at the initial state, and for each diagram in
which fermion lines are interchanged in either of the
initial or final states, as well as the overall sign from
Wick’s theorem.

APPENDIX B: NUCLEONIC TENSOR

Substituting Eq. (26) into Eq. (33), allows us to express the nucleonic tensor as a sum of two terms:

H
μν
N = H

μν
N prop + H

μν
N inst, (B1)

where the propagating contribution is given by,

H
μν
N prop = 1

2

∑
si sf

(
J

sisf μ
prop

)†(
J

sisf

prop
)ν = 1

2
Tr

[
�

(on)μ
γ ∗N (p/f + mN )�(on)ν

γ ∗N (p/i,on + mN )
]
, (B2)

and the instantaneous by,

H
μν
N inst = 1

2

∑
si sf

((
J

sisf ν

off

)†
J

sisf μ

inst + (
J

sisf ν
prop

)†
J

sisf μ

inst + (
J

sisf ν

inst

)†
J

sisf μ
prop

)

= 1

2
Tr

[
�

(off)ν
γ ∗N (p/f + mN )�(off)μ

γ ∗N (p/i,on + mN ) + �
(on)ν
γ ∗N (p/f + mN )�(off)μ

γ ∗N (p/i,on + mN )

+�
(off)ν
γ ∗N (p/f + mN )�(on)μ

γ ∗N (p/i,on + mN )
]
, (B3)

where, �
μ

γ ∗N = γ 0(�μ
γ ∗N )†γ 0. Notice that the initial momentum of the nucleon, pi , occurring from now on corresponds to

pi,on, which allows to drop the on-shell label “on” without confusion. With this, we can write propagating and instantaneous
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contributions of the tensor, Hμ,ν as functions of the nucleon form factors F1 and F2 as follows:

H
μν
N prop = 2F 2

1

[
gμν

(
m2

N − pi · pf

) + (
p

μ
i pν

f + pν
i p

μ
f

)] + F1F2κ
[
2gμνq · (pf − pi ) + (

p
μ
i qν + pν

i q
μ
) − (

p
μ
f qν + pν

f qμ
)]

+F 2
2

κ2

2m2
N

[
gμν

[
q2

(
pi · pf + m2

N

) − 2 q · pi q · pf

] − q2
(
p

μ
i pν

f + pν
i p

μ
f

)
− qμqν

(
pi · pf + m2

N

) + q · pf

(
p

μ
i qν + pν

i q
μ
) + q · pi

(
p

μ
f qν + pν

f qμ
)]

, (B4)

and the instantaneous correction as follows:

H
μν
N inst = 2F 2

1

[
gμν

(
�pi · (pi − pf ) − �pi · pi

m2
N

�pi · pf

)
+ (

�p
μ
i pν

f + �pν
i p

μ
f

)(
1 + �pi · pi

m2
N

)

+ 2

q2
qμqν

(
2

q2
q · pf q · (�pi + pi ) − (pi − pf ) · (�pi + pi ) + �pi · pi

m2
N

(
�pi · q

q2
pf · q + �pi · pf

))

− 2

q2

(
p

μ
i qν + pν

i q
μ
)
q · pf − 2

q2

(
p

μ
f qν + pν

f qμ
)(

q · (�pi + pi ) + �pi · pi

m2
N

�pi · q

)

− 2

q2

(
�p

μ
i qν + �pν

i q
μ
)
q · pf

(
1 + �pi · pi

m2
N

)]
+ F1F2κ

[
gμν

(
�pi · pi

m2
N

q · (2pf − �pi ) − 2�pi · q

)

+ qμqν

(
�pi · pi

m2
Nq2

q · (�pi − 2pf ) − 2

)
− (

p
μ
i qν + pν

i q
μ
) + (

p
μ
f qν + pν

f qμ
)]

+F 2
2

κ2

2m2
N

[
gμν

[
(q2 �pi · pf − 2 q · �pi q · pf )

(
1 + �pi · pi

m2
N

)
+ q2 �pi · pi

]

− (
�p

μ
i pν

f + �pν
i p

μ
f

)
q2

(
1 + �pi · pi

m2
N

)
− qμqν

[
�pi · pf

(
1 + �pi · pi

m2
N

)
− �pi · pi

]

+ (
�p

μ
i qν + �pν

i q
μ
)
q · pf

(
1 + �pi · pi

m2
N

)
+ (

p
μ
f qν + pν

f qμ
)
q · �pi

(
1 + �pi · pi

m2
N

)]
. (B5)

With our choice of reference frame [Fig. (4)], one can expand the LμνH
μν product in the following form:

LμνH
μν
N = (L00H

00 − 2L0zH
0z + LzzH

zz) + (−2L0‖H 0‖ + 2Lz‖Hz‖)

+ 1
2 (L‖‖ + L⊥⊥)(H ‖‖ + H⊥⊥) + 1

2 (L‖‖ − L⊥⊥)(H ‖‖ − H⊥⊥). (B6)

Furthermore, using the gauge invariance of leptonic current, one expresses the above product in the form:

LμνH
μν
N = L00

(
H 00 − 2

q0

qz

H 0z +
(

q0

qz

)2

Hzz

)
+ 2L0‖

(
−H 0‖ + q0

qz

Hz‖
)

+ 1

2
(L‖‖ + L⊥⊥)(H ‖‖ + H⊥⊥) + 1

2
(L‖‖ − L⊥⊥)(H ‖‖ − H⊥⊥)

= Q2[tan(θ/2)]2
(
vLwN

L + vT LwN
T L cos(φ) + vT wN

T + vT T wN
T T

)
. (B7)

Using the definitions of vi for i = L, T , T L, T T from Eq. (39), for the hadronic structure functions wN
i , one obtains:

wN
L = q4

Q4

(
H 00 − 2

q0

qz

H 0z + (q0)2

q2
Hzz

)
= q2

4Q2

(
H++ Q2

(q+)2
+ 2H+− + (q+)2

Q2
H−−

)

wN
T L = 2

q2

Q2

(
q0

qz

H
z‖
N − H

0‖
N

)
= |q|

q+

(
H

+‖
N + H

−‖
N

(q+)2

Q2

)

wN
T = H

‖‖
N + H⊥⊥

N

wN
T T = H

‖‖
N − H⊥⊥

N , (B8)
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where we have used, −qz = |q|, as well as the relation between components of the nucleonic tensor in light-cone and Minkowski
coordinates:

H 00 = 1
4 (H++ + 2H+− + H−−)

H 0z = 1
4 (H++ − H−−)

Hzz = 1
4 (H++ − 2H+− + H−−) (B9)

H 0‖ = 1
2 (H+‖ + H−‖)

Hz‖ = 1
2 (H+‖ − H−‖).

From Eqs. (B4) and (B8) we compute the explicit forms of the structure functions. In the reference frame of Fig. 4, they are
given by:

wN
L prop = F 2

1 q2 αNαf

α2
q

(
m2

N + p2
T

Q2

α2
q

αNαf

+ 1

)
− F1F2q2κ

(
m2

N + p2
T

Q2

α2
q

αNαf

+ 1

)

+F 2
2 q2

(
κ

2mN

)2
((

m2
N + p2

T

) α2
q

αNαf

+ 4p2
T

)

wN
L inst = F 2

1
αN

αq

q2

⎛
⎝1 −

(
m2

N + p2
T

Q2

α2
q

αNαf

)2

+
(
m2

N + p2
T

)
2m2

αq

αN

+
(

m2
N + p2

T

Q2

α2
q

αNαf

− 1

)2
⎞
⎠

− 2F1F2κ
αN

αq

q2 (q · �pi )2

m2Q2

(
2
αf

αq

+ 2
m2

q · �pi

+ 1

)
+ F 2

2

(
κ

m2
N

)2

q2 q · �pi

(
1 + q · �pi

m2

αNαf

α2
q

)

wN
TL prop = |q|αN + αf

αq

pT

(
2F 2

1 + 2F 2
2

(
κ

2mN

)2

Q2

)(
1 + m2

N + p2
T

Q2

α2
q

αNαf

)

wN
TL inst = 8|q|q · �pi

Q2
pT

(
1 + pi · �pi

m2

)(
F 2

1 + F 2
2

(
κ

2mN

)2
)

wN
T prop = F 2

1

(
2
(
m2

N + p2
T

) α2
q

αNαf

+ 4(pT)2

)
+ 2κF1F2

((
m2

N + p2
T

) α2
q

αNαf

+ Q2

)

+F 2
2

(
κ

2mN

)2
⎛
⎝2

αNαf

α2
q

((
m2

N + p2
T

) α2
q

αNαf

+ Q2

)2

− 4Q2p2
T

⎞
⎠

wN
T inst = 8F 2

1

(
q · �pi + pf · �pi

pi · �pi

m2

)
+ 8F1F2κ

(
1 + pi · �pi

m2

)(
q · �pi − pf · q

pi · �pi

m2 + pi · �pi

)

+ 8F 2
2

(
κ

2mN

)2(
1 + pi · �pi

m2

)(
q · pf q · �pi + Q2 pf · �pi + Q2 m2 pi · �pi

m2 + pi · �pi

)

wN
TT prop = 4p2

T

(
F 2

1 + F 2
2

κ2

4m2
N

Q2

)

wN
TT off = 0. (B10)

The kinematic variables and scalar products used in the calculation are as follows: The light-cone momentum fractions are

αN = 2p+
N

p+
d

= 2(EN + pN,z)

p+
d

, αq = 2q+

p+
d

= 2(q0 − |q|)
p+

d

, αf = αN + αq (B11)

and the off-shell factor is, �p
μ
i = p

μ
i − p

μ
i,on, with, p

μ
i = p

μ
d − p

μ
r . Since �p+

i = �p⊥
i = 0, we have, 2�p/i = γ +(p−

i − p−
i,on)

with the minus component defined as follows:

�p−
i = p−

i − p−
i on = −q− + (p−

f − p−
i on) = Q2

q+ − m2
N + p2

⊥
p+

f p+
i

q+. (B12)
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The scalar products of initial (pμ
i,on), final (pμ

f ), and transferred (qμ) momenta with the off-shell factor �p
μ
i , can be written as:

2�pi · pi = Q2 αN

αq

− (
m2

N + pT
2
) αq

αf

2�pi · pf = Q2 αf

αq

− (
m2

N + pT
2
)αq

αi

2�pi · q = Q2 − (
m2

N + pT
2
) α2

q

αf αN

. (B13)
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