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Thermal noise in non-boost-invariant dissipative hydrodynamics
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We study the effects of hydrodynamic fluctuations in non-boost-invariant longitudinal expansion of matter
formed in relativistic heavy ion collisions. We formulate the theory of thermal noise within second-order viscous
hydrodynamics treating noise as a perturbation on top of the non-boost-invariant flow. We develop a numerical
simulation model to treat the (1+1)-dimension hydrodynamic evolution. The code is tested to reproduce
the analytic results for the Riemann solver for expansion of matter in vacuum. For viscous hydrodynamic
expansion, the initial energy density distribution are obtained by reproducing the measured charged hadron
rapidity distribution at the RHIC energies. We show that the longitudinal rapidity correlations arising from
space-time-dependent thermal noise and from an induced thermal perturbation have distinct structures. In
general, the rapidity correlations are found to be dominated by temperature fluctuations at small rapidity
separation and velocity fluctuations at large rapidities. We demonstrate that thermal noise produce ridgelike
two-particle rapidity correlations which persist at moderately large rapidities. The magnitude and pattern of the
correlations are quite sensitive to various second-order dissipative formalisms and to the underlying equations
of state, especially at large rapidities. The short-range part of the rapidity correlation is found to be somewhat
enhanced as compared to that in boost-invariant flow of matter.
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I. INTRODUCTION

Relativistic dissipative hydrodynamic has become the
state-of-the-art model to study the evolution of hot and
dense matter formed at the Relativistic Heavy-ion Collider
(RHIC) [1,2] and at the Large Hadron Collider (LHC) [3–
5]. Hydrodynamical model analysis of the large anisotropic
flow observed in the plane transverse to the reaction plane
has established the formation of a near-equilibrated strongly
coupled quark-gluon-plasma (QGP) with a small shear vis-
cosity to entropy density ratio ηv/s. The flow is found to
originate mostly during the initial stages of dynamical evo-
lution [6,7]. Considerable efforts are underway for an ac-
curate determination of the transport properties of the QGP
formed.

In spite of the success of hydrodynamic models in the
description of relativistic heavy-ion collisions, considerable
uncertainty prevails. This relates to the formulation of dissi-
pative hydrodynamics, the correct initial conditions, and the
numerical implementation. At present the models used are
commonly based on approaches, such as the second-order dis-
sipative (causal) equations in the Müller-Israel-Stewart (MIS)
framework [8–11], the Chapman-Enskog (CE)-like iterative
expansion of the Boltzmann equation in the relaxation-time
approximation [12–14], the second-order viscous hydrody-
namics from AdS/CFT correspondence, and the anisotropic
hydrodynamics [15,16]. For a reasonable description of the
flow data, all these models require a very early thermalization
proper time of τ ≈ 0.2–0.6 fm/c, that, hitherto, lacks a proper
explanation.

One of the major uncertainties in the hydrodynamic model
extraction of ηv/s lies with the initial state models. In

fact, viscous hydrodynamic descriptions with different initial
conditions, can be made compatible with the data for elliptic
(n = 2) and triangular (n = 3) flow harmonics vn = 〈cos(n −
�n)〉, for different tuned values of ηv/s [17–19]. While the
elliptic flow is driven primarily by the hydrodynamic re-
sponse of the initial overlap geometry of the colliding nuclei,
the odd harmonics are solely governed by the initial-state
fluctuations of the nucleon position in the nuclei [20]. Pre-
equilibrium parton dynamics and fluctuations in the parton
production and scattering was shown to have a crucial effect
on the final anisotropic flow [21–23]. Further sources of
fluctuations pertain to energy deposition (and its evolution)
by a partonic jet propagating in the hydrodynamic medium
[24] and the treatment of particlization of the fluid cells at
freeze-out [25].

In contrast, hydrodynamic fluctuations arising due to in-
trinsic thermal (and particle number) fluctuations in each fluid
cell occur during the entire evolution of the system [26,30–
34]. Based on the fluctuation-dissipation theorem, it is natu-
ral, that any dissipative system close to thermal equilibrium
should exhibit thermal fluctuations. In heavy-ion collisions,
as the transverse size of the participant zone is about 5–10 fm,
and the evolution stage lasts for about τ ≈ 10 fm/c, thermal
fluctuations in the fluid medium could have measurable and
important consequences. The formulation of hydrodynamic
fluctuations in the nonrelativistic limit [35] was recently ex-
tended to relativistic hydrodynamic regime. As an applica-
tion of the stochastic thermal noise in relativistic heavy-ion
collisions, it was demonstrated within boost-invariant one-
dimensional (Bjorken) expansion of the fluid [26], that the
two-particle rapidity correlations exhibit ridge-like structures
observed in collisions at RHIC [27,28] and LHC [29].

2469-9985/2018/98(3)/034911(16) 034911-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.98.034911&domain=pdf&date_stamp=2018-09-17
https://doi.org/10.1103/PhysRevC.98.034911


CHANDRODOY CHATTOPADHYAY AND SUBRATA PAL PHYSICAL REVIEW C 98, 034911 (2018)

The thermal fluctuation of the energy-momentum ten-
sor �μν has a nontrivial autocorrelation 〈�μν (x)�αβ (x ′)〉 ∼
T ηv δ4(x − x ′) [26,30]. Due to the Dirac-δ function, the
energy and momentum density averaged value of this white
noise becomes ∼1/

√
�V �t . Thus, even for small shear

viscosities, the white noise sets a lower limit on the system
cell size �V that is essentially comparable to the correla-
tion length. Consequently, white noise could lead to large
gradients which makes the basic hydrodynamic formulation
(based on gradient expansion) questionable. One possible way
to overcome this is by using thermal fluctuations nonper-
turbatively via colored noise [31]. Alternatively, white noise
can be implemented by treating fluctuations as perturbations
(in a linearized hydrodynamic framework) on top of a base-
line nonfluctuating hydrodynamic evolution [26,30,36]. While
analytic solution of hydrodynamic fluctuation exists within
relativistic Navier-Stokes theory (for a conformal fluid) with
idealized boost-invariant dynamics in Bjorken flow [26] and
Gubser flow [37], numerical simulations of thermal fluctu-
ation were performed for various second-order dissipative
hydrodynamics for Bjorken flow profiles [36].

It is, however, important to realize that the propagation
of the fluctuations over large distances and times critically
depend on the underlying expansion of the fluid. As compared
to a static fluid [35], the observables related to the fluctuations
(namely, the two-particle rapidity correlations and harmonic
flow vn distributions), calculated at the freeze-out time (or
temperature), would have different features. The thermal noise
correlators have been calculated and their phenomenological
applications for the boost-invariant (Bjorken) expansion of
matter have been explored [26,36]. However, the longitudinal
boost-invariant scenario could only give a reasonable descrip-
tion for the midrapidity region during the initial stages of rela-
tivistic heavy ion collisions [38]. At large rapidities and due to
finite size of the expanding fluid, thermal noise would exhibit
a different behavior. As a matter of fact, even the noiseless
non-boost-invariant longitudinal expansion could create large
velocity and energy gradients at the cell boundaries near large
space-time rapidities that may severely affect the baseline
hydrodynamic evolution [39–41].

In this paper, we formulate the hydrodynamic (thermal)
fluctuation in the non-boost-invariant (1+1)D longitudinal
expansion of viscous matter within the Müller-Israel-Stewart
and Chapman-Enskog theories. For the perturbative applica-
tion of the white noise, we have developed a (1+1)D viscous
hydrodynamic simulation in the Milne coordinates (η, τ ) that
is suitable to study relativistic heavy-ion collisions. The code
has been tested for stability against shock waves across the
cell boundaries and at large rapidities by comparing with the
Riemann and Landau-Khalatnikov wave solutions. Within lin-
earized second-order viscous hydrodynamic framework, we
treat the fluctuations as perturbation on top of the background
(1+1)D expanding viscous medium. We first consider a single
thermal perturbation and explore the resulting longitudinal
rapidity-correlations to gain insight into the more complex
case of thermal noise generated at all space-time points.
We then perform extensive numerical simulation of hydrody-
namic fluctuations and study the rapidity correlations for the
commonly used hydrodynamic dissipative theories, namely

MIS and CE formalisms and for the conformal and lattice
QCD equation of state (EoS). In particular, we will show that
distinct magnitude and structures in the rapidity correlations
are obtained for these different cases.

The paper is organized as follows. In Sec. II we formulate
the theory of hydrodynamic fluctuations in the linearized limit
for non-boost-invariant hydrodynamic expansion of viscous
fluid. We derive analytical expressions for the two-particle
rapidity correlations from thermal noise at freeze-out. In
Sec. III A we test the (1+1)D hydrodynamic code with simple
wave solutions. We then constrain in Sec. III B the initial
conditions of the viscous hydrodynamic code from fits to the
measured rapidity distribution of hadrons in central Au+Au
collisions at RHIC. With these parameter sets we present
results for various rapidity correlators from an induced ther-
mal fluctuation and thermal noise in Secs. III C and III D,
respectively. In Sec. III E the results for rapidity correlations
due to thermal noise are compared for the MIS and CE viscous
approaches and for various EoS. A summary and conclusions
are presented in Sec. IV.

II. THERMAL NOISE IN RELATIVISTIC
HYDRODYNAMICS

A. Fluctuation-dissipation relations for causal
second-order theories

The hydrodynamic evolution of a system is governed by
the conservation equations for particle current, ∂μNμ = 0,
and the energy-momentum tensor, ∂μT μν = 0, where

Nμ = nuμ + nμ,

T μν = εuμuν − (p + �)�μν + πμν. (1)

Here n is the number density, ε and p are, respectively, the
energy density and pressure in the fluid’s local rest frame
(LRF), πμν is the shear pressure tensor, nμ is the particle
diffusion current, and � is the local bulk viscous pressure.
�μν = gμν − uμuν is the projection operator on the three-
space orthogonal to the hydrodynamic four-velocity uμ in
the LRF that is defined by the Landau-matching condition
T μνuν = εuμ. We will disregard particle flow Nμ, which
is a reasonable approximation due to very small values of
net-baryon number formed at RHIC and LHC.

In the relativistic Navier-Stokes (first order) theory, the
instantaneous constituent equations for the bulk and shear
pressures are

�NS = −ζ∇ · u, π
μν
NS = 2ηv∇〈uuν〉, (2)

where the transport coefficients ζ, ηv � 0 are the bulk
and shear viscosity, and ∇〈uuν〉 = (∇μuν + ∇νuμ)/2 − (∇ ·
u)�μν/3 and ∇μ = �μν∂ν . In the MIS theory [8–11], de-
rived from positivity of entropy four-current divergence, the
second-order dissipative hydrodynamic equations,

D� = − 1

τ�

(� + ζ∇ · u),

�
μν
αβDπαβ ≈ − 1

τπ

(πμν − 2ηv∇〈uuν〉) − 4

3
πμνθ, (3)
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restore causality by enforcing the bulk and shear pressures
to relax to their first-order values via the relaxation times
τ� = ζβ0 and τπ = 2ηvβ2; where β0 and β2 are second-order
transport coefficients in the entropy current. D = u · ∂ is the
time derivative in the local comoving frame and θ = ∇ · u is
the local expansion rate. In the following, we shall neglect the
bulk viscosity which has negligibly small values at all temper-
atures, other than at the critical temperature Tc = 170 MeV for
deconfinement transition.

For the dissipative equation, we shall also consider the
second-order equation for shear tensor in the Chapman-
Enskog approach obtained by iteratively solving the Boltz-
mann equation in relaxation time approximation [12–14],

π̇ 〈μν〉+ πμν

τπ

= 2βπσμν + 2π 〈μ
γ ων〉γ − 10

7
π 〈μ

γ σ ν〉γ − 4

3
πμνθ,

(4)
where the vorticity ωμν ≡ (∇μuν − ∇νuμ)/2 and βπ = 4p/5.

The total energy-momentum (ignoring bulk viscosity) in
presence of a noise tensor �μν is

T μν = εuμuν − p�μν + πμν + �μν, (5)

where �μν (x) is a stochastic field in space-time with
ensemble average 〈�μν (x)〉 = 0. The autocorrelation
〈�μν (x1)�αβ (x2)〉 is derived using the fluctuation-dissipation
theorem and depends on the form of evolution equation of
the shear stress tensor. We use the theory of quasistationary
fluctuations [35] in which one considers the set of time
evolution equations for the variables xa ,

ẋa = −
∑

a

γabXb + ya, (6)

where Xb are “driving” forces and ya are random fluctuations.
The rate of change of entropy S(xa ) is given by

Ṡ = −
∑

a

ẋaXa, (7)

where Xa = −∂S/∂xa . As the probability of fluctuating vari-
ables in thermal equilibrium must be eS , the autocorrelation
of the noise should have the form,

〈ya (t1)yb(t2)〉 = (γab + γba )δ(t1 − t2). (8)

The fluctuation-dissipation relation in viscous hydrody-
namics can be derived using the above formalism [26,36,42].
For the MIS theory, the expression for second-order entropy
four-current is given by,

Sμ = suμ − β2

2T
uμπαβπαβ, (9)

where s = (ε + p)/T and β2 = 1/(2βπ ). Using the temporal-
component of ∂μSμ, we obtain the rate of change of entropy,

dS

dt
=

∫
d3x

πμν

T

[
∇μuν − β2π̇μν − β2

4

3
θπμν

]
. (10)

In analogy to Eq. (7) we identify

ẋa → πμν, (11)

Xa → − 1

T
[∇μuν − β2π̇μν − β2λπθπμν] �V ≡ Xμν. (12)

As in Eq. (6), we add a stochastic tensor ξμν to the shear stress
tensor,

πμν = −γ μναβXαβ + ξμν, (13)

where γ μναβ should yield the shear tensor expression of
Eq. (3) on contraction with Xαβ . Due to symmetries of πμν ,
we have γ μναβ = γ νμαβ , γ μαβ

μ = 0, and γ μναβuμ = 0. Note
that the identification of Xμν is not unique as the transfor-
mation Xμν → Xμν + Hμν , keeps dS/dt invariant if Hμν is
orthogonal to πμν . We thus have to find an autocorrelation
which is insensitive to such transformations, namely, γ μναβ =
γ μνβα , γ μνα

α = 0, and γ μναβuα = 0.
The form of γ μναβ consistent with the constraints is,

γ μναβ = 2ηvT �μναβ. (14)

Correspondingly one obtains the noise autocorrelation in the
MIS theory to be [36]:

〈ξμν (x)ξαβ (x ′)〉 = 4ηvT �μναβδ4(x − x ′). (15)

We now present the fluctuation-dissipation relation for
Chapman-Enskog case. The entropy four-current obtained
from Boltzmann’s H-theorem has the expression as of Eq. (9),
see Ref. [14]. Following the same procedure as above, the
form of γ μναβ for the Chapman-Enskog case is,

γ μναβ = 2ηvT
(
�μναβ − 10

7 β2�
μν
ζκ πζ

γ �κγαβ

+ 2τπ�
μν
ζκ ωζ

γ �κγαβ
)
. (16)

Consequently, one obtains the noise autocorrelation in the
Chapman-Enskog theory to be [36]:

〈ξμν (x)ξαβ (x ′)〉
= 4ηvT

(
�μναβ − 5

7β2�
μν
ζκ πζ

γ �κγαβ

− 5
7β2�

αβ
ζκπζ

γ �κγμν + ω − terms
)
δ4(x − x ′). (17)

As opposed to the MIS case where the autocorrelation func-
tion in the fluid rest frame depends only on the coefficient
of shear viscosity ηv and temperature, the above result shows
that the autocorrelation function of thermal noise in Chapman-
Enskog scenario is sensitive to components of shear stress
tensor as well as vorticity.

It is important to note that in the derivation of fluctuation-
dissipation relation using the theory of quasistationary fluc-
tuations, the noise tensor ξμν should be added to the shear
evolution equation. However, by defining π ′μν ≡ πμν − �μν ,
so as to obtain the same form as in Eq. (5), we get a relaxation-
type evolution of �μν , which essentially implies that �μν

becomes a colored-noise (correlated over space-times), as
opposed to its uncorrelated (white-noise) structure in the first-
order Navier-Stokes theory [26]. In the MIS theory, we have
the equation of motion of the noise tensor �μν ,

�̇〈μν〉 = − 1

τπ

(�μν − ξμν ) − 4

3
�μνθ, (18)

and for the CE equation we get

�̇〈μν〉 = − 1

τπ

(�μν − ξμν ) + 2π 〈μ
γ ων〉γ

− 10

7
�〈μ

γ σ ν〉γ − 4

3
�μνθ. (19)
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In the following, we shall linearize the stochastic hydrody-
namic equations about a background (averaged) solution such
that the right-hand side of Eqs. (15) and (17) will be computed
using these averaged solutions. Considering fluctuations in
temperature (or energy density), flow velocity, and shear
pressure tensor [26], their values in the linearized limit can
be written as

ε = ε0 + δε ≡ ε0 + ε1,

uμ = u
μ
0 + δuμ ≡ u

μ
0 + u

μ
1 , (20)

πμν = π
μν
0 + δπμν ≡ π

μν
0 + π

μν
1 .

The subscript “0” corresponds to the average (noiseless)
values of the quantities whose evolution will be described in
Sec. II B. The equations for fluctuations (denoted by subscript
“1”) are presented in Sec. II C. As a consequence of Eq. (20),
the total energy-momentum tensor of Eq. (5) can be decom-
posed into T μν = T

μν
0 + T

μν
1 , consisting of a noiseless part

T
μν

0 and a fluctuating part δT μν ≡ T
μν

1 .

B. (1+1)D non-boost-invariant viscous hydrodynamic

In the present calculation for non-boost-invariant longitu-
dinal expansion, the hydrodynamic equations effectively cor-
respond to (1+1)D. For high-energy collisions at RHIC and
LHC, the space-time evolution can be conveniently described
in the Milne coordinates of longitudinal proper time τ =√

t2 − z2 and space-time rapidity η = ln[(t + z)/(t − z)]/2.
In (τ, x, y, η) coordinates, the metric tensor becomes gmn =
diag(1,−1,−1,−1/τ 2). Due to the translational and rota-
tional invariance in the transverse plane, the four-velocity can
be parametrized as u

μ
0 = (uτ

0, u
x
0, u

y
0, u

η
0 ) ≡ γ0(1, 0, 0, vη0 ),

where γ0 = 1/
√

1 − τ 2v2
η0

arises from the normalization

condition u
μ
0 u0μ = 1. The nonvanishing components of the

Christoffel symbols are �η
ητ = �η

τη = 1/τ and �τ
ηη = τ . The

time derivative in the local fluid rest frame and the local
expansion rate are then

D0 = u0 · ∂ = γ0(∂τ + vη0∂η ), (21)

θ0 = ∂ · u0 = 1

τ
∂τ (τγ0) + ∂η(γ0vη0 ). (22)

Due to constraints on π
μν
0 , namely, orthogonality to

u
μ
0 (i.e., πmn

0 u0m
= 0), tracelessness (πmn

0 gmn = 0), and az-
imuthal (x − y) symmetry, there is only one independent
component, which we take to be π

ηη
0 . The other nonvanishing

components can be expressed in terms of π
ηη
0 as

πττ
0 = τ 4v2

η0
π

ηη
0 , π

τη
0 = τ 2vη0π

ηη
0 ,

πxx
0 = π

yy
0 = − τ 2

2γ 2
0

π
ηη
0 . (23)

The two independent components of the noiseless part of
energy-momentum tensor T

μν
0 in the global frame reduce to

T ττ
0 = (ε0 + p0)γ 2

0 − p0 + πττ
0 = (ε0 + P0)γ 2

0 − P0, (24)

T
τη

0 = (ε0 + p0)γ 2
0 vη0 + π

τη
0 = (ε0 + P0)γ 2

0 vη0 , (25)

where Eq. (23) has been used to obtain the right-hand-side
of the second equality. The effective (longitudinal) pres-

sure is denoted as P0 = p0 + τ 2π
ηη
0 /γ 2

0 . Using T
ηη

0 = [(ε0 +
P0)γ 2

0 − ε0]/τ 2 the equation of motion T mn
;m = 0 for the n = τ

and n = η component can be written as

∂τ

(
T̃ ττ

0

) + ∂η

(
ṽη0 T̃

ττ
0

) = −(ε0 + P0)γ 2
0 + ε0, (26)

∂τ

(
T̃

τη
0

) + ∂η

(
vη0 T̃

τη
0 + P̃0

/
τ 2

) = −2(ε0 + P0)γ 2
0 vη0 . (27)

Here we have used the shorthand notation Ãmn = τAmn and
ṽη0 = T̃

τη
0 /T̃ ττ

0 = T
τη

0 /T ττ
0 .

To write the evolution equation for π
ηη
0 , we obtain the

general form of relaxation equation for the full tensor π̇ 〈ηη〉.
Using the orthogonality conditions πμνuν = 0 and u̇μuμ = 0,
the comoving derivative of πηη in (1+1)D can be expressed in
a compact form,

π̇ 〈ηη〉 = γ 2

τ 2
uμ∂μ

(
τ 2πηη

γ 2

)
. (28)

Moreover, using σηη = −(2/3)(γ 2θ/τ 2) and defining the to-
tal (background plus noise) shear stress π = −τ 2πηη/γ 2, the
MIS Eq. (3) on adding the noise term ξμν can be written as

uμ∂μπ = − 1

τπ

(
π + τ 2

γ 2
ξηη − 4

3
ηv θ

)
− λππ θ. (29)

Here the coefficient λπ = 4/3 in this MIS dissipative equa-
tion. The evolution equation for the background shear stress
component π0 ≡ −τ 2π

ηη
0 /γ 2

0 then has the form

u
μ
0 ∂μπ0 = − 1

τπ

(
π0 − 4

3
ηv θ0

)
− λππ0 θ0. (30)

For the CE case, the dissipative Eq. (4) in (1+1)D has the
same form as Eq. (29) with λπ = 38/21.

The three evolution Eqs. (26), (27), and (30) in four un-
knowns are closed with the equation of state p = p(ε). Using
Eqs. (24) and (25), one can express the energy density and the
(longitudinal) velocity as

ε0 = T ττ
0 − τ 2vη0T

τη
0 , (31)

vη0 = T
τη

0

T ττ
0 + p0

(
ε0 = T ττ

0 − τ 2vη0T
τη

0

) − π0
, (32)

and these allow one to extract vη0 by one-dimensional zero-
search. The above set of evolution equations are solved using
SHASTA-FCT algorithm.

C. Thermal fluctuations in non-boost-invariant
viscous hydrodynamics

We will now obtain the linearized hydrodynamic equations
for thermal fluctuations in the non-boost-invariant (1+1)D
expansion of matter within MIS formulation. Substituting
the first-order fluctuations of Eq. (20) into the total energy-
momentum tensor:

T μν = εuμuν − p�μν + πμν

= T
μν

0 + δT
μν

id + δπμν = T
μν

0 + T
μν

1 , (33)

where T
μν

0 is the noiseless energy-momentum tensor whose
evolution equations has been obtained in Sec. II B. Note that
the noise term ξμν has been included in the shear evolution

034911-4



THERMAL NOISE IN NON-BOOST-INVARIANT … PHYSICAL REVIEW C 98, 034911 (2018)

Eq. (29). The fluctuating part of the ideal energy-momentum
tensor is δT

μν
id = δ(εuμuν − p�μν ), and can be determined

by the fluctuating variables (δε, δuμ, δp). The conservation
equations for the total energy-momentum tensor, ∂μT μν = 0,
along with that for the average part, ∂μT

μν
0 = 0, lead to

∂μ

(
δT

μν
id + δπμν

) ≡ ∂μ(δT μν ) = 0. (34)

The above equations are combined to yield

δT μν ≡ T
μν

1 = ε1u
μ
0 uν

0 + ε0u
μ
1 uν

0 + ε0u
μ
0 uν

1

−p0�
μν
1 − p1�

μν
0 + π

μν
1 . (35)

While the event-averaged fluctuations yield 〈δT μν〉 = 0, ther-
mal noise ξμν induces a nonvanishing 〈δT μνδT αβ〉, which
was demonstrated to result in the two-particle rapidity corre-
lation [26] and affect the event-by-event fluctuation of elliptic
flow [32].

On imposing the orthonormality condition of the total four-
velocity of the fluid, i.e., uμuμ = (uμ

0 + u
μ
1 )(u0μ + u1μ) = 1

and noting that u
μ
0 u0μ = 1, we get in the linearized limit

uτ
1 = τ 2u

η
1vη0 . (36)

Further, by using the orthogonality of the total shear pressure
with four-velocity, πμνuν = 0, and the corresponding Eq. (23)
for the noiseless part, one gets for the fluctuating shear stress
component

π
μν
1 u0ν = −π

μν
0 u1ν . (37)

Making use of these conditions, together with the trace-
lessness of πμν and Eqs. (23), we obtain for the (1+1)D
expansion,

πττ
1 = τ 4v2

η0
π

ηη
1 − 2

τ 2vη0u
η
1

γ0
π0,

π
τη
1 = τ 2π

ηη
1 vη0 − u

η
1

γ0
π0. (38)

The corresponding fluctuating components of the energy-
momentum tensor of Eq. (35) is then

T ττ
1 = (ε1 + τ 2P1)γ 2

0 − τ 2P1 + τ 2u
η
1vη0γ0U0

(
2 − τ 2v2

η0

)
,

T
τη

1 = (ε1 + τ 2P1)γ 2
0 vη0 + u

η
1γ0U0, (39)

T
ηη

1 = T
τη

1 vη0 + P1.

We use the definition P1 = u
η
1vη0U0/γ0 + V1/τ

2 with U0 =
ε0 + p0 − π0 and V1 = p1 − π1. Here π1 ≡ −(τ 2/γ 2

0 )πηη
1 −

2(τ 2u
η
1/γ0)vη0π0 is obtained by linearizing the total shear

tensor π = −τ 2πηη/γ 2 defined in Sec. II B. The equations
for the noise part of the energy-momentum conservations are
then

∂τ

(
T̃ ττ

1

) + ∂η

(
ṽη1 T̃

ττ
1

)
= ε1 − (ε1 + τ 2P1)γ 2

0 − τ 2u
η
1vη0γ0U0, (40)

∂τ

(
T̃

τη
1

) + ∂η

(
vη0 T̃

τη
1 + P̃1

)
= −2(ε1 + τ 2P1)γ 2

0 vη0 − 2u
η
1γ0U0. (41)

The stochastic MIS equations for the noise term in the lin-
earized limit can be obtained from Eq. (3). The dissipative

equation for the independent component π1 then reads

γ0
(
∂τ + vη0∂η

)
π1 = 1

τπ

[
−π1 + ξ + 4ηv

3s
(s0θ1 + s1θ0)

]

−u
η
1

(
τ 2vη0∂τπ0 + ∂ηπ0

)
− λπ (θ0π1 + θ1π0), (42)

where the local expansion rate for the velocity fluctuation is
of the form θ1 = (1/τ )∂τ (τuτ

1 ) + ∂ηu
η
1 and we have defined

ξ = −τ 2ξηη/γ 2
0 . The autocorrelation for the noise term in

general is found to be

〈ξ (τ1, η1)ξ (τ2, η2)〉
= 8ηvT0

3τA⊥
[1 − Aβ2π0]δ(τ1 − τ2)δ(η1 − η2), (43)

where A = 0 in MIS case and A = 5/7 in CE formalism, and
the δ function in the transverse direction δ(x − x′)δ(y − y′) =
1/A⊥ is represented by the inverse of the effective (overlap)
transverse area A⊥ of the colliding nuclei.

By imposing the Landau-matching condition for the total
energy-momentum tensor, T μνuν = εuμ, and also for the
average part, one can determine the fluctuating energy density
and velocity as

ε1 = (
T ττ

1 − τ 2vη0T
τη

1

) + τ 2u
η
1

γ0

(
vη0T

ττ
0 − T

τη
0 − ε0vη0

)
,

(44)

u
η
1 = γ0

U0

(
T

τη
1 − vη0T

ττ
1 − vη0V1

)
, (45)

which can be obtained from one-dimensional root search
method. The hydrodynamic fluctuation Eqs. (40)–(42) are
solved perturbatively in τ -η coordinates using the MacCor-
mack (predictor-corrector) [32,36]. It is important to note that
in a nonperturbative method of treating thermal fluctuations
the results crucially depend on the integration scheme (Itô or
Stratonovich) being considered [30]. These subtleties do not
arise in our linearized (perturbative) approach.

D. Freeze-out and two-particle rapidity correlations

We shall now consider the freeze-out of a fluid system that
undergoes (nonequilibrium) viscous evolution with thermal
fluctuations. The freeze-out of a near-thermalized fluid to
free-streaming (noninteracting) particles is obtained via the
standard Cooper-Frye prescription [43]. We will consider
isothermal freeze-out that corresponds to a freeze-out from
a hypersurface �(x) when its temperature drops below a
critical (decoupling) value of Tdec. The particle spectrum can
be obtained as

E
dN

d3p
= g

(2π )3

∫
�

d�μpμf (x, p), (46)

where pμ is the four-momentum of the particle with degen-
eracy g, d�μ is the outward-directed normal vector on an
infinitesimal element of the hypersurface �(x).

034911-5



CHANDRODOY CHATTOPADHYAY AND SUBRATA PAL PHYSICAL REVIEW C 98, 034911 (2018)

In the present (τ, x, y, η) coordinate system, the three-
dimensional volume element at freeze-out is

d�μ ≡ [d�τ (η), d�x (η), d�y, d�η(η)]

=
(

1, 0, 0,−∂τf

∂η

)
τf dηdx⊥, (47)

where τf (η) is the freeze-out time at the decoupling tem-
perature Tdec. The particle four-momentum, pμ ≡ (p0, px,
py, pz) = (mT cosh y, px, py,mT sinh y), in (τ, x, y, η) co-
ordinates becomes

pμ = [mT cosh(y − η), p⊥,mT sinh(y − η)]. (48)

Here mT =
√

p2
T + m2 is the transverse mass of the parti-

cle with transverse momentum pT and kinematic rapidity
y = tanh−1(pz/p0). The integration measure at the constant
temperature freeze-out hypersurface �(x) is then pμd�μ =
dηdx⊥mT ∂[−τf sinh(y − η)]/∂η.

The phase-space distribution function at freeze-out,
f (x, p) = feq(x, p) + fvis(x, p) consists of equilibrium con-
tribution

feq = exp[p · u/T ± 1]−1 ≈ exp(−p · u)/T , (49)

and the nonequilibrium viscous correction, which has the
form derived from the Grad’s 14-moment approximation [44]:

fvis = feq(1 ∓ feq )
pμpνπμν

2(ε + p)T 2
≈ feq

pμpνπμν

2(ε + p)T 2
. (50)

Note that the total flow velocity uμ ≡ uμ(τf , η) and the
total temperature T ≡ T (τf , η) are evaluated at the freeze-out
hypersurface coordinates.

To evaluate Eq. (46), we note that the total distribution
function f (x, p) has contributions from the average (noise-
less) and the thermal noise parts. In the linearized limit, f can
be written as

f (x, p) = f0(x, p) + δf (x, p) ≡ f0(x, p) + f1(x, p).
(51)

As a consequence of Eq. (20), one can write the average part
of the distribution function as [36]

f0 = (feq )0
(
1 + K0μνπ

μν
0

)
, (52)

where K
μν
0 = pμpν[2(ε0 + p0)T 2

0 )]−1, and the total tempera-
ture as T = T0 + δT ≡ T0 + T1. The noise part f1 has contri-
bution from ideal as well as viscous fluctuations

f1 = (feq )1 + K0μν

[
(feq )1π

μν
0 + (feq )0π

μν
1

+ (feq )0π
μν
0

(
T1

T0
+ ε1 + p1

ε0 + p0

)]
, (53)

where (feq )0 = exp(−u
μ
0 pμ/T0) and (feq )1 =

(feq )0(T1u
μ
0 pμ/T 2

0 − u
μ
1 pμ/T0) are, respectively, the

noiseless and the noise parts of the equilibrium (ideal)
distribution function. The terms within the square brackets in
Eq. (53) refer to contributions from viscous fluctuations.

The rapidity distribution of the particle, corresponding to
Eq. (46), then reduces to

dN

dy
= gT 3

0 A⊥
(2π )3

∫
dη S(y, η)

×
∫

dpxdpy mT [f0(x, p) + δf (x, p)]

≡ (dN/dy)0 + δ(dN/dy). (54)

Here A⊥ = ∫
dx⊥ is the usual transverse area of Eq. (43)

and S(y, η) ≡ ∂[−τf sinh(y − η)]/∂η. For the non-boost-
invariant longitudinal flow, the averaged particle rapidity dis-
tribution corresponding to Eq. (46) becomes(

dN

dy

)
0

= gT 3
0 A⊥

(2π )2

∫
dη

cosh3 �
S(y, η)

{
�3(�)

+ π0

4w0

[
C(�)�5(�) − m2

T 2
0

�3(�)

]}
. (55)

We use the definition � ≡ (y − η − κ ), where κ ≡
tanh−1 (τvη0 ) and w0 = (ε0 + p0) is the background enthalpy
density. �k (�) ≡ �(k,m cosh �/T0) denotes the incomplete
� function of the kth kind [45] and C(�) = 3 sech2� − 2.
Note that the second term within the square brackets stems
from viscous corrections. For the fluctuating part we have

δ
dN

dy
= gT 3

0 A⊥
(2π )2

∫
dη S(y, η)

[
FT (y, η)

T1(η)

T0

+ Fu(y, η)
τf u

η
1 (η)

γ0
+ Fπ (y, η)

π1(η)

w0

]
. (56)

Here FT ,u,π are the coefficients of the fluctuations
(T1/T0, τf u

η
1/γ0, π1/w0), which are obtained by performing

the momentum integrals:

FT cosh3 � = �4 − π0

4w0

[
m2

T 2
0

(�4 − κ�3)

− C(�)(�6 − κ�5)

]
, (57)

Fu cosh3 � = �4 tanh � − π0

4w0
tanh �

×
[
m2

T 2
0

�4 − C(�)

(
�6 − 2

tanh κ

tanh �

)

+ 4�5
2 sinh κ − sinh(2� + κ )

cosh κ sinh 2�

]
, (58)

Fπ cosh3 � = 1

4

[
C(�)�5 − m2

T 2
0

�3

]
, (59)

where κ = 2 + (T0/w0)∂w0/∂T0.
The two-particle rapidity correlator due to fluctuations can

then be written as〈
δ
dN

dy1
δ
dN

dy2

〉
=

[
gT 3

0 A⊥
(2π )2

]2 ∫
dη1 S(y1, η1)

∫
dη2 S(y2, η2)

×
∑
X,Y

FX(y1, η1)FY (y2, η2) 〈X(η1)Y (η2)〉.

(60)
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Here (X, Y ) ≡ (T1, u
η
1, π1) and 〈X(η1)Y (η2)〉 are the two-

point correlators between the fluctuating variables calculated
at the freeze-out hypersurface. The CE formalism gives the
same above expression for the two-particle correlations but
with different coefficients FX due to modified form of the
viscous correction fvis [36].

III. RESULTS AND DISCUSSIONS

A. Numerical test of the (1+1)D non-boost-invariant code

We have developed a numerical simulation code for the
non-boost-invariance longitudinal expansion of matter by em-
ploying the relativistic hydrodynamic equations formulated
in the Milne coordinates. The SHASTA-FCT algorithm was
used to solve the coupled conservative equations, which is
an efficient hydrodynamic shock capturing scheme. In this
section we shall discuss some numerical test of our code. In
particular, the numerical results will be compared with the
analytical solutions for one-dimensional expansion of matter,
namely, the Riemann simple wave solutions and the Landau-
Khalatnikov solution [46–48].

The relativistic Riemann problem [48–50] can be explored
by considering a hydrodynamic state H(ε, vx, vy, vz), which
is a function of hydrodynamic variables, and the state has
a discontinuity at the initial time t = t0 and at the location
z = zi . The initial boundary-value problem can be represented
in the Cartesian coordinate as H(t0, x, y, z) ≡ HL for z < zi

and H(t0, x, y, z) ≡ HR for z > zi . The time evolution of the
initial disturbance originating at z = zi can be described by a
Riemann simple wave solution for one-dimension relativistic
hydrodynamic expansion. In fact, the solution corresponds to
superposition of three nonlinear wave propagation. Two of
them are shock and/or rarefaction waves that are formed near
the boundary z = zi and traveling in the opposite directions
with the speed of sound cs = √

∂ε/∂p. The other is the hy-
drodynamic propagation of the discontinuity itself. In Milne
coordinates, the Riemann initial-value problem for the hydro-
dynamic states remain unchanged [50], viz. H(τ0, x, y, η) =
HL(η < ηi ) and H(τ0, x, y, η) = HR (η > ηi ), and the dis-
continuity is now at the space-time rapidity η = ηi at the
initial proper time τ = τi .

In contrast, the Landau-Khalatnikov solution is applicable
at much later times for the rarefaction wave propagation inside
the medium. For instance, if the stopped matter in nucleus-
nucleus collisions is represented by a slab of width z = 2� (in
Cartesian coordinate) in contact with vacuum on either side,
then the complete hydrodynamical wave would be given by
Riemann solution for expansion of matter into the vacuum at
time t�/cs and Landau-Khalatnikov solution for wave inside
the slab at later time t > �/cs .

To test the stability of our numerical solution obtained in
the Milne coordinate, we note that the velocity fields in the
Milne and Cartesian coordinates are related by

vη = 1

τ

− sinh η + vz cosh η

cosh η − vz sinh η
. (61)

Thus, the velocity fields in the Cartesian coordinate ui/ut =
(vx, vy, vz) is independent of rapidity, while um/uτ =

(vx, vy, vη ) depends on rapidity. As a first test of our one-
dimensional hydrodynamic expansion simulation, we con-
sider a slab situated at |η| � 1.5 at the initial time τ = τ0 =
1 fm/c and has an energy density of ε = ε0 = 120 GeV/fm3.
Initially, the slab is at rest in the Cartesian coordinate (vz = 0)
and in contact with vacuum on both the ends. Thus, the initial
condition can be recast into

ε = 120 GeV/fm3, vη = − tanh η

τ0
for |η| � 1.5,

ε = 0, vη = 0 for |η| > 1.5. (62)

With the conformal equation of state ε = 3p used here, the
corresponding initial temperature of the slab is T0 ∼ ε1/4 ≈
507 MeV. With these initial values, we perform hydrodynamic
simulation for the time evolution and compare the numerical
results with the analytic Riemann solution for energy density
[50],

ε = ε0

[(
1 + cs

1 − cs

){
1 + (z − zi )/(t − ti )

1 − (z − zi )/(t − ti )

}]2cs

, (63)

where the transformations from the Cartesian to Milne co-
ordinate are z = τ sinh η, t = τ cosh η, and accordingly for
the initial coordinates. The numerical velocity vη can also be
compared to the analytic solution of Eq. (61).

Figure 1 shows comparison of numerical and analytic
results, for the rapidity dependence of the energy density,
velocity vη, and the velocity vz obtained from Eq. (61) by
using the corresponding vη values. All the results are at later
times of τ = 3, 4, 5 fm/c. As the slab is at rest (vz = 0) in the
Cartesian coordinate, which corresponds to vη < 0 in Milne
coordinates. For η > 0, a rarefaction wave starts at the edge of
the slab (i.e., at the discontinuity) and propagates within the
slab with a velocity cs . Also a shock starts at the discontinuity
and moves into the vacuum with the speed of light. Such
features are also observed at η < 0 (not shown here). For
instance at τ = 3 fm/c, we find vz = 0 for |η| � 0.5 and
thus vη < 0. The rarefaction wave has then spread outside
the slab from 0.5 < |η| < 2.6, where |η| = 2.6 correspond
to the boundary of the vacuum. The fluid expands outward
with increasing velocity vη till it reaches the boundary of the
vacuum. The wave velocity vz rapidly increases outward and
approaches the speed of light vz/c ≈ 1 at the vacuum. We find
that our numerical results are in perfect agreement with the
Riemann simple wave solution for all rapidity η and all proper
times τ .

With increasing time, the two rarefaction waves, traversing
inwards from positive and negative rapidity sides of the slab,
will eventually reach the center η = 0 of the slab and overlap.
In practice, from this time onward, Riemann solution cannot
be applied, and the Landau-Khalatnikov solutions starts to
be applicable. The Landau-Khalatnikov solution at the later
times describe evolution of matter in the overlap region of the
slab. At the asymptotic times τ � �, the Landau-Khalatnikov
solution can be expressed as

ε = ε0

[
−4

3

{
2 ln

( τ

�

)
−

√
ln

( τ

�

)2
− η2

}]
, (64)
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FIG. 1. Comparison between the Riemann analytical solutions
(lines) and the numerical results (circles) for the rapidity dependence
of energy density ε, velocities vη and vz at proper times τ =
3, 4, 5 fm/c for the initial condition of Eq. (62) at time τ0 = 1 fm/c.

with vη = 0. Here � is the thickness of the slab where the two
ingoing rarefaction waves overlap.

In the numerical simulation, the initial energy distributions
are obtained from Eq. (64) corresponding to initial values
of time τ0 = 500 fm/c, energy density ε0 = 120 GeV/fm3,
and slab thickness � = 0.5 fm. Figure 2 shows the compar-
ison between numerical results and the Landau-Khalatnikov
asymptotic solution. The calculations are in good agreement
with the analytical results up to large times especially around
central rapidity region. At large rapidity the deviations from
the asymptotic value may suggest that the rarefaction (over-
lapping) wave is mostly confined around the center region thus
making the Landau-Khalatnikov asymptotic results invalid at
large |η|.

B. Initial conditions for non-boost-invariant expansion

The initial conditions for our (1+1)D non-boost-invariant
expansion of the viscous fluid at the initial proper time τ0

is defined by the three quantities, viz. ε(τ0, η), vη(τ0, η),
πxx (τ0, η). In our simulation we have adopted τ0 = 0.4 fm/c
at which the initial energy density is taken as [18]

ε(τ0, η) = ε0 exp

[
− (|η| − �η)2

2σ 2
η

θ (|η| − �η)

]
. (65)
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ε = ε0exp{-(4/3)[2ln(τ/Δ)-√ln(τ/Δ)
2
-η2]}

τ=700

τ=510 fm ε
0
=120 GeV/fm

3

τ0=500 fm 

τ=600

τ=1000

Δ=0.5 fm 

FIG. 2. Comparison between the analytical solutions (lines) and
the numerical results (circles) for the rapidity dependence of energy
density ε at proper times τ = 510, 600, 700, 1000 fm/c for the
initial condition of Eq. (64) at time τ0 = 500 fm/c.

This profile consists of a flat distribution about midrapidity
of width 2�η and two smoothly connected Gaussian tails of
half-width ση. The parameters ε0 and (�η, ση) are adjusted
to reproduce the absolute magnitude and width of the final
rapidity distribution of mesons measured by BRAHMS [51]
in central Au+Au collisions at the RHIC energy of

√
sNN =

200 GeV. The initial values of the longitudinal velocity profile
is taken as boost-invariant, and the viscous stress tensor as
isotropic:

vη(τ0, η) = 0, πmn(τ0, η) = 0. (66)

The hydrodynamic evolution is continued until each fluid
cell reaches a decoupling temperature of Tdec = 150 MeV. We
consider only direct pion and kaon production and do not
include their formation from resonance decays. To account
for the latter contribution, we follow the prescription of [52]
by noting that, since ∼75% of pions originate from resonance
decays [53], the rapidity distribution of Eq. (54) is multiplied
by a factor of four.

The equation of state (EoS) influences the longitudinal
expansion of the fluid and the two-particle correlations. In this
work, the effects of EoS on the correlators have been studied
by employing both a conformal QGP fluid with the thermody-
namic pressure p = ε/3, and the s95p-PCE EoS [54], which
is obtained from fits to lattice data for crossover transition
and matches to a realistic hadron resonance gas model at low
temperatures T , with partial chemical equilibrium (PCE) of
the hadrons at temperatures below TPCE ≈ 165 MeV. Unless
otherwise mentioned, the shear relaxation time in Eqs. (3) and
(4) is set at τπ = 5ηv/4p corresponding to τπ = 5ηv/(sT ) in
the conformal fluid.

Figure 3 shows the rapidity distribution of pions and kaons
in our (1+1)D non-boost-invariant hydrodynamic model as
compared with the 5% most central Au+Au collision data
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FIG. 3. Rapidity distribution of π± and K± in 0–5% central
Au+Au collisions at

√
sNN = 200 GeV. The symbols represent the

BRAHMS data [51], and the lines correspond to non-boost-invariant
hydrodynamic calculations for the conformal fluid and lattice equa-
tion of state at the shear viscosity to entropy density ratio of ηv/s = 0
and 0.08 in the MIS approach.

from BRAHMS [51]. The parameters (ε0,�η, ση) obtained
by fitting the data for pions at midrapidity are listed in Table I.
The stiff conformal EoS induces an accelerated longitudinal
flow with a much wider dN/dy as compared to the data. In
fact, this EoS fails to reproduce the data at large rapidities for
any combination of the parameters (or with varying Tdec). In
contrast, the softening produced due to deconfinement tran-
sition in the lattice EoS gives a smaller longitudinal pressure
gradients and leads to a better agreement with rapidity dis-
tributions. As compared to ideal-hydrodynamics, the second-
order viscous hydrodynamics slows down the expansion of
the fluid, and thus requires a smaller and wider initial energy
density distribution (see Table I) to be compatible with the
final meson rapidity distribution.

In Fig. 4 we present the space-time rapidity dependence
of energy density ε, longitudinal flow velocity vη, and the
ratio of longitudinal and transverse pressure, PL/PT = (p0 −

TABLE I. The parameters of the initial energy distribution ε0, ση

with �η = 0.6 corresponding to Eq. (65), that reproduce the final
pion rapidity distribution in 0–5% central Au+Au collisions at√

sNN = 200 GeV. The results are in ideal and viscous hydrodynamic
evolution in the MIS theory with EoS for conformal fluid, and that for
lattice EoS are shown in braces. The last column gives the lifetime
of the fluid at a freeze-out temperature of Tdec = 150 MeV.

ηv/s ε0 (GeV/fm3) ση τf (fm/c)

0 200 (39.0) 0.9 16.40 (15.84)
0.08 142 (27.1) 1.0 16.08 (15.36)
0.24 82 (17.5) 1.4 14.88 (14.16)
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FIG. 4. Space-time rapidity dependence of (a), (b) energy den-
sity, (c), (d) longitudinal velocity (scaled by time), and (e), (f)
longitudinal to transverse pressure ratio PL/PT , in the hydrodynamic
calculations at proper times of τ = 5 fm (left panels) and 10 fm
(right panels). The results are for ultrarelativistic gas (symbols) and
lattice (lines) equations of state with ηv/s = 0, 1/4π, 3/4π in the
MIS theory. The black dotted line is the Bjorken scaling solution
ε/ε0 ∼ (τ0/τ )4/3.

π0)/(p0 + π0/2) at the proper times of τ = 5 and 10 fm
obtained in our non-boost-invariant model. The energy den-
sity in the perfect-fluid conformal hydrodynamics [blue cir-
cles in Figs. 4(a) and 4(b)] shows a decreasing flat region
at midrapidity with increasing time as compared to initial
profile. In contrast to boost-invariant expansion, the stronger
longitudinal expansion due to larger pressure gradients in
the non-boost-invariant case transfer energy faster to larger
rapidities. Indeed, in the Bjorken scaling solution for a perfect
fluid, the energy density ε(τ ) = ε(τ0)(τ0/τ )4/3 (black dotted
line) is seen to lie above (below) than that in the (1+1)D
case at midrapidity (large rapidities). Thus, in general, a
Bjorken expansion would underestimate the cooling of the
system. The discrepancies become larger with time as can be
seen in Fig. 4(b) at τ = 10 fm/c. The inclusion of viscosity
slows down the expansion and thereby the cooling of the
system. As a result, the energy density distribution for ηv/s =
0.08 (red squares) and ηv/s = 0.24 (green triangles) for the
ultrarelativistic gas becomes increasingly comparable to the
perfect fluid case, in spite of smaller initial energy values in
the dissipative hydrodynamics (see Table I). For the softer
lattice EoS, the differences in the energy densities for various
ηv/s [lines in Figs. 4(a) and 4(b)] become increasingly smaller
with increasing τ > τ0.

Figures 4(c) and 4(d) show that the longitudinal flow ve-
locity vη distribution (multiplied by the corresponding proper
time) rapidly increases with rapidity in the ideal-fluid dynam-
ics. Although we initialized the fluid with a boost-invariance
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value at all rapidities, i.e., vη(η, τ0) = 0, the longitudinal
pressure gradients quickly accelerate the fluid and breaks the
longitudinal boost-invariance at τ > τ0. In our second-order
viscous evolution, viscosity restricts the pressure gradients
and reduces the increase of vη with η. At large rapidities,
the smaller pressure (and temperature) enhances the time
τπ = 5ηv/4p for the system to relax towards equilibrium. As
a consequence, the larger viscous corrections here decelerates
the expansion and eventually overcomes the acceleration from
pressure gradients. This causes vη to approach the Bjorken
limit, and beyond this rapidity the second-order viscous hy-
drodynamics becomes questionable. With increased ηv/s =
0.2, the stronger viscous effects drive the system toward this
unphysical behavior at an earlier rapidity. As the longitudi-
nal flow velocity build-up with increasing evolution time, at
the later time of τ = 10 fm/c, its appearance is delayed to
larger rapidity value (see Fig. 4). Compared to the stiff EoS,
p = ε/3, the lattice EoS injects a smaller pressure gradient
resulting in a smaller deviation from the Bjorken flow profile,
especially at large ηv/s.

The pressure anisotropy PL/PT [Figs. 4(e) and 4(d)] shows
marked deviation from the isotropic initial pressure configu-
ration of PL/PT = 1. As the shear stress tensor πηη gradually
build-up with time and later decreases slightly, the anisotropy
is larger at τ = 5 fm/c than at 10 fm/c. At large rapidities, πηη

becomes comparable to the thermodynamic pressure, hence
PL/PT rapidly decreases and can eventually become negative.
Although an increase in ηv/s leads to a smaller PL/PT at
midrapidity, a somewhat wider initial energy distribution (see
Table I) prevents an early appearance of this unphysical region
at any given time. As expected, the dissipative effects are more
pronounced in the lattice EoS and results in larger pressure
anisotropy.

The large space-time variation of the flow and pressure
anisotropy, as found here in a finite fluid system, should
have important effects on the two-particle rapidity correlations
arising from the propagation of thermal noise.

C. Single thermal fluctuation on top of (1+1)D viscous
expanding medium

For a clear understanding of the evolution of hydrodynamic
fluctuations and the resulting rapidity correlations induced by
thermal fluctuations at all space times, it is instructive to focus
first on the evolution of one static thermal perturbation. In
particular, we consider a static Gaussian thermal fluctuation
induced at (η0, τ0) on top of non-boost-invariant expanding
medium:

δT (η, τ0) = T (η0, τ0)
κ

(2πσ )1/2
exp[−(η − η0)2/2σ 2],

δuη(η, τ0) = δπηη(η, τ0) = 0. (67)

At the initial time τ0 = 0.4 fm/c, the perturbation is induced
at the fluid rapidity η0 and has a Gaussian width parameter
σ = 0.2 and amplitude κ = 0.1

√
2πσ .

The perturbation travels in opposite directions such that
in the local rest frame of the background fluid, the speed of
propagation is the sound velocity cs = ±(dz/dt )LRF. Writing
this covariantly one obtains u

μ
0 εμαdxα = ±csu0μdxμ, where

εμν is the totally antisymmetric tensor of rank 2. Noting that
in (τ, η) coordinates ετη = τ , the equation of motion of the
perturbation peak is found to be

τ
dη

dτ
= ±cs + τvη0

1 ± csτvη0

. (68)

In case of Bjorken expansion where vη0 = 0, the above expres-
sion has the simple solution η = η0 ± cs log(τ/τ0). For the
(1+1)D expansion, Eq. (68) has to be integrated numerically
as vη0 (τ, η) is not known analytically. It is important to note
that unlike the Bjorken case, where the extent of propagation
of perturbations is independent of the dissipative equations
considered, in the (1+1)D case the shear stress tensor controls
the width of sound cone by determining the background flow
profile vη0 seen in Fig. 4.

In addition to influencing the trajectories of perturbations,
an expanding fluid also leads to diffusion of the propagating
disturbance. For example, in an ideal fluid at rest, a pertur-
bation would propagate unattenuated in opposite directions at
the speed of sound, whereas in a Bjorken expansion (even in
the ideal limit) the disturbance broadens and dampens during
propagation. This is attributed to the nonlinear dispersion
relation for wave propagation on top of Bjorken expansion,
ω(k) = i(1 − c2

s )/2 ± √
c2
s k

2 − (1 − c2
s )2/4. In the (1+1)D

expansion, the dispersion relation becomes complicated via
dependences on space-time and has to be obtained numeri-
cally. The propagation of temperature disturbance will induce
perturbation in velocity δuη and shear pressure tensor δπ at
later times τ > τ0.

The rapidity distribution of the correlations induced by
these fluctuations can be explored via the equal-time rapidity
correlation,

C�X,�Y (τ,�η; η0) =
∫

dη′�X(η′, τ )�Y (η′ + �η, τ ),

(69)

where η0 is the initial position of the disturbance at time τ0

and (�X,�Y ) refer to the normalized fluctuations �T =
δT (η, τ )/T0(η, τ ), �uη = τδuη, and �π = δπ/(ε0 + p0).
Due to explicit dependence of the background evolution on
space-time rapidity η, the above correlator would depend on
the initial η0 where the perturbation is introduced. This is to be
contrasted with the Bjorken expansion where the translational
invariance (in η direction) of the background flow implies that
C�X,�Y does not depend on the initial rapidity position of the
perturbation [55].

In Fig. 5, we present rapidity correlations at later times
arising due to a static initial thermal perturbation induced at
the center η0 = 0 of the background fluid undergoing (1+1)D
hydrodynamic expansion in the MIS theory. We consider a
p = ε/3 EoS and ηv/s = 0.08; the other initial and freeze-out
conditions of the background are given in Table I. Figure 5(a)
shows that at early times the temperature-temperature rapidity
correlation C�T �T has a large and narrow peak at �η = 0
due to self-correlations. With the expansion of the background
fluid, the amplitude of the peak decreases with time as it
spreads over a large rapidity separation leading to long-range
rapidity correlations till the freeze-out of the system is reached
at τf ≈ 16 fm/c. The extent of the rapidity correlation at any
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FIG. 5. Equal-time longitudinal rapidity correlations
C�X,�Y (τ, �η; η0) with (�X,�Y ) ≡ [δT /T0, τδuη, δπ/(ε0 + p0)]
computed as a function of space-time rapidity separation �η at
various later times from a thermal perturbation at an initial time of
τ0 = 0.4 fm/c and at rapidity η0 = 0. The perturbation is induced
on top of non-boost-invariant background hydrodynamic flow in the
MIS theory using an ultrarelativistic gas EoS with ηv/s = 1/4π .
The correlators in each panel are vertically scaled by a representative
value.

given time is bounded by the maximum distance traveled by
the sound wave, namely the sound horizon, which can be
obtained by solving Eq. (68). In contrast, rapidity correlation
from ripples on top of a boost-invariant ideal background fluid
was shown [55] to generate a sharp peak at �η ≈ 0, followed
by a relatively flat region at intermediate �η, and a much
smaller peak from the sound horizon at large �η. Thus, in the
present (1+1)D viscous hydrodynamic expansion, the much
broader rapidity correlation (with negligibly small second
peak) that persists even at late times can be attributed to the
interplay of nonzero background fluid velocity vη0 (τ, η) and
viscous damping in the MIS theory. It may be mentioned that
the self-correlation here refers to the short-ranged part of the
correlation function computed at equal rapidities (�η = 0),
and consists of contributions from both the regular and sin-
gular parts [26,36]. In fact, the singular part gives rise to the
self-correlation which cannot be separated out in the numeri-
cal simulation of second-order viscous (1+1)D evolution. In
contrast, in the first-order theory and for boost-invariant flow,
the correlations can be analytically decomposed allowing the
elimination of the singular contribution [56,57].

Figure 5(b) shows the time evolution of velocity-velocity
rapidity correlation C�uη�uη . Starting with an initial value
of δuη = 0, the velocity perturbations and correlations at
first build-up with time at about zero rapidity separation and
then decreases later when the perturbation spreads to large
rapidities. The negative correlations seen at larger rapidity
separations are essentially due to δuη having opposite signs
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FIG. 6. Temperature-temperature and velocity-velocity rapidity
correlations as a function of rapidity separation �η arising from
perturbations at various initial rapidities η0 and computed at a freeze-
out hypersurface Tdec = 150 MeV. The perturbations are induced on
top of non-boost-invariant background hydrodynamic flow in the
MIS theory for an ultrarelativistic gas EoS with ηv/s = 1/4π . The
correlators for large η0 are scaled vertically by the values shown
within braces.

along positive and negative directions relative to the initial
position of perturbation. Careful examination of Figs. 5(a) and
5(b) shows that the minima in this negative correlations are
produced at the sound horizon corresponding to the “second
peak” in the temperature-temperature correlation.

The pressure-pressure rapidity correlation due to shear
C�π�π shown in Fig. 5(c), exhibits a similar peaked structure
as seen for temperature-temperature correlations. However,
the magnitude of this correlation is much smaller and does
not spread much in rapidity separation with increasing time.
Note that in the present initialization of temperature perturba-
tion (instead of velocity or shear-pressure perturbations), the
magnitude of C�T �T dominates and it is about two orders of
magnitude larger than C�uη�uη .

However, the rapidity correlations C�T �uη and C�uη�π

[see Figs. 5(d) and 5(f)] are odd functions of �η and thus
the correlations vanish at �η = 0. Moreover, the “cross”
correlations follow C�X,�Y = −C�X,�Y . The structure of the
C�T �π correlator in Fig. 5(e) can be easily understood from
the C�T �T and C�π�π correlations.

In Figs. 6(a) and 6(b) we show the correlations
between temperature-temperature and velocity-velocity
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at the freeze-out hypersurface T (τf , η) = Tdec, induced
by a single temperature perturbation placed at various
initial rapidity values η0. Accordingly, we now use
the definition of the correlator C�X,�Y (Tdec,�η; η0) =∫

dη′�X(η′, Tdec)�Y (η′ + �η, Tdec). For perturbation
introduced at a large rapidity, we find the self-correlations
to increase and the long-range correlations to decrease.
This is because the fluid cells at large rapidities (having
small initial temperatures) freeze-out at early times [41] and
thus one of the perturbation peaks which propagates along
the background flow reaches the freeze-out hypersurface
quickly and is effectively undamped. Consequently, the
self-correlations which are essentially squares of the peak
values, increase with η0 of the initial perturbation. However,
the long-range correlation which depends on the product
of the two peaks decrease as the other peak which travels
opposite to the background fluid takes substantially longer to
reach the freeze-out surface and is almost fully damped; see
Fig. 6(a). As seen in Fig. 6(b), the rise in self-correlations
with η0 is found to be more for the velocity-velocity correlator
due to the pronounced background acceleration of the fluid at
large η, which leads to build up of the velocity of the traveling
perturbation.

D. Thermal noise correlations on top of (1+1)D viscous
expanding medium

In this section, we shall explore longitudinal rapidity cor-
relations induced by thermal fluctuations in the non-boost-
invariant (1+1)D expansion of the background medium.
These fluctuations, which act as source terms for linearized
hydrodynamic equations are correlated over short length
scales, and accordingly they generate singularities in the cor-
relators for hydrodynamic variables at zero rapidity separation
and at the sound horizons. While for Bjorken expansion
within the Navier-Stokes theory, the correlators can be analyt-
ically decomposed into regular and singular parts [36], in the
second-order MIS and CE theories such analytic separation is
not plausible. In Eq. (60) for the two-particle rapidity corre-
lations calculated at freeze-out, the singularities get smeared
out by the coefficients FX [with X ≡ (T1, u

η
1, π1)], thereby

allowing for a smooth presentation. To explore at various
times τ � τf , the equal-time longitudinal rapidity correlation
arising from thermal noise, we consider a Gaussian convo-
luted correlation,

〈CX,Y (�η, η; τ )〉 =
∫

d(�η′)〈X(η, τ )Y (η + �η′, τ )〉

× exp
[−(�η − �η′)2/2σ 2

�η

]
, (70)

where (X, Y ) ≡ (δT , δuη, δπ ) refer to the usual perturbations
in the event. An averaging 〈· · · 〉 has been performed over
many fluctuating events that evolve on top of background
hydrodynamics; the initial conditions for the latter is given
in Table I. Note that although the qualitative nature of the
correlations are insensitive to the smearing function, whose
width we have taken as σ�η = 0.4, the magnitude and spread
of the peaks depend on the latter.

Figure 7 displays equal-time rapidity correlations for vari-
ous fluctuations arising from thermal noise on top of (1+1)D
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hydrodynamic expansion in the MIS theory with ηv/s =
0.08 in both the background and noise evolution equations.
Thermal fluctuations at each spatial point and during the
entire evolution of the fluid produce short-range temperature-
temperature correlation peaked at zero rapidity separation; see
Fig. 7(a). In contrast to correlation from an initial perturbation
[see Fig. 5(a)], a much narrower peak is seen in thermal noise.
The appreciable negative correlations at small rapidity sepa-
ration is due to the second-derivative of the δ function arising
from the noise term in momentum conservation equation. In
fact, the magnitude of the peaks and troughs are dominated by
the singularities that occur at �η = 0 due to self-correlations
and at sound horizons. This lead to nonmonotonous structures
in the correlations induced by thermal noise at large �η in
contrast to that seen from a single perturbation. At later times,
the expansion of the fluid causes the peak values to decrease
and the correlations to spread somewhat farther in rapidity
separations.

The velocity-velocity and shear pressure-pressure rapidity
correlations shown in Figs. 7(b) and 7(c) also give pronounced
negative correlations from the singularities at small �η. While
the 〈Cδuη,δuη 〉 correlation give nontrivial structures about the
sound horizon, the 〈Cδπ,δπ 〉 correlation essentially has a small
magnitude and rapidly damp at larger �η. Consequently,
the cross correlations 〈CδT,δπ 〉 and 〈Cδuη,δπ 〉 have negligible
values at large rapidities and contribute minimally to the final
two-particle rapidity correlations. By inspection of Figs. 5
and 7 it is clearly evident that compared to an induced per-
turbation, the realistic hydrodynamic fluctuations in (1+1)D
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formalism with ηv/s = 1/4π in the average and thermal noise evo-
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and an ideal background evolution with p = ε/3 EoS (blue dashed
line). The initial and final conditions for the background evolution
are given in Table I. All the correlations are scaled vertically by 106.

expansion generate rich structures at short and long range
two-particle rapidity correlations.

To gauge the importance of underlying flow and viscous
damping, we compare in Fig. 8 the rapidity correlations
〈CX,Y (�η, η)〉 at the freeze-out hypersurface corresponding
to Tdec = 150 MeV in the MIS theory at ηv/s = 1/4π (red
solid lines) and also for ideal background hydrodynamic
evolution (blue dashed line) for ultrarelativistic gas EoS. In
absence of viscous damping larger peaks and troughs can be
seen at small �η. Moreover, the fluctuations travel over large
rapidity separation and generate distinct structures about the
sound horizon. We also present correlations computed for a
lattice EoS in the MIS theory at ηv/s = 1/4π (green solid
lines). The smaller sound velocity near the deconfinement
transition slows down the expansion of the background fluid
(see Fig. 4) as well as limits the spatial extent of the sound
horizon. These lead to sharp peaks from self-correlation and
large and broad negative correlations from the singularities
at �η ≈ 0 and sound horizon. In fact, the total correlation
in the lattice is dominated by the temperature-temperature
correlations.

E. Two-particle rapidity correlations
in (1+1)D expanding medium

In this section we will study the effects of thermal fluc-
tuations on two-particle rapidity correlations for charged pi-
ons in expanding non-boost-invariant background fluid. As
discussed above, the singularities in the two-point correla-
tors 〈X(η1)Y (η2)〉 (with X, Y ≡ δT , δuη, δπ ) of Eq. (60)
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FIG. 9. Two-particle rapidity correlations for different fluctua-
tions calculated for charged pions as a function of pion-rapidity
separation �y = y1 − y2 at rapidities y1 = 0, 2, 4 in the MIS hy-
drodynamics. The results are for ideal gas EoS with ηv/s = 1/4π

and the initial and final conditions are the same as in Fig. 7.

are smeared out by the function FX,Y leading to clear ob-
servable structures in the computed correlations at freeze-
out. In Fig. 9 we present the various rapidity correlators
〈(δdN/dy1)(δdN/dy2)〉X,Y for charged pions as a function
of kinematic rapidity separation �y = y1 − y2 in the MIS
theory with ηv/s = 0.08 in the average and noise parts of
the evolution equations. The correlators get broadened when
these are convoluted with the smearing functions FδT (which
is roughly Gaussian about �η = 0) and Fδuη (which has peaks
at �η ≈ 1.5 and vanishes at �η = 0).

As also evident from Fig. 8, the two-pion rapidity corre-
lations about midrapidity y1 = 0 of a pion [see Fig. 9(a)] is
dominated by temperature-temperature correlation at �y = 0.
At �y � 2 the distinct rapidity-dependent structures in the
correlations δT δT , δuηδuη and their cross correlations con-
tribute almost equally to the long-range rapidity correlations.
The correlations associated with the shear stress tensor δπ are
found quite small at all rapidity separations.

At large pion rapidity y1 > 0, in spite of smaller magnitude
of initial energy densities and hence reduced strength of noise
source as evident from Eq. (43), the enhanced longitudinal
velocity gradients induce larger fluctuations especially for the
velocity correlations. Figures 9(b) and 9(c) show that with
increasing pion rapidity, the correlations involving δuη and
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δπ become increasingly important. However, the correlations
here are short-ranged as the fluctuations produced at large y1

reach the freeze-out hypersurface quickly without substantial
spreading. Moreover, the negative correlations about �y ∼ 0
become appreciable so that the total contribution to the two-
pion correlation would be smaller than at midrapidity.

In Fig. 10 we present the two-particle rapidity correlation
for charged pions at various rapidities y1 in the MIS viscous
evolution for an ultra-relativistic gas EoS with ηv/s = 1/4π
in both the noise and background evolution. This has been
computed by summing the various components of the noise
correlations as in Eq. (60) and displayed in Fig. 9. For the
(1+1)D viscous expansion, the correlations at small rapidities
y1 produce pronounced short-range peaks and interesting
structures at large rapidity separation. However, for larger
pion rapidities y1 the correlations result in smaller peaks at �y
and are largely asymmetric about midrapidity. Furthermore,
the singularities mainly from self-correlation at �y are found
to be substantial.

We also show the corresponding correlations for boost-
invariant expansion (Bjorken flow) in the MIS theory com-
puted with the same initial time and constant initial energy
density as given in Table I at Tdec = 150 MeV. For equivalent
comparison the correlation in the Bjorken case is normal-
ized by the rapidity density (dN/dy1)y1=0 for the non-boost-
invariant expansion. Even after this scaling, the short-range
correlation at midrapidity is found to be slightly larger for the
(1+1)D case due to more contribution from self-correlations
on the freeze-out hypersurface.

Figures 11(a)–11(c) compare the two-particle rapidity cor-
relation for charged pions in the MIS and CE dissipative
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FIG. 11. Correlation function of charged pions normalized with
single-particle rapidity distribution as a function of rapidity sepa-
ration �y = y1 − y2 at various rapidities y1. The results are in the
MIS and CE formalisms for thermal noise evolution and compared
with the ideal background hydrodynamic evolution. An ideal gas EoS
(p = ε/3) is used and the initial and freeze-out conditions are given
in Table I.

evolutions for an ultrarelativistic gas EoS. Using ideal hydro-
dynamics for the background evolution and MIS (red dashed
line) and CE (green dashed line) theories for the evolution
of thermal noise with ηv/s = 0.08, we find that for all pion
rapidities y1, the short-range correlation peak at �y ≈ 0 has
a larger magnitude in MIS than in CE. This arises due to
the smaller damping coefficient λπ in MIS Eq. (29) leading
to larger fluctuations as also evident from Fig. 8 for the
noise correlators at freeze-out. At larger �y, the singularities
in the correlators are more prominent only for large pion
rapidities |y1| ∼ 4 resulting in somewhat clear separation of
the structures in MIS and CE formalisms.

On inclusion of viscosity ηv/s = 0.08 in the background
evolution for MIS (red solid line) and CE (green solid line),
the correlation strengths at �y are suppressed due to vis-
cous damping at small rapidities y1. However, the long-range
structures at large rapidity-separation are rather insensitive to
viscosity in both the MIS and CE theories. Note that the
initial energy densities have been readjusted to reproduce the
charged hadron rapidity distribution as given in Table I. It
is important to note that compared to the Bjorken evolution
[36], in the present non-boost-invariant dynamics the fluctu-
ations cause somewhat smaller short-range correlation peak
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FIG. 12. Similar to Fig. 11 but with a lattice EoS. The initial and
freeze-out conditions are given in Table I.

(�y ∼ 0) at larger values of particle rapidity y1. A larger
ηv/s = 0.24 in the fluctuation evolution leads to further
damping of the correlations due to smearing of the peaks
associated with sound horizon.

In Fig. 12 we compare the two-particle rapidity correla-
tions for charged pions in the MIS and CE viscous evolutions
but for a lattice QCD EoS. We recall from Table I that the
freeze-out time is somewhat smaller compared to that in the
conformal EoS. Considerably enhanced two-pion correlation

is found at about �y ∼ 0 for the lattice QCD EoS as com-
pared to ideal gas EoS, with and without viscosity in the back-
ground evolution. This is primarily due to smaller velocity
of sound in the medium with a lattice EoS that slows down
the propagation of fluctuation over large separations. Here
the effects of viscous damping on the rapidity correlations is
found to be quite significant.

IV. SUMMARY AND CONCLUSIONS

We have studied the evolution of thermal noise on top of a
non-boost-invariant medium expansion within the linearized
hydrodynamic framework in both MIS and CE dissipative
formalisms. The (1+1)D equations for the background (av-
eraged) were solved using a newly developed code based
on the SHASTA-FCT algorithm. Using a MacCormack-type
method to solve the linearized perturbation equations, we first
studied the correlations induced by a single local disturbance
propagating on top of the background medium, and then com-
puted two-particle rapidity correlations induced by thermal
fluctuations which are essentially disturbances (sources) that
persist throughout hydrodynamic expansion. For a single per-
turbation introduced at some space-time rapidity η0, the self-
correlations induced on the Tdec hypersurface were shown to
increase with η0, with the velocity-velocity correlator showing
the maximum growth due to the background acceleration. Our
results for the two-particle correlations show that unlike in the
Bjorken scenario where correlations depend only on the rapid-
ity separation �y, for the (1+1)D expansion these structures
strongly depend on the rapidity y of the final state particle.
Although at y ∼ 0, the short-ranged structures (�y ∼ 0) are
dominated by the temperature-temperature correlations, for
large rapidities y � 2, the velocity-velocity correlations are
responsible for the self-correlations. Inclusion of viscosity
was found to reduce the autocorrelations in all the formalisms.
For the lattice QCD EoS with smaller speed of sound, the
correlations became larger at small �y ∼ 0 and long-range
correlations get reduced, as compared to the ultrarelativistic
EoS, due to a lesser extent of propagation of fluctuations in
the former scenario.
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