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Hanbury-Brown–Twiss correlation functions and radii from event-by-event hydrodynamics (HoTCoffeeh)
is a new computational tool which determines Hanbury-Brown–Twiss (HBT) charged-pion (π+) correlation
functions and radii for event-by-event hydrodynamics with fluctuating initial conditions in terms of Cooper–
Frye integrals, including resonance-decay contributions. In this paper, we review the basic formalism for
computing the HBT correlation functions and radii with resonance-decay contributions included and discuss
our implementation of this formalism in the form of HoTCoffeeh. This tool may easily be integrated with other
numerical packages [see, e.g., [Comput. Phys. Commun. 199, 61 (2016)]] for the purpose of simulating the
evolution of heavy-ion collisions and thereby extracting predictions for heavy-ion observables.
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I. INTRODUCTION

Hanbury-Brown–Twiss (HBT) interferometry (also known
as femtoscopy) is a technique which has been used success-
fully over the past several decades of heavy-ion physics to
probe the spatiotemporal and dynamical properties of freeze-
out surfaces in relativistic heavy-ion collisions. The observ-
ables derived from HBT interferometry, known as the HBT
radii, thus provide a window into the shapes and sizes of
these collisions. Recently, the notion of studying the HBT
radii on a collision-by-collision (or event-by-event) basis has
been raised [1–3]. This has motivated two distinct questions:
(1) whether event-by-event distributions of HBT radii (or
HBT distributions) are even experimentally accessible, and
(2), if they are, what information might they contain about the
properties of heavy-ion collisions. The studies presented in
Refs. [1–3] have answered the first question in the affirmative,
and have addressed the second question by demonstrating
that experimental measurements of the statistical moments
of HBT distributions could potentially yield sensitivity to
other interesting quantities, such as the value (and temperature
dependence) of the specific shear viscosity η/s in the quark-
gluon plasma (QGP). Probing HBT distributions experimen-
tally may therefore yield valuable insights into the properties
of relativistic heavy-ion collisions.

One of the most successful theoretical and phenomeno-
logical approaches to date for understanding the properties
of heavy-ion collisions involves numerically simulating the
various stages of their evolution on an event-by-event basis
and using these simulations to make predictions which can be
compared with experimental measurements of event-by-event
heavy-ion observables. In particular, a great deal of attention
has been paid in this regard to event-by-event fluctuations
of observables related to radial flow (〈pT 〉) [4,5], anisotropic
flow (vn) [6–8], total multiplicity (N ch) [9–11], and so on.
To extend the successes of this event-by-event hydrodynamic
paradigm to include the HBT radii, then, clearly requires the
ability to simulate HBT analyses on an event-by-event basis.

An essential component of any HBT analysis, whether
experimental or theoretical, involves properly accounting for
the presence of resonance-decay contributions to the final pion
yields. In the case of experimental HBT, these resonance-
decay contributions are a contaminating factor which can
never be completely eliminated. Theoretically, on the other
hand, the resonance-decay contributions must be computed
separately, in addition to the thermally produced (or “directly
emitted”) pions of interest. Since the effects of resonances
cannot be completely separated experimentally from the ef-
fects of direct pion emission, an apples-to-apples comparison
between theory and experiment therefore requires theoretical
analyses to compute the HBT radii with the resonance-decay
contributions included. Thus, before the experimental acces-
sibility of HBT distributions (and their connections to other
aspects of heavy-ion physics) can be systematically explored
from the perspective of hydrodynamics, one must first be able
to compute the HBT radii on an event-by-event basis, with all
relevant resonance-decay contributions included.

In the context of numerical simulations of heavy-ion col-
lisions, such as those considered here, there are at least two
different possible approaches to accomplishing this [12]. The
first involves terminating the hydrodynamic evolution prior to
kinetic freeze-out, converting the entire system to a collection
of interacting hadrons whose initial distributions (at the point
of conversion) are sampled from Cooper–Frye distributions
[13], and allowing those hadrons to scatter microscopically
until all interactions cease because the matter has become too
dilute. Such an approach is typically called a “hybrid” ap-
proach [14]. The second approach involves applying a hydro-
dynamic description of the system all the way until the entire
system has reached kinetic freeze-out, implemented as a sharp
transition to free-streaming particles on the so-called freeze-
out hypersurface �f . This approach is often termed a “purely
hydrodynamic” approach. The hybrid approach has the ad-
vantage of describing the actual physical situation in heavy-
ion collisions more realistically: two-particle correlations are
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always probed experimentally with only a finite number of
particles per event. This means that, in order to obtain good
statistical precision, the hadronic “afterburner” must be run
multiple times on a single hydrodynamic event. In the purely
hydrodynamic approach, the two-particle correlations (and
therefore the associated HBT radii) are computed as Cooper–
Frye integrals [13] of the phase-space-distribution function
over the freeze-out surface, which provides results without
statistical uncertainties (in effect implementing the assump-
tion that each event emits an infinite number of particles). In
this paper, we adopt the purely hydrodynamic approach.

As we discuss below, this problem is computationally
complex, especially when the ∼1700 pion-producing decay
channels of the ∼340 species of resonances with masses be-
low 2 GeV created in the collision are included, as discussed
in Ref. [15]. In fact, this complexity is the primary reason
that the studies [1–3] omitted the resonance-decay contribu-
tions from their analyses. In this paper, we introduce a code
designed to address the challenge of efficiently computing
HBT correlation functions and radii (with all resonance-decay
effects included) from pure hydrodynamics on an event-by-
event basis, thereby allowing a systematic exploration of HBT
distributions in heavy-ion collisions to be performed within a
reasonable time frame.

This paper is organized as follows: In Sec. II B, we will
define the two-particle correlation function, and Sec. II C will
show how the HBT radii are extracted from the correlation
function. To interpret these radii in terms of the spatiotemporal
structure of the emitting source, we show in Sec. II E how they
may be computed directly from the emission function which
defines the emission probability along the freeze-out surface.
In particular, we show that the HBT radii may be determined
from the Fourier transform of the emission function and use
this feature to show how they can be related directly to the
emission function. The emission function, in turn, generally
receives contributions from particles emitted directly by the
source, as well as from particles which are decay products of
other directly emitted particles. In Sec. II F, we show how to
include resonance-decay effects in the definition of the emis-
sion function, thus allowing us to explore the corresponding
effects induced by these resonance-decay contributions to the
extracted HBT radii. Finally, in Sec. III, we present some
of the numerical results obtained when using our code and
show how these results compare with the results of previous
theoretical HBT analyses.

II. HANBURY-BROWN–TWISS FORMALISM

The formalism needed for the application of HBT inter-
ferometry [16–18] to relativistic heavy-ion collisions (aka
femtoscopy) is well established, and the reader is referred to
Refs. [19–24] for reviews. For a self-contained presentation
we review here briefly only the most essential definitions and
relations.

A. Correlation functions

The fundamental object of HBT interferometry is the
two-particle momentum correlation function among pairs of

particles from a single collision event,

C( �p1, �p2) ≡
Ep1Ep2

d6N
d3p1d3p2(

Ep1
d3N
d3p1

)(
Ep2

d3N
d3p2

) . (1)

Even at Large Hadron Collider (LHC) energies the number
of particle pairs emitted from a single collision is, however,
not large enough to measure this correlation function as a
function of all six momentum components with adequate
statistical precision. Instead of Eq. (1), experiments therefore
measure the ensemble-averaged correlation function

Cavg( �p1, �p2) ≡
〈
Ep1Ep2

d6N
d3p1d3p2

〉
ev〈

Ep1
d3N
d3p1

〉
ev

〈
Ep2

d3N
d3p2

〉
ev

, (2)

where the signal pairs in the numerator and the product
of single-particle distributions in the denominator (obtained
from collecting uncorrelated pairs from mixed events [23]1)
are averaged over sufficiently large sets of collision events
with identical event characteristics:

〈· · · 〉ev ≡ 1

Nev

Nev∑
k=1

(· · · )k. (3)

B. Hanbury-Brown–Twiss radii

The correlation function (2), after being corrected for final-
state interactions, exhibits an enhancement for bosons (or
a depletion for fermions) near �q = 0 which, for spatially
Gaussian source functions, can be fit to a Gaussian in q:2

Cfit (�q, �K ) ≡ 1 + λ( �K ) exp

⎡
⎣−

∑
i,j=o,s,l

R2
ij ( �K )qiqj

⎤
⎦.

(4)

Here we introduced the relative momentum qμ = p
μ
1 − p

μ
2

between the two particles and their pair momentum Kμ =
1
2 (pμ

1 + p
μ
2 ), where p

μ
i are on-shell four-momenta with p2

1 =
p2

2 = m2 [m being the mass of the (identical) particles whose
correlation is measured]. Due to this on-shell constraint, the
four-vectors q and K are orthogonal:

q · K = 0. (5)

1In practice a much larger number are generated of mixed-event
pairs than of signal pairs to minimize the statistical uncertainty of
the denominator of Eq. (1). For simplicity, we ignore this and the
associated normalization factor of the mixed-event pairs.

2The form of Eq. (4) neglects the effects of final-state interac-
tions such as the long-range Coulomb repulsion which is inevitably
present between electrically charged pairs of identical particles (e.g.,
π+). These interactions lead to a reduction of particle pairs at small
�q. Fortunately, it is possible to account for these interactions in
the experimental construction of the correlation function [25]. We
here assume that the ensemble-averaged correlation function (2)
represents such a Coulomb-corrected correlation function and focus
on the correlation effects caused by quantum statistics.
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The set of parameters R2
ij ( �K ) in the exponent of Eq. (4)

are known as the HBT radius parameters (or “HBT radii” for
short). They may be thought of as length scales characterizing
the “homogeneity regions” within the emitting source from
which particle pairs with pair momentum �K [26] are emit-
ted. The Gaussian parametrization (4) is exact for emission
functions with a Gaussian spacetime structure. It is adequate
even for non-Gaussian sources as long as their deviations
from Gaussian structure are generated by additional length
scales that are very different from the source radii. Such
additional length scales may be generated, for instance, by
extremely-long-lived resonances (e.g., the η′ meson) whose
decays contribute to the final pion yield but are spread over
a much larger region than the directly emitted pions. These
long-lived resonances lead to a sharp peak in the correlation
function near �q = 0 which is unresolvably narrow from an ex-
perimental standpoint. The experimental correlation function
thus features only the much wider (in q) structure associated
with directly emitted pions and those from short-lived reso-
nance decays [21,27], while the contribution from long-lived
resonances is invisible in the correlation function and thereby
apparently reduces its value at �q = 0. This reduction effect
is accounted for by the “intercept parameter” λ( �K ) in the
functional form (4).

We refer to the extraction of HBT radii by a fit of the data
with Eq. (4) as the Gaussian fit (or GF) method. In the sum
in the exponent, o, s, and l denote the outward, sideward, and
longitudinal directions, respectively. These form a Cartesian
coordinate system, with l pointing along the beam (or z) di-
rection and (o, s) spanning the transverse plane. The outward
direction points along the transverse pair momentum �KT and
forms an azimuthal angle �K with the impact parameter �b
defining the x axis (see Fig. 1).

C. The emission function

Particle emission is characterized by the emission func-
tion S(x, p), a single-particle Wigner function describing the
phase-space distribution of the emitted particles. If averaged
over phase-space volumes �h3 it is positive definite and de-
scribes the probability for emitting a particle with momentum
p from point x. The emission function corresponding to the
sudden freeze-out of a hydrodynamic fluid on a freeze-out
surface �f is a classical phase-space distribution and is given
by the Cooper–Frye prescription [13,28,29]

S(x, p) = 1

(2π )3

∫
�f

p·d3σ (y)δ4(x − y)f (y, p), (6)

f (x, p) = f0(x, p) + δf (x, p)

= 1

e(p·u−μ)/T − 1
+ χ (p2)pμpνπμν

2T 2(E + P )
f0(1 + f0).

(7)

Here the distribution function on �f is written as the sum of
a local equilibrium distribution f0 and a viscous correction δf .
f0 is a function of the (spacetime-dependent) temperature T ,
chemical potential μ, and hydrodynamic flow velocity uμ(x)
on �f . The viscous correction δf [30,31] depends on the shear

FIG. 1. The out-side-long (osl) coordinate system used for defin-
ing the HBT radii. Here, �r , �p1,2, �q, and �K are seen projected onto the
transverse plane, so that the transverse component of �K makes an
angle �K with the x axis, defined to point in the direction of the
impact parameter �b (or a proxy for it, such as the elliptic flow angle
�2). The longitudinal direction (i.e., the z direction) is defined to
point out of the page.

stress tensor πμν on �, normalized by the enthalpy density
E + P [where E (T ,μ) and P (T ,μ) are the energy density
and thermal pressure of the fluid, respectively] and contracted
with the particle momentum p, as well as on a scalar function
χ (p2) whose specific form varies with the properties of the
interactions among the constituents at freeze-out and which
we take as χ (p2) ≡ 1 [31].

If the two identical particles are emitted indepen-
dently, their quantum-statistical correlations can be expressed
through this single-particle emission function as

C(�q, �K ) ≈ 1 +
∣∣∣∣
∫

d4xS(x,K )eiq·x∫
d4xS(x,K )

∣∣∣∣
2

. (8)

The nature of the approximations indicated by the “≈” sign
is explained in the many available reviews of the formalism
[20–24]; for high-energy collisions between heavy ions they
are quite accurate.

For a spatially Gaussian emission function, the q de-
pendence of C(�q, �K ) is Gaussian, and the (inverse) width
parameters of this Gaussian (i.e., the HBT radii) can be
directly extracted from its curvature at the origin q = 0, giving
the following relations [32] between the HBT radii and the
spacetime variances of the source function S(x,K ):

R2
ij = 〈(xi − βit )(xj − βj t )〉S − 〈xi − βit〉S〈xj − βj t〉S.

(9)

Here the average 〈. . . 〉S denotes the spacetime average over
the emission function,

〈f (x)〉S ≡
∫

d4xf (x)S(x,K )∫
d4xS(x,K )

, (10)
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which depends on the pair momentum K . This method for
computing the HBT radii is called the source-variances (SV)
method.

Both the SV method and the Gaussian fit (GF) method
described in the preceding section become unreliable if the
q dependence of the correlation function C(�q, �K ) exhibits
strong deviations from a simple Gaussian shape. As we dis-
cuss in detail below, the latter is the case when decay products
from a large set of resonances with a range of lifetimes
contribute to the particles used for the HBT measurement.

D. Resonance-decay contributions

For sudden freeze-out on a surface �, particles (say, pions)
are produced in two ways:

(1) direct thermal emission from � according to Eq. (6);
(2) indirect emission through decays r → π of unstable

resonances which themselves are emitted according to
Eq. (6).

The full emission function is given as the sum of all these
contributions:3

S(x, p) ≡ Sπ (x, p) = Sdir
π (x, p) +

∑
r

Sr→π (x, p). (11)

The efficient calculation of the resonance-decay contribu-
tions to the two-pion correlation function, and the study of
their effect on its shape, are the main goals of this work. We
therefore briefly outline the calculation of Sr→π (x, p) in the
rest of this section, following the notation of Ref. [27]. The
components of the momentum P of the parent resonance is
denoted by capital letters while those of the momentum p of
the daughter pion are labeled by lowercase letters.4

We work in the o, s, l coordinate system defined by the
momentum �p of the daughter pion. For the calculation of the
two-particle correlation function we need Sπ (x, p) at the pair
momentum �K , p �→ K . To avoid confusion between capital
and lowercase letters (the capital letter K is not associated
with the resonance, but with its decay products), we will make
this substitution only at the very end.

3Note that the sum over resonances r includes sums over all
intermediate resonance states which can decay to, say, π+s: e.g.,
r → r1 → π+, r → r2 → r3 → π+, and so on. Below, Sr→π+ is
calculated explicitly for the case when the resonance r is produced
thermally. The generalization to resonances with other phase-space
distributions is straightforward by substituting the latter for Sdir

r (x, p)
under the integral over the decay phase-space. The interested reader
will find a more thorough discussion of our procedure in Ref. [15].

4All particle information for the resonances included in our cal-
culation is derived from the Particle Data Group (PDG) Review of
Particle Physics [33]. We have tabulated the necessary particle data
(e.g., branching ratios) in a form which was originally developed
as a part of the Azhydro calculation [34]. This tabulated data are
included as part of the Github account where the entire code used in
the present work is available for download [35].

In this coordinate system the four-vectors describing the
parent resonance and daughter pion are given by

P μ ≡ (E
P
, Po, Ps, Pl )

= (M⊥ cosh Y, P⊥ cos �, P⊥ sin �, M⊥ sinh Y ), (12)

pμ ≡ (E, po, ps, pl )

≡ (m⊥ cosh y, p⊥, 0, m⊥ sinh y). (13)

The angle � in Eq. (12) is the azimuthal angle between the
transverse momenta of the parent resonance and daughter
pion.

In the parent resonance rest frame (with variables denoted
by an ∗), the daughter particle has energy and momentum

E∗ =
√

m2 + p∗2,

p∗ =
√

[(M + m)2 − s][(M − m)2 − s]

2M
, (14)

where s = (
∑n

i=2 pi )2 is the squared invariant mass of the
remaining n − 1 daughter particles produced in the (assumed)
n-body decay. It can vary between s− = (

∑n
i=2 mi )2 and s+ =

(M − m)2. g(s) is the decay phase space for the (n − 1)
unobserved particles. For two- and three-body decays, the
latter reads

(i) for two-body decays:

g(s) = b

4πp∗ δ
(
s − m2

2

)
, (15)

(ii) for three-body decays [s− = (m2 + m3)2, s+ = (M −
m)2]:

g(s) = Mb

2πs

√
[s − (m2 + m3)2][s − (m2 − m3)2]

Q(M,m,m2,m3)
.

(16)

To obtain the daughter-pion emission function at momen-
tum p we must integrate the decay phase space over all con-
tributing momenta P of the parent resonance. We introduce
integration variables v ∈ [−1, 1], ζ ∈ [−π, π ] by writing

M⊥ = M⊥ + �M⊥ cos ζ, (17)

Y = y + v�Y, (18)

where �M⊥ and �Y are obtained from the kinematic limits
associated with the decay through the following relations [27]:

M⊥,± = M⊥ ± �M⊥

≡ E∗Mm⊥ cosh (Y − y)

m2
⊥ cosh2 (Y − y) − p2

⊥

±
Mp⊥

√
E∗2 + p2

⊥ − m2
⊥ cosh2 (Y − y)

m2
⊥ cosh2 (Y − y) − p2

⊥
, (19)

Y± = y ± �Y ≡ y ± ln

(
p∗

m⊥
+

√
1 + p∗2

m2
⊥

)
. (20)
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With these definitions, the contribution to Eq. (11) from the
decay of resonance r can be written as [27]

Sr→π (x, p) =
∑
k=±

∫
R

∫ ∞

0
�dτe−�τ Sdir

r

(
x − P kτ

M
, P k

)
,

(21)

where � is the width of the resonance r and∫
R

≡ M

∫ s+

s−
dsg(s)

∫ +1

−1

�Ydv√
m2

⊥ cosh2 (v�Y ) − p2
⊥

×
∫ π

0
dζ (M⊥ + �M⊥ cos ζ ). (22)

The sum over k = ± in Eq. (21) corresponds to the fol-
lowing two solutions of the energy-momentum constraints
between the parent and daughter momenta [27]:

P ± ≡ (M⊥ cosh Y, P⊥ cos �±, P⊥ sin �±, M⊥ sinh Y ),

(23)

where

�± ≡ ±�̃ with cos �̃ ≡ m⊥M⊥ cosh (Y − y) − E∗M
p⊥P⊥

.

(24)

E. Resonance-decay effects on the Hanbury-Brown–Twiss radii
from the source-variances method

In this and the following section we describe the effects of
resonance decays on the HBT radii when using the source-
variances (SV) and Gaussian fitting (GF) methods for their
computation.

In the SV method, Eqs. (9) and (10) show that computing
the HBT radii involves evaluating the following integrals:∫

x

S(x, p),
∫

x

xμS(x, p),
∫

x

xμxνS(x, p). (25)

In this and the following section, we return to the standard
Cartesian coordinate system with x ≡ (x0, x1, x2, x3) ≡
(t, x , y, z). We use roman letters for the coordinates x and
y to distinguish the coordinate y from the momentum ra-
pidity y. In this coordinate system, the transverse momen-
tum of the daughter pion has momentum �p⊥ = (px, py ) =
p⊥(cos φp, sin φp ). We also introduce the shorthand notation∫
x
· · · ≡ ∫

d4x . . . .
Substituting Eq. (11) for the full emission function S(x, p)

into, say, the last expression, one finds∫
x

xμxνS(x, p)

=
∫

x

xμxνSdir
π (x, p) +

∑
r

∫
x

xμxνSr→π (x, p), (26)

with similar expressions for the other integrals above. The
direct contribution in the first term is a standard Cooper–
Frye integral and is straightforwardly evaluated with existing
tools. We now show how to simplify the sum over resonance
contributions in the second term.

Substituting Eqs. (6), (21), and (22) into Eq. (26) and using
the integration over x to eliminate the δ function in Eq. (6) we
find∫

x

xμxνSr→π (x, p)

= 1

(2π )3

∑
k=±

∫
R

∫ ∞

0
�dτe−�τ

∫
�

P k·d3σ (x̃)

×
[
x̃μ +

(
P k

M

)μ

τ

][
x̃ν +

(
P k

M

)ν

τ

]
fr (x̃, P k ). (27)

The τ integral can be done analytically, leading to∫
x

xμxνSr→π (x, p)

=
∑
k=±

∫
R

[{x̃μx̃ν}kr + α
μ
k {x̃ν}kr + αν

k {x̃μ}kr + 2α
μ
k αν

k {1}kr
]
,

(28)

where we introduced the shorthands

α
μ
k ≡ (P k )μ/(�M ), (29)

{. . . }kr ≡ 1

(2π )3

∫
�

P k·d3σ (x̃){. . . }fr (x̃, P k )

=
∫

x

{. . . }Sdir
r (x, P k ). (30)

Similarly,∫
x

xμSr→π (x, p) =
∑
k=±

∫
R

[{x̃μ}kr + α
μ
k {1}kr

]
, (31)

∫
x

Sr→π (x, p) =
∑
k=±

∫
R

{1}kr . (32)

We refer to {1}kr , {x̃μ}kr , and {x̃μx̃ν}kr as spacetime moments
of the single-particle distribution for the resonance r , evalu-
ated at momentum P k . In general, each spacetime moment
possesses a three-dimensional dependence on the momentum
P k , including the two-dimensional transverse momentum �P k

⊥
and the rapidity Y characterizing the longitudinal motion. The
additional assumption of boost invariance, however, allows us
to simplify the problem somewhat further by enabling us to
separate out the dependence on Y .

Let us illustrate this with a few examples. Boost invariance
requires that all spatial observables [e.g., T μν (x)] be indepen-
dent of the spacetime rapidity

ηs ≡ 1

2
ln

(
t + z

t − z

)
(33)

and that all momentum-space observables [e.g.,
Ep(dN/d3p)] are independent of the longitudinal
momentum-space rapidity

y ≡ 1

2
ln

(
Ep + pz

Ep − pz

)
. (34)
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Distribution functions such as f (x, p) and S(x, p) are
allowed to depend only on the difference ηs − y. Then,

Ep

dN

d3p
=

∫
x

S(x, p)

=
∫

d2r⊥
∫ ∞

0
τdτ

∫ ∞

−∞
dηsS(�r⊥, τ, �p⊥, ηs − y)

=
∫

d2r⊥
∫ ∞

0
τdτ

∫ ∞

−∞
dη̃sS(�r⊥, τ, �p⊥, η̃s ) (35)

is automatically y independent.
For source variances that depend on spacetime rapidity,

however, eliminating the y independence by a shifting the
spacetime rapidity under the integral is no longer possible. For
instance,

〈t〉 ≡ 〈τ cosh ηs〉( �p⊥, y)

≡
∫

d2r⊥
∫ ∞

0
τ 2dτ

∫ ∞

−∞
dηs cosh ηsS

× (�r⊥, τ, �p⊥, ηs − y)/{1}

=
∫

d2r⊥
∫ ∞

0
τ 2dτ

∫ ∞

−∞
dη̃s cosh (η̃s + y)

× S(�r⊥, τ, �p⊥, η̃s )/{1}
= cosh y〈t〉y=0 + sinh y〈z〉y=0, (36)

where {1} ≡ {1}(p) ≡ ∫
x
S(x, p) is y independent. Similar

identities hold for the other source variances which depend
on t or z. Explicitly, they are

〈z〉 ≡ cosh y〈z〉y=0 + sinh y〈t〉y=0, (37)

〈t2〉 ≡ cosh2 y〈t2〉y=0 + sinh (2y)〈zt〉y=0 + sinh2 y〈z2〉y=0,

(38)

〈z2〉 ≡ cosh2 y〈z2〉y=0 + sinh (2y)〈zt〉y=0 + sinh2 y〈t2〉y=0,

(39)

〈zt〉 ≡ cosh (2y)〈zt〉y=0 + sinh (2y) 1
2 (〈z2〉 + 〈t2〉)y=0,

(40)

〈yz〉 ≡ cosh y〈yz〉y=0 + sinh y〈yt〉y=0, (41)

〈xz〉 ≡ cosh y〈xz〉y=0 + sinh y〈xt〉y=0, (42)

〈yt〉 ≡ cosh y〈yt〉y=0 + sinh y〈yz〉yp=0, (43)

〈xt〉 ≡ cosh y〈xt〉y=0 + sinh y〈xz〉y=0. (44)

The remaining source variances depend neither on t nor z
and are thus [according to Eq. (35)] independent of y. These
equations show that the y dependence of the source variances
can be calculated trivially from their values at midrapidity
y = 0. Hence, for boost-invariant sources, we need to com-
pute the spacetime moments of the source only on a two-
dimensional grid at y = 0.

The source variances including resonance-decay contribu-
tions can now be written as

〈xμxν〉(p)

=
∫

x

xμxνS(x, p)/{1}(p) (45)

=
[∫

x

xμxνSdir
π (x, p) +

∑
r

∑
k=±

∫
R

∫
x

(
xμxν + α

μ
k xν

+αν
k x

μ + 2α
μ
k αν

k

)
Sdir

r (x, P k )

]/
{1}(p) (46)

where α
μ
k is defined in Eq. (29) and

{1}(p) =
∫

x

Sdir
π (x, p) +

∑
r

∑
k=±

∫
R

∫
x

Sdir
r (x, P k )

= {1}dir +
∑

r

∑
k=±

∫
R

{1}kr . (47)

Equation (45) exposes most clearly the optimal way of
structuring the calculation of the source variances with res-
onances since each term under the sum of decay phase-
space integrals over resonance emission functions has the
generic form given in Eq. (30). We outline this approach in
Algorithm I.

Algorithm 1 Efficiently compute source variances with resonance-decay contributions.

1: for all resonance r and π+ do
2: Compute the set of quantities

∫
x
Sdir

r (x, p),
∫

x
xμSdir

r (x, p),
∫

x
xμxνSdir

r (x, p) on a two-dimensional grid in �p⊥ (e.g., p⊥ and φp),
and use Eqs. (36)–(44) to obtain the dependence on the rapidity y.

3: Use these grids to evaluate the various terms in the quantities (25) as described in Eq. (45).
4: end for
5: Sum the thermal and resonance-decay contributions to obtain the full set of quantities

∫
x
S(x, p),

∫
x
xμS(x, p), and

∫
x
xμxνS(x, p).

6: Use these quantities to construct the full source variances; e.g.,

〈xz〉S =
∫

x
xzS(x, p)∫
x
S(x, p)

.

7: Compute the HBT radii from the complete set of the full source variances.

Since the source variances are here computed in the
laboratory-fixed Cartesian coordinate system (t, x, y, z)

while the HBT radii are defined and measured in the osl
coordinate system, the last step in Algorithm I contains an
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implicit transformation between these two coordinate sys-
tems. For this step we substitute for �p the pair momentum
�K = (K⊥ cos �K, K⊥ sin �K, Kl ). The necessary transfor-

mation rules are then (see Fig. 1)

xo = r cos(φ − �K ) = x cos �K + y sin �K, (48)

xs = r sin(φ − �K ) = −x sin �K + y cos �K, (49)

xl = z. (50)

Thus we find, for instance,

〈xoxl〉S = cos �K〈xz〉 + sin �K〈yz〉

= cos �K

∫
x

xzS(x; KT ,�K )∫
x
S(x; KT ,�K )

+ sin �K

∫
x

yzS(x; KT ,�K )∫
x
S(x; KT ,�K )

, (51)

and similarly for the other source variances in the osl-
coordinates. The HBT radii are then determined by inserting
this set of quantities into the expression (9).

F. Resonance-decay effects on the Hanbury-Brown–Twiss radii
from the Gaussian fit method

To apply the Gaussian fit method we must first compute
the correlation function (8) by Fourier transforming the full
emission function (11). Starting from Eq. (21), we find

S̃r→π (q, p) =
∫

x

eiq·xSr→π (x, p)

=
∑
±

∫
R

∫ ∞

0
d(�τ ) exp

[
−�τ

(
1 − i

q·P ±

M�

)]

×
∫

x

eiq·xSdir
r (x, P ±)

=
∑
±

∫
R

1

1 − i q·P ±
M�

S̃dir
r (q, P ±), (52)

where in the first step we shifted the x-integration variable
before performing the τ integration.

As noted in Eq. (5), the four components of q are not
independent but constrained by orthogonality to the pair mo-
mentum K:

q0 = �β · �q, �β = �K/K0 ≈ �K/EK =
�K√

m2
π + �K2

. (53)

Writing

�p1 = �K + �q
2
, �p2 = �K − �q

2
, (54)

we obtain the useful relation

q0 ≡ E1 − E2 =
√

m2
π + �p 2

1 −
√

m2
π + �p 2

2

=
√

m2
π + �K2 + 1

4 �q 2 + �q · �K

−
√

m2
π + �K2 + 1

4 �q 2 − �q · �K. (55)

The Fourier transform is therefore not fully four-dimensional
since q0 is not an independent degree of freedom.5

Using Eq. (53) to eliminate q0 from Eq. (52), the correla-
tion function (8) can be written in terms of the on-shell Fourier
transform of the emission function as

C(�q, �K ) = 1 + N (�q, �K )

N (0, �K )
, (56)

where6

N (�q, �K ) ≡ ∣∣S̃dir
π (�q, �K )

∣∣2 +
∣∣∣∣∣
∑

r

S̃r→π (�q, �K )

∣∣∣∣∣
2

+ 2
∑

r

Re
[
S̃dir

π (�q, �K )S̃∗
r→π (�q, �K )

]
. (57)

After Eq. (56) has been computed, the GF HBT radii are
obtained by fitting to the functional form (4). To compute the
thermal pion GF HBT radii one keeps only the first term in the
numerator and denominator of Eq. (56).

The on-shell constraint on q0 entails a subtlety for the
numerical evaluation of the decay phase-space integrals in
Eq. (52) that requires discussion. As described in the ap-
pendix, these integrals are computed by interpolating a
precomputed momentum-space array of Fourier-transformed
emission functions S̃dir

r (q, P ±). If we use the on-shell con-
straint for q0 before computing this array, it will be eight
dimensional, labeled by qx , qy , qz; P k

T , �P , YP as well as
additionally by KT and �K through the constraint (53).7

It is more economical to instead leave q0 initially uncon-
strained and evaluate S̃dir

r (q, P ±) on a seven-dimensional grid
(qx, qy, qz, q0; P k

T , �P , YP ), interpolating q0 to the desired
value q0 = �q· �K/EK only at the end of the calculation. Details
of the algorithm for computing Eq. (56) are found in the
Appendix.

G. Gaussian fit procedure

By definition, the GF HBT radii must be determined by
fitting the correlation function (8) to the functional form (4).

5This is the underlying reason why a three-dimensional set of
HBT radii in the osl-coordinate system requires a set of source
variances characterizing the source function in a four-dimensional
Cartesian coordinate system: since the Fourier transform is only three
dimensional, thanks to the constraint on q0, it can only relay three-
dimensional information regarding the source structure. This means
that the R2

ij , in general, necessarily represent nontrivial convolutions
of the spatial and temporal structure of the freeze-out surface [21],
so that an exclusively geometric interpretation of the HBT radii
will almost always produce insights which are either misleading or
simply incorrect.

6We note that this expression corrects a typographical error in
Ref. [27] which omitted the complex conjugation from the last term
in Eq. (57).

7Although our code can compute the HBT radii at any longitudinal
pair momentum KL, for simplicity we consider only midrapidity
pions (KL = 0) in this paper.
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The challenges of performing such fits are already well docu-
mented [36] and should be matched as closely as possible to
the experimental procedure. This procedure comprises several
key ingredients, including the following:

(1) Distinguishing between one-dimensional and three-
dimensional Gaussian fits. In principle, there are dif-
ferent ways of fitting the correlation function. One-
dimensional fits are performed along a slice of the cor-
relation function along some axis in q space. By con-
struction, such a fit optimally represents just this slice
in a Gaussian form, without constraints from other
directions in q space. By contrast, a three-dimensional
fit must represent not just the correlation function
slices along each axis in q space, but must also fit as
closely as possible points which lie off-axis as well.
One-dimensional and three-dimensional fits therefore
yield somewhat different results, and it is crucial to
recognize that only the latter correspond to the most
general three-dimensional HBT analyses which ex-
perimentalists perform [25]. It is easy to appreciate
how these differences originate. Consider a correlation
function evaluated in N3

q bins in q space, with Nq bins
along each axis, each spaced from −qmax to +qmax,
for simplicity. Now, consider separating the q bins
into those with |q| � qmax/2 and |q| < qmax/2 along
each q axis. Clearly, for the one-dimensional fits along
each axis, assuming the q bins are equally spaced and
have identical error bars, these fits will be equally
weighted between the q bins at |q| � qmax/2 and those
with |q| < qmax/2; i.e., there will be an equal number
Nq/2 of q bins to fit in each interval. For a simul-
taneous three-dimensional fit, on the other hand, the
same separation of the q bins now yields (Nq/2)3 =
N3

q /8 q bins with |q| < qmax/2 in each direction, and
N3

q − N3
q /8 = 7N3

q /8 q bins which are outside this
region. The three-dimensional fit must therefore fit
a proportionately much larger number of q bins at
large, off-axis values of q than at small, on-axis values
of q. Thus, as we will see below, three-dimensional
fits tend to better represent large-q structure of the
correlation function, while one-dimensional fits will
tend to represent the correlation function more closely
near the origin in q space. Since the smallest length
scales in the system generate the widest structures in
q space, this implies that three-dimensional fits will
tend to yield smaller estimates for the HBT radii than
one-dimensional fits.

(2) Performing fit-range studies. One method commonly
used for testing the convergence of a fit to a correlation
function involves varying the qmax of the bins which
are used in the fit [36]. Varying qmax in this way
constitutes a fit-range study. Conducting such a study
allows one to explore how the quality of the fit is
affected by where the q bins are cut off. If qmax is
too small, then the fit will over-represent the shape
of the correlation function at the q origin, and under-
represent its shape at large q. An adequate fit to the
entire correlation function must therefore be stable

with respect to the choice of qmax. Because of the
difficulty of computing the correlation function at the
large number of points required to reliably perform
fit-range studies, we currently have not implemented
this feature in our analysis.

(3) Including experimental uncertainties. Estimation and
incorporation of systematic and statistical uncertain-
ties form an extremely intricate and involved compo-
nent of experimental HBT analyses. In general, differ-
ent q bins are subject to different levels of uncertainty,
and this uncertainty directly affects the quality of the
fit which one extracts from the correlation function.
To provide a meaningful comparison between the the-
oretically computed correlation functions and those
measured experimentally, it is essential to correctly
account for the presence of statistical uncertainties,
especially when the measured correlation function de-
viates significantly from a Gaussian form.

After computing the correlation function (56), we extract
the GF HBT radii from it by performing a least-squares fit to
the form (4). To do this we minimize the χ2 function for the
correlation function, which we define by

χ2 ≡
N∑

k=1

[
C(�q (k), �K ) − Cfit (�q (k), �K )

σk

]2

, (58)

where C(�q (k), �K ) is the computed value of the correlation
function in the kth �q bin, and the index k ranges over the N
total points (i.e., bins) for which C(�q, �K ) has been computed.

For the results presented in this paper, we take σk = 10−3

for all k.8 This means that deviations of the fit from the data
points in the small-q region [where the correlation function
C(�q (k), �K ) is the largest] will make larger contributions to the
total χ2 of the fit than points in the large-q region (with the
exception that we omit the point �q = 0 from the fit, since
it is not experimentally accessible, and its omission has a
negligible effect on the fit radii). Our approach here differs
from that adopted in most experimental analyses, which fit
the quantity ln(C(�q (k), �K ) − 1) instead of C(�q (k), �K ). If we
were to compute HBT radii to be compared with experimental
data we would have to follow the experimental procedure.

The minimization itself is implemented numerically in
terms of standard GSL routines designed for this purpose.

As we have already observed, the fitting of the correlation
function is highly sensitive to the distribution of points in �q
space. In this paper, we choose the grid of points to have a
uniform spacing along the qx , qy , and qz axes [the correspond-
ing osl coordinates of any �q point are then obtained with a
positive rotation around the z axis by angle �K according to
Eq. (50)]. After computing the correlation function for each
of the N �q bins, we perform a full, three-dimensional fit
of Eq. (56) to Eq. (4) by minimizing the χ2 function (58).
Here we do not attempt to perform fit-range studies or mimic

8σk is a placeholder for the uncertainty of the “data” (which in our
case are obtained from a calculation which, ideally, should have zero
uncertainty) to which the functional form (4) is fit.
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experimental error bars in our fitting procedure. This is mostly
because we find that resonance decays introduce strong non-
Gaussianity in the correlation function such that the HBT
radii extracted from a Gaussian fit depend sensitively on the
binning of the correlation function in �q space which must
therefore be closely matched between theory and experiment
for meaningful comparisons.

III. RESULTS

Using the iEBE-VISHNU package [37] we generated an
ensemble of Nev = 1000 central (0%–10%) Au + Au events
at

√
s = 200A GeV, and then used the HOTCOFFEEH code

presented in this paper to compute the HBT correlation func-
tions and radii for pion pairs, using both the SV and GF
methods for comparison. The hydrodynamic event sample is
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FIG. 2. Slices of the full ensemble-averaged correlation function Cavg (2) including all resonance decays (solid lines) along the qo, qs , and
ql axes (from left to right), compared with the analogous results for directly emitted (“thermal”) pions only (dashed lines), for three choices
of the pair momentum, KT = 0, 0.4, and 1.0 GeV (from top to bottom). The pair momentum �KT was chosen to point in x direction (�K = 0)
such that qx = qo and qy = qs . The ensemble consists of Nev = 1000 hydrodynamically evolved central (0%–10% centrality) Au-Au collisions
with η/s = 0.08 at

√
s = 200A GeV.
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FIG. 3. The intercept parameter λ( �K ) [defined in Eq. (4)] as
a function of �K , for a three-dimensional Gaussian fit to the full
correlation function including resonances shown in Fig. 2.

identical with the one described and studied in Ref. [3]; it
assumes viscous fluid dynamic evolution of the hot matter
created in the collision with a constant specific shear viscosity
η/s = 0.08. In this section we study in detail all systematic
features of the HBT radii associated with this hydrodynamic
event ensemble and compare our results qualitatively with
those from earlier studies of more schematic model sources
[27] and of ideal fluid-dynamical simulations of smooth initial
conditions [36].

A. Correlation functions with and without resonance decays

To build intuition for the qualitative influence of resonance-
decay contributions on the shape of the two-pion correlation
function and the HBT radii associated with it, we compare
in Fig. 2 the correlation functions for directly emitted pions
(dashed lines) with those obtained from the full emission
function including all resonance-decay contributions (solid
lines).

While the correlation functions for directly emitted pions
look pretty Gaussian (although a more quantitative analy-
sis exposes that this not really true along the ql direction
[27,36]), adding the contributions from resonance decays
clearly distorts the shape of correlation function in all three
directions, making it much sharper than a Gaussian near q =
0. In addition, the peak of the correlation function at q =
0 never reaches the value two once resonance-decay pions
are included on account of the long-lived resonances, such
as the η meson, which contribute to the pion yield in the
denominator of the correlation function but whose contribu-
tion to the numerator is almost a δ function at q = 0 and
cannot be resolved experimentally, due to finite momentum
resolution.9 Both effects, the depression of the correlation
peak at q = 0 and the non-Gaussian distortion of the �q de-
pendence, are stronger for pion pairs with small pair momen-
tum K and slowly die out at large pair momentum. For the
intercept λ, extracted as an additional fit parameter in Eq. (4),
this is shown in Fig. 3 (see also Ref. [27]). This reflects the
fact [42] that the decay phase-space favors low transverse
momenta for decay pions from heavy resonances while at

9Another reason for suppressing the peak of experimentally mea-
sured correlation functions below the value of two, not studied in the
present paper, could be a violation of the assumption of independent
particle emission, e.g., through phase coherence among the emitted
pions [38–41].

FIG. 4. Event-by-event distributions of the azimuthally averaged SV R2
s,0 [43] (denoted simply as R2

s in the figure), (a) with and (b) without
the δf correction.
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FIG. 5. Same as Fig. 4, but for the outward radius parameter SV R2
o,0.

large transverse momenta the directly emitted pions dominate.
Radial flow reduces this bias [27] but does not fully eliminate
it. Furthermore, as noted in Ref. [36], λ( �K ) may continue to
deviate from unity even if resonances decays are excluded,
due to the inability of a three-dimensional Gaussian fit to fully
capture the non-Gaussian ql dependence that survives even for
thermally emitted pions due to the boost-invariant longitudinal
expansion of the source [27].

B. Hanbury-Brown–Twiss radii including resonance decays:
Source-variances method

In this section we study the HBT radii extracted via the
SV methods, their event-by-event distributions, means and
variances, for the same ensemble of 1000 events discussed
above.

Figures 4–6 show the event-by-event distributions of the
�K -averaged sideward, outward, and longitudinal radius pa-
rameters, respectively, normalized by their mean values, for
six different values of the pair momentum KT . The left panels
(a) show the full result, and the right panels (b) are obtained
by removing the viscous δf correction from Eq. (7). We see
that δf has no obvious visible effect on these distributions.
In the rest of this paper we therefore always include the δf
correction.

The shapes of these distributions show very little KT

dependence for the sideward and longitudinal radii, with a
∼10% width over the entire range of KT values studied. As
seen in Fig. 7 below, the mean values of both R2

s and R2
l

decrease with increasing pair momentum; Figs. 4 and 6 imply
that the widths of their distributions decrease in sync with
their mean values.

The similarly normalized width of the outward radius
parameter R2

o , shown in Fig. 5, increases strongly with

FIG. 6. Same as Fig. 4, but for the longitudinal radius parameter SV R2
l,0.
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FIG. 7. (a) The azimuthally and ensemble-averaged SV HBT
radii and (b) their normalized variances as a function of pair mo-
mentum KT , including all resonance decays, for the central Au-Au
collision events studied in this paper. In panel (a) solid lines show
results that include all resonance-decay contributions while dashed
lines show the HBT radii for only the directly emitted pions.

increasing pair momentum, doubling from about 15% at
small KT to more than 30% at KT = 1 GeV. As discussed
in Refs. [1,3], this increased variance at higher KT can be
attributed to the contribution to R2

o from the emission dura-
tion, β2

T (〈t2〉 − 〈t〉2), which strongly fluctuates at large KT .
These increasing fluctuations of the emission duration are
generic and occur whether resonance-decay contributions are
included. We will see below that the GF HBT radii exhibit the
same feature.

We next consider the result of ensemble averaging the SV
HBT radii, including all resonance-decay contributions. We
present these results in Fig. 7.

As discussed in Ref. [2], the HBT radii corresponding to
the ensemble-averaged correlation function (2) do not agree
with the direct arithmetic average of HBT radii from the
individual fluctuating events but differ by an event multi-
plicity weight. We checked that, for the ensemble of events
studied here, multiplicity fluctuations are small and the dif-
ference between the two definitions of the average HBT
radius parameters is less than 1%. We therefore present only
the arithmetically averaged HBT radius parameters 〈R2

i 〉 =∑Nev
k=1(R2

i )(k)/Nev.
Figure 7(a) shows as solid lines the azimuthally and

ensemble-averaged sideward, outward, and longitudinal radii
from the SV method, including all resonance decays, as a
function of pair momentum KT . They are very much larger
than those obtained from the emission function for just the
directly emitted pions (dashed lines, see also Ref. [2]). For the
squared transverse radii at KT = 0 the difference is a factor
15, corresponding to radii that are almost a factor of four
larger. This is an artifact of the SV method, which measures
the curvature of the two-pion correlation function at q = 0
rather than its inverse width. For small KT this curvature
is large, as seen in the top row of Fig. 2, being dominated
by the very large emission regions and emission durations
of pions from the longest-lived resonances in the mix. For
larger KT values, pions from resonance decays play a less
important role, and the difference between the curvature of the
correlation function at q = 0 and its inverse width becomes
less pronounced. Generally speaking, we see, however, that

FIG. 8. Event-by-event distributions of GF HBT radii, for several different values of KT .
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SV HBT radii (which measure the curvature of the correlation
function at q = 0) are a poor way of characterizing its shape
(in particular, its inverse width) once resonance decays are
taken into account, especially for pion pairs with small-to-
moderate pair momentum.

Figure 7(b) shows the normalized variances (relative
widths) of the event-by-event distribution of the SV HBT
radii. By comparing with Refs. [2,3] (cf. Fig. 1 in Ref. [3],
for instance) we observe that resonance-decay contributions
lead to a slight reduction of these normalized variances. This
is easily understood: the variances of the HBT radii associated
with the emission regions of decay pions (which reflect the
fluctuations in the emission regions of their thermally emitted
parent resonances) are expected to be similar to those of the
thermally emitted pions and not to increase at the same rate
as their mean values as the resonance lifetimes increase. In-
deed, we observe that the fluctuations of the source variances
including resonance-decay contributions shown in Fig. 7(b)
show qualitative similarity with the same fluctuations when
resonances are excluded [2,3]. Most notably, while the widths
of R2

s and R2
l stay relatively constant when increasing KT ,

the normalized variance of Ro strongly grows with increasing
KT ; this reflects the broadening of the R2

o distribution seen in
Fig. 5.

C. Hanbury-Brown–Twiss radii including resonance decays:
Gaussian fit method

We now contrast these results for the correspond-
ing ones with the GF method of computing the HBT
radii. The results shown in this section were obtained
by minimizing the χ2 of a three-dimensional Gaus-
sian fit, calculated over a grid of 73 points (qo, qs, ql ),
with qs, qo ∈ {0, ±25.0, ±50.0, ±75.0} MeV and ql ∈
{0, ±12.5, ±25.0, ±37.5} MeV, which was subsequently
interpolated (“fleshed out,” see the Appendix) to a denser grid
of N = 513 points, spaced uniformly over the same region in
�q space. In the following section we discuss the sensitivity of
the HBT radii extracted from the Gaussian fit to the details of
the fit procedure, including fit range and grid point spacing.

The event-by-event distributions of the GF HBT radii are
presented in Fig. 8. We note that the shape of all three distribu-
tions shows less variability with KT than seen in Figs. 4–6 for
the SV HBT radii. The relative widths of all three probability
distributions is larger than in the SV case and, in particular, the
R2

o distribution shows much less of a width difference between
small and large pair momenta.

The main reason for this can be seen in Fig. 9(a), which
shows that the GF HBT radii (by which the relative widths
are normalized) are much smaller than the SV radii. A closer
view, taking into account the information on the normalized
variances shown in Fig. 9(b), reveals that the variances of the
GF HBT radii are also smaller than those of the SV radii, but
the larger reduction is seen by the radii themselves: a factor
six for the squared transverse radii and a factor three for the
squared longitudinal radius at KT = 0.

The Gaussian widths of the correlation function are seen to
be much less sensitive to the relatively small contribution of
very-long-lived resonances than the curvature at q = 0 and
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FIG. 9. Same as Fig. 7, but for the mean radii and normalized
variances of the GF radii. Solid lines correspond to the radii with all
resonances included, while the dashed lines represent the GF radii
using thermal π+ only.

are instead dominated by the bulk of pions being emitted
either directly or from short-lived resonances. Still, these
short-lived resonances significantly increase the GF squared
radii of the full emission function (solid lines) over those of
the directly emitted pions (dashed lines), by factors 2.5 and 2
for the transverse and longitudinal squared radii, respectively,
at KT = 0. For the hydrodynamic sources studied here this
resonance-decay effect on the HBT radii is larger than what
was observed in Ref. [27] for a hydrodynamically motivated
Gaussian model emission function.

The pair momentum dependence of the relative widths
of the HBT radii distributions are shown in Fig. 9(b). As
for the SV method we see outward radii fluctuations that
strongly increase with KT , for the same reason as explained
earlier, whereas the normalized variances of the sideward and
longitudinal HBT radii show little variation with KT .

Finally we show in Fig. 10 slices of the ensemble-averaged
correlation function (2) along the qx , qy , and qz axes, for three
values of KT (KT = 0, 0.4, and 1 GeV), together with the best
three-dimensional Gaussian fit. We observe (as previously
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FIG. 10. Slices of the ensemble-averaged (Nev = 1000 events) correlation function Cev (solid lines), including all resonance decays, for
(from top to bottom) KT = 0, 0.4, and 1 GeV, compared with the same slices of the best-fit three-dimensional Gaussian correlation function
(dashed lines). These best-fit curves clearly reproduce the shape of the true correlation function better at large q than at small q.

noted [27]) that the resonance-decay effects which are most
prominent at small KT (the top row) and small q are not well
described by the Gaussian fit function. This problem becomes
less severe at larger KT . The result of the poor fit near q = 0

is a significantly reduced intercept parameter λ extracted from
the Gaussian fit than would be appropriate for describing the
true value of the correlation function near q = 0. Comparison
of the solid and dashed lines allows us to separate the correla-
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tion function into two contributions [44]: one from the “core”
of the emission function, describing the distribution of the
directly emitted pions and those from the decay of very short-
lived resonances, which dominates the large-q behavior of the
correlation function, and a second contribution from a “halo”
of pions emitted by decays of long-lived resonances whose
interference with “core” pions and with each other generate
the excess of the correlation function over the Gaussian fit at
small q values (with q components of magnitudes below 20
MeV in our case here, corresponding to homogeneity radii of
order 10 fm).

D. Sensitivity of the Gaussian fit Hanbury-Brown–Twiss
radii to the fit method

We conclude this section by making an observation about
the points chosen in the fitting process: in fitting a computed
correlation function (with strongly non-Gaussian features
such as those shown in Fig. 10 at small �K), the distribution
of points used in this fit plays a significant role. To illustrate
this point, we consider in Fig. 11 several one-dimensional
fits to the qx slice of the correlation function plotted in the
left, uppermost panel in Fig. 10, for different choices of fit
range. Specifically, we plot the fit curves obtained by using
the following sets of points:

(1) all qx points with |qx | � 20 MeV (red, dashed curve);
(2) all qx points with |qx | � 20 MeV (green, dash-dotted

curve);
(3) all qx points in the range shown (blue, dotted curve).

We observe that these different fits vary dramatically, de-
pending on the range and distribution of points used. Figure 11
therefore illustrates the crucial point that theoretical HBT
analyses which compute the correlation function must fit this
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FIG. 11. One-dimensional fits to qx slice of the correlation func-
tion shown in the uppermost, left-hand panel of Fig. 10, for different
ranges of qx : |qx | � 20 MeV (red, dashed curve); |qx | � 20 MeV
(green, dash-dotted curve); all qx points in the range shown (blue,
dotted curve). We see that the Gaussian best fits depend strongly on
the precise distribution of points used.

function with the same distribution of points used by exper-
imentalists; otherwise, the HBT radii extracted from these
Gaussian fits will not agree between theory and experiment
even if the correlation functions have the same shape.

IV. CONCLUSIONS

In this paper, we have presented calculations of the
HBT radii (with resonance-decay contributions) directly from
Cooper–Frye integrals, for event-by-event hydrodynamics.

Previous work in this area has generally differed from the
approach adopted here. Some authors (see. e.g., Ref. [45])
formulate the correlation function in terms of Cooper–Frye
integrals, as we have done here, including all relevant
resonance decays, but do not perform their analysis on an
event-by-event basis, meaning that they are unable to define
event-by-event distributions of HBT radii. On the other
hand, some other authors [46] do compute the two-particle
correlation function on an event-by-event basis, but use a
statistical hadronization code and an after-burner such as
THERMINATOR [47] to self-consistently implement resonance-
decay contributions, instead of relying on the Cooper–Frye
formulation to compute the resonance feed down exactly. In
this work, we simultaneously incorporate the fitted-correlator
approach together with a purely hydrodynamic, Cooper–Frye
formulation, with all resonances included, on an event-by-
event basis. Moreover, we study the resulting ensemble of cor-
relation functions and HBT radii by using both the SV and GF
methods for computing the HBT radii discussed in this paper.

In the case of the SV HBT radii, we find that the ensemble-
averaged radii with resonances are an order of magnitude
larger than in the purely thermal case, which has been investi-
gated extensively elsewhere (cf. Fig. 4 of Ref. [1]). This is
a consequence of the way in which the SV radii represent
the curvature of the correlator at �q = 0, thanks to the sharp
peak the correlator acquires at this point from long-lived
resonances. Once all such resonance effects are included, the
qualitative features of the R2

ij and their KT dependence remain
essentially unchanged, but the quantitative effects are drastic.
We also compared the event-by-event distributions of the GF
HBT radii with those of the SV radii. Interestingly, the broad-
ening of the R2

o distribution with increasing KT appears to be a
robust feature of both the SV and GF methods. Quantitatively,
the GF radii are in general smaller than their SV counterparts,
once resonances are included, since the two methods differ in
their representation of the global structure of the correlation
function: while the SV radii represent the curvature of the
correlation function at �q = 0, the GF radii represent a best
fit to the full correlation function, and therefore do not tend to
overestimate the effects of long-lived resonances as severely
as the SV radii do.

We finally note a number of similarities and differences
between our results and those presented in previous works
[27,36]. In particular, we note that the differences between
the shapes of the correlation functions with and without
resonance decays in Fig. 2 are much larger in a genuine hy-
drodynamic simulation than in the hydro-motivated Gaussian
source model parametrization studied in Ref. [27], and that
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these differences manifest themselves in significant quantita-
tive effects on the extracted HBT radii (most notably, a factor
of two to three discrepancy between the transverse radii with
and without resonances, seen by contrasting the thermal radii
in Refs. [1–3] with those shown in Fig. 9, which was not ob-
served in Ref. [27]). Nevertheless, we find rough quantitative
agreement with both Refs. [27] and [36] in the fit radii them-
selves once resonance contributions are included, despite the
substantial differences in the computed correlation functions.
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APPENDIX: ALGORITHMS AND APPROXIMATIONS FOR
EFFICIENTLY COMPUTING HANBURY-BROWN–TWISS
CORRELATION FUNCTIONS WITH FULL RESONANCE

CONTRIBUTIONS

In this Appendix we describe the numerical code for evalu-
ating the Fourier-transformed full emission function (52) and
the integration (22) over the decay phase space in particular.
We have checked that the code produces correlation functions
which are in agreement with those obtained from a separate
code which samples the Cooper–Frye spectra and then uses
a HBT afterburner on the resulting particle pair distributions
[49]. Using the simplifications and symmetries described be-
low, the events processed in this paper required approximately
35 to 40 hours of CPU time each on a Intel(R) Xeon(R) X5650
2.67 GHz processor. The grid sizes used are given below.

1. Numerical scaling

We begin by discussing how the full correlation function
itself scales with the number of points at which the various
quantities (�q, �K, xμ, etc.) in the calculation are evaluated. In
general, the resonance spectra are of the form∫

d4xeiq·xS(x, P ), (A1)

where is defined q0 = �q · �β �K in terms of the pair
momentum K , while the weight S is evaluated at some
other momentum P (one would obtain the thermal-pion
spectra by simply setting P = K). In general, this requires
a nine-dimensional grid for the evaluation of each set
of weighted parent resonance spectra, with independent
dimensions corresponding to differing choices of KT , �K ,
YK , PT , �P , YP , qx , qy , and qz. Fortunately, however, this
dimensionality can be reduced by instead treating q0 as a free
dimension, eliminating the dependencies on KT , �K , and YK ,
and only reintroducing these dependencies at the end of the
calculation by interpolating q0 to the point that satisfies the
on-shell condition (5). For midrapidity (YK = 0) pions, which
we consider exclusively in this work, this means that the

Fourier-transformed spectra of each relevant particle species
must be evaluated on a seven-dimensional grid, consisting of
PT , �P , YP , q0 ≡ qt , qx , qy , and qz.

For the numerical results presented in this paper, we chose
the following grid sizes, unless stated otherwise:

NpT
= 15, N�p

= 36, Nqt
= 51,

Nqx
= Nqy

= Nqz
= 7. (A2)

2. Truncated and extrapolated resonance sums

One technique which has proven useful for event-by-event
analyses of heavy-ion collisions in the past [15] requires one
to sort the parent resonances by their total contributions to
the (momentum-integrated) final pion yield, computing those
resonances with the largest contributions first, and terminating
the calculation when a fixed percentage of the total pion
yield has been reached. The authors of Ref. [15] showed that
using linear extrapolation to approximate the contribution to
the yield from the remaining resonances offered an efficient
method for obtaining estimates of the true pT spectra and
anisotropic flow coefficients with all resonance contributions
included. Since the vast majority of final-state resonance-
decay pions come from a relatively small number of parent
resonances, this approach offered a significantly faster way of
numerically evaluating heavy-ion observables in the context
of event-by-event hydrodynamic simulations.

In this paper, we have adopted this same tactic for trun-
cating and estimating the sum over parent resonances r in
Eq. (11), assuming that the rate of convergence of the Fourier-
transformed decay pion spectra (as a function of resonances
included) can be approximated as linear. In Fig. 12, we see
that this approximation works quite well: we compare the
correlation function with and without extrapolation (respec-
tively, solid and dashed colored curves) with the full result
(solid black curves) which includes all resonances (and hence
does not require extrapolation). The fact that the solid black
curves are mostly obscured by the solid colored curves reflects
two important facts: first, that the extrapolation over the
omitted resonances is necessary to capture the full correlation
function using the truncated resonance sum and, second, that
once this extrapolation is included, the agreement between
the 60% and 100% curves is extremely good. We observe
that this approach works quite well for all three radii (R2

s ,
R2

o , R2
l ): for one-dimensional fits to the correlation functions

in Fig. 12 (with the inaccessible central point omitted), the
the largest variation in the radii extracted the projected 60%
and 100% curves was a 2.5% change in R2

l . We conclude
that resonance extrapolation provides an extremely reliable
way of estimating the correlation functions and radii for all
resonances relevant in heavy-ion collisions, using only a finite
subset thereof.

3. Fleshing out the correlation function

As we have pointed out in Sec. III C, the quality of the fit
to the correlation function depends on a number of factors,
including the distribution of points in q space. This is not
problematic when the shape of the correlation function is
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FIG. 12. Three different slices (qx = 0, qy = 0, and qz = 0, respectively) of the correlation function at fixed KT and �K , comparing the
truncated resonance calculation at 60%, with (solid) and without (dashed) extrapolation over the remaining resonances, compared with the
full 100% calculation (solid black). The correlation function was computed and extrapolated at seven equally spaced nodes along each q axis
(cf. Sec. III C) and then interpolated by using a quadratic spline for aesthetic purposes.

Gaussian (or very nearly so). However, when the correlation
function is strongly distorted from a Gaussian shape by the
inclusion of medium-lived resonances (e.g., the ω resonance,
which has a width of roughly 8.5 MeV), it becomes necessary
to sample the correlation function at a denser distribution
of points, in order for the fitting procedure to yield well-
defined and unambiguous results. Because of the limited
computational resources (as discussed above) which are typ-
ically available for performing event-by-event analyses, a
sufficiently dense grid of points must be regarded as generally
impractical. What is possible is to first compute the correlation
function on a sparse grid of points, and then attempt to use

this sparse grid to interpolate the correlation function to a
sufficiently dense grid of points to ensure that the Gaussian fit
radii become unambiguous. We refer to this tactic as fleshing
out the correlation function, and we illustrate its effectiveness
in Fig. 13. The sparse grid of points is the same as the
one defined above in Sec. III C, consisting of seven points
in each direction. The dense grid used here spans the same
range in each direction as the sparse grid (−75.0 � qx , qy �
+75.0 MeV, and −37.5 � qz � 37.5), but with 51 points in
each direction.

Clearly, although small discrepancies arise in each direc-
tion, the transverse radii are essentially identical for the curves
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FIG. 13. Three different slices (qx = 0, qy = 0, and qz = 0, respectively) of the correlation function at fixed KT and �K , illustrating our
correlation function constructed by fleshing out a sparse grid (solid), compared with the same correlation function computed on a dense grid
over a similar range of q points (dashed). For the first term in the numerator of Eq. (56), the algorithm interpolates the logarithm of the thermal
contribution linearly in q2, which is an excellent approximation, since the thermal contribution is nearly Gaussian. For the remaining two terms
in the numerator of (56), the algorithm uses cubic interpolation. This approach clearly works well at all q, although small discrepancies emerge
at large q in the longitudinal (qz) direction.

034910-17



CHRISTOPHER PLUMBERG AND ULRICH HEINZ PHYSICAL REVIEW C 98, 034910 (2018)

shown in Figs. 13(a) and 13(b). The largest difference again
emerges in the longitudinal (qz) direction, where our difficulty
at reproducing the exact correlator in the range 30 MeV �
|qz| � 40 MeV leads us to overestimate R2

l by roughly 3.5%.
The quality of the longitudinal interpolation can obviously be
improved, for instance, by using a denser grid of points in this
direction, at the expense of greater computational time. We
defer improvements of the “fleshing out” technique to future
studies.

4. Evaluating the Fourier-transformed
spectra and resonance decays

We conclude this Appendix by documenting several steps
which allow us to simplify and accelerate the calculation
of all Fourier-transformed spectra as functions of pT , pφ ,
and pY .

The Cooper–Frye prescription requires an integration of
the distribution function over spacetime coordinates, which
include the spacetime rapidity ηs . We first expand the distribu-
tion function in a Boltzmann-like series of exponentials under
the approximation that the particle mass m is much larger than
the freeze-out temperature T : m/T � 1. Each term in this
series expansion can then be integrated exactly over ηs , with
the result expressible in terms of Bessel functions. Below,
we write down the expressions that are used to compute
the thermal particle spectra: for all particles but pions, only
the leading-order terms in the Bessel series expansion are
required. For pions, we keep the ten largest terms in all
relevant sums, allowing us to maintain accuracy at or better
than the level of 10−4.

The Cooper–Frye integrals used in the code rely on Fourier
transforming the equilibrium distribution function with shear
viscous corrections included. The emission function and dis-

tribution function can be written in general in the form

S(x, p) = 1

(2π )3

∫
�f

p·d3σ (y)δ4(x − y)f (y, p), (A3)

f (x, p) = f0(x, p) + δf (x, p)

= 1

e(p·u−μ)/T − 1
+ χ (p2)pμpνπμν

2T 2(E + P )
f0(1 + f0);

(A4)

accordingly, the Fourier transform of the emission function is∫
d4xeiq·xS(x, p) = 1

(2π )3

∫
dηs

∫
�f

p·d3σ (y)eiq·yf (y, p).

(A5)

For a system undergoing longitudinal Björken expansion,
we also have that

p · u = γ⊥[m⊥ cosh(py − ηs ) − �p⊥ · �v⊥], (A6)

p·d3σ (x) = [m⊥ cosh(py−ηs )− �p⊥ · ∇τf ]τf d2r⊥dηs, (A7)

q · x ≡ q0τ cosh ηs − �q⊥ · �x⊥ − qzτ sinh ηs

= τ [(q0 cosh py − qz sinh py ) cosh(py − ηs )

+ (q0 sinh py−qz cosh py ) sinh(py −ηs )]−�q⊥·�x⊥
≡ β cosh η̃s + γ sinh η̃s − �q⊥ · �x⊥, (A8)

where we have introduced the shorthands

β ≡ τ (q0 cosh py − qz sinh py )γ

≡ τ (q0 sinh py − qz cosh py ) and η̃s ≡ py − ηs. (A9)

Focusing on the integral over ηs , we find that the Fourier-
transformed spectra can be evaluated as

∫
d4xeiq·xS(x, p) ∼

∫ ∞

−∞
dηs

m⊥ cosh(py − ηs ) − �p⊥ · ∇τf

e(p·u−μ)/T ±1
[1 + χμνp

μpν (1 + f0)]

=
∫ ∞

−∞
dη̃s (m⊥ cosh η̃s − �p⊥ · ∇τf ) exp(iβ cosh η̃s + iγ sinh η̃s − i �q⊥ · �x⊥)

×
∞∑

k=1

(∓)k+1 exp

(
−kγ⊥

T
(m⊥ cosh η̃s − �p⊥ · �v⊥ − μ)

)

×
{

1 + Cχμνp
μpν

[
1 +

∞∑
�=1

(∓)�+1 exp

(
−�γ⊥

T

(
m⊥ cosh η̃s − �p⊥ · �v⊥ − μ

))]}
, (A10)

and χμνp
μpν can be written in the form

χμνp
μpν = a cosh2 η̃s + b cosh η̃s + c. (A11)

The basic form of this expression is the integral

Ik (α, β, γ ) ≡
∫ ∞

−∞
dxe−α cosh x+iβ cosh x+iγ sinh x coshk x. (A12)

Since it is obvious that

Ik (α, β, γ ) =
(

− d

dα

)k

I0(α, β, γ ), (A13)
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we only need to compute I0(α, β, γ ). Making the change of variable u = sinh x, du = cosh xdx = √
u2 + 1dx, we find that

I0(α, β, γ ) =
∫ ∞

−∞

du√
u2 + 1

e−(α−iβ )
√

u2+1+iγ u = 2
∫ ∞

0

du cos (γ u)√
u2 + 1

e−(α−iβ )
√

u2+1 = 2K0(
√

(α − iβ )2 + γ 2). (A14)

Defining

A ≡ e−i �q⊥·�x⊥m⊥, B ≡ e−i �q⊥·�x⊥ �p⊥ · ∇τf , α ≡ γ⊥m⊥
T

, and f⊥ ≡ exp
[γ⊥

T
( �p⊥ · �v⊥ + μ)

]
, (A15)

we can compute the Bessel series expansion of Eq. (A10) term by term to obtain∫
d4xeiq·xS(x, p)

∼
∫ ∞

−∞
dη̃s (A cosh η̃s − B ) exp (iβ cosh η̃s + iγ sinh η̃s )

∞∑
k=1

∓(∓f⊥)k exp (−kα cosh η̃s )

×
[

1 + Cχμνp
μpν

(
1 +

∞∑
�=1

∓(∓f⊥)� exp (−�α cosh η̃s )

)]

=
∫ ∞

−∞
dx(A cosh x − B )

∞∑
k=1

∓(∓f⊥)k exp (−kα cosh x + iβ cosh x + iγ sinh x)

×
[

1 + C(a cosh2 x + b cosh x + c)

(
1 +

∞∑
�=1

∓(∓f⊥)� exp (−�α cosh x)

)]
(A16)

=
∞∑

k=1

∓(∓f⊥)k[AI1(kα, β, γ ) − BI0(kα, β, γ ]) + C

∞∑
k=1

∓(∓f⊥)k[AaI3(kα, β, γ ) + (aB + bA)I2(kα, β, γ )

+ (bB + cA)I1(kα, β, γ ) + cBI0(kα, β, γ )] ∓ C

∞∑
k=1

∞∑
�=1

(∓f⊥)k+�{AaI3[(k + �)α, β, γ ]

+ (aB + bA)I2[(k + �)α, β, γ ] + (bB + cA)I1[(k + �)α, β, γ ] + cBI0[(k + �)α, β, γ ]}. (A17)

Fortunately, the Boltzmann approximation (i.e., keeping only the first term in each of these sums) works already extremely
well for all hadrons other than pions. In the Boltzmann limit, the above result simplifies to∫

d4xeiq·xS(x, p) ∼ f⊥[AI1(α, β, γ ) − BI0(α, β, γ )] + Cf⊥[AaI3(α, β, γ ) + (aB + bA)I2(α, β, γ )

+ (bB + cA)I1(α, β, γ ) + cBI0(α, β, γ )] ∓ Cf 2
⊥[AaI3(2α, β, γ ) + (aB + bA)I2(2α, β, γ )

+ (bB + cA)I1(2α, β, γ ) + cBI0(2α, β, γ )], (A18)

where finally, with z ≡ [(α − iβ )2 + γ 2]1/2,

I0(α, β, γ ) = 2K0(z),

I1(α, β, γ ) = 2(α − iβ )K1(z)

z
,

I2(α, β, γ ) = 2(α − iβ )2K0(z)

z2
+ 2(z2 − 2γ 2)K1(z)

z3
,

I3(α, β, γ ) = 2

z5
(α − iβ )[z(z2 − 4γ 2)K0(z)

+(2z2 + z4 − γ 2z2 + 8γ 2)K1(z)]. (A19)

Inspection of these results reveals that they are even in γ ,
while their real (imaginary) parts are even (odd) in β. This
will be useful below.

In addition to performing the ηs integrals analytically as
detailed above, the full calculation (of all thermal resonance

spectra and subsequent resonance feed down) we identify
and exploit several symmetries which can be used to shorten
and/or accelerate the calculation of the correlation function.
There are three symmetries which are useful for our purposes
here:

(1) Symmetry under q → −q. This symmetry follows triv-
ially by replacing eiq·x in all Fourier integrals with
cos(q · x) + i sin(q · x), and noting that the first term
is even under this symmetry, while the second term is
odd. Consequently, the Fourier moments only need to
be calculated for half of the q space (say, q0 � 0) and
then reflected to the other half (with the odd moments
receiving an additional minus sign upon reflection).

(2) Symmetry under qz → −qz and y → −y simulta-
neously. This symmetry follows by noting that qz

and y enter into the Fourier moments only in the

034910-19



CHRISTOPHER PLUMBERG AND ULRICH HEINZ PHYSICAL REVIEW C 98, 034910 (2018)

combinations β and γ given in Eq. (A10). The
Fourier moments, in turn, depend only on the func-
tions Eqs. (A19), which depend only on β and γ 2.
Taking qz → −qz and y → −y simultaneously thus
takes β → β and γ → −γ , leaving the Fourier mo-
ments unchanged. This symmetry can be exploited
by computing the full y dependence and half the qz

dependence of the moments, and reflecting to the other
half as above.

(3) Symmetry under reflection of y about ysym and �q⊥ →
±�q⊥ simultaneously. The third symmetry also arises
by studying the structure of β and γ . We first define
ysym to be

ysym ≡ 1

2
log

∣∣∣∣q0 + qz

q0 − qz

∣∣∣∣. (A20)

Then a little algebra reveals that taking y → ȳ ≡
2ysym − y is a convenient reflection point for the

Fourier moments. Specifically, one can show that

β(ȳ) = sgn
[
(q0)2 − q2

z

]
β(y), (A21)

γ (ȳ) = −sgn
[
(q0)2 − q2

z

]
γ (y). (A22)

Moreover, note that the reflection point ysym is the
same for all resonances since it depends only on q0 and
qz. Additionally, since the Fourier moments depend
only on γ 2, the reflection of y → ȳ is a symmetry of
the Fourier moments only when |q0| � |qz|; the case
where |q0| � |qz| will be discussed in greater detail
below.
First, we describe how the Fourier moment calculation
is organized. We split the generic Fourier integral of
the emission function for a resonance r into different
terms for convenience:

∫
x

eiq·xSr (x,K ) =
∫

x

(cos φT + i sin φT )(cos φL + i sin φL)Sr (x,K ) (A23)

=
∫

x

cos φL cos φT Sr (x,K ) − i

∫
x

cos φL sin φT Sr (x,K ) + i

∫
x

sin φL cos φT Sr (x,K )

+
∫

x

sin φL sin φT Sr (x,K ) (A24)

≡ SCC
r + iSCS

r + iSSC
r + SSS

r (A25)

where φT ≡ �q⊥ · �x⊥, φL ≡ q0t − qzz. Also, in the first index, C and S label the cosine and sine components in φL, while in the
second index, C and S label the cosine and sine part in φL. As we shall see, the longitudinal C and S moments each have a definite
parity under y → ȳ. Thus, each of these Fourier moments of the source function for resonance r is computed independently.
To see how each these moments is related to the moments of its daughter particles, we substitute (A25) into the phase-space
integrals which yield the contributions to the daughter moments:

SCC
r→r ′ + iSCS

r→r ′ + iSSC
r→r ′ + SSS

r→r ′

=
∑
k=±

∫
R

1 + iαk

1 + (αk )2

(
SCC

r + iSCS
r + iSSC

r + SSS
r

) =
∑
k=±

∫
R

(1 + (αk )2)−1
[(

SCC
r − αkSCS

r

) + i
(
SCS

r + αkSCC
r

)

+ i
(
SSC

r + αkSSS
r

) + (
SSS

r − αkSSC
r

)]
. (A26)

where αk ≡ q · P k/(M�) and

∫
R

≡ M

∫ s+

s−
dsg(s)

∫ +1

−1

�Ydv√
m2

⊥ cosh2 (v�Y ) − p2
⊥

∫ π

0
dζ (M⊥ + �M⊥ cos ζ ). (A27)

Each of the terms on the left-hand side of Eq. (A26) should be identified with the respective term on the right-hand size in the
square brackets. Note also that M⊥ and �M⊥ are even functions of v�Y .

We need to know whether the phase-space integrals (A26) and (A27) respect the reflection symmetries of the Fourier moments
of the parent resonance (so that daughter particles inherit the same set of reflection symmetries). To show this is just a few lines:
using the shorthand

S̃(q,K ) ≡
∫

d4xeiq·xS(x,K ) (A28)
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to abbreviate the Fourier transform, we can write

S̃r→r ′ (q; m, �p⊥, ȳ) = M
∑
k=±

∫ s+

s−
dsg(s)

∫ +1

−1

�Ydv√
m2

⊥ cosh2 (v�Y ) − p2
⊥

∫ π

0
dζ (M⊥ + �M⊥ cos ζ )

× 1

1 − iᾱk

∫
x

eiq·xSr→r ′ (x; M, �P k
⊥, 2Ysym − y + v�Y ) (A29)

v→−v= M
∑
k=±

∫ s+

s−
dsg(s)

∫ −1

+1

−�Ydv√
m2

⊥ cosh2 (−v�Y ) − p2
⊥

∫ π

0
dζ (M⊥ + �M⊥ cos ζ )

× 1

1 − iᾱk

∫
x

eiq·xSr→r ′ (x; M, �P k
⊥, 2Ysym − y − v�Y )

=
∑
k=±

∫
R

1 + iᾱk

1 + (ᾱk )2

∫
x

eiq·xSr→r ′ (x; M, �P ±
⊥ , Ȳ ), (A30)

where the barred quantities have been reflected about ysym,
and

ᾱk ≡ αk
(
Ȳ
)

(A31)

= M⊥
M�

sgn
[
(q0)2 − q2

z

]
β(Y ) − �q⊥ · �P k

⊥
M�

. (A32)

To proceed further, we now consider the cases |q0| � |qz|
and |q0| < |qz| separately.

(a) |q0| � |qz|. In this case, β → β and γ 2 → γ 2 when
y → ȳ, so that SCC

r , SCS
r , SSS

r , and SSC
r are all sym-

metric; i.e.,

SCC
r (�q⊥; Ȳ ) = SCC

r (�q⊥; Y ), (A33)

SCS
r (�q⊥; Ȳ ) = SCS

r (�q⊥; Y ), (A34)

SSC
r (�q⊥; Ȳ ) = SSC

r (�q⊥; Y ), (A35)

SSS
r (�q⊥; Ȳ ) = SSS

r (�q⊥; Y ). (A36)

Furthermore, it is obvious that ᾱk → αk =
[M⊥β(Y ) − �q⊥ · �P k

⊥]/(M�) as well. Together, with
Eq. (A26), this implies that

SCC
r←r ′ (�q⊥; ȳ) = SCC

r→r ′ (�q⊥; y), (A37)

SCS
r←r ′ (�q⊥; ȳ) = SCS

r→r ′ (�q⊥; y), (A38)

SSC
r←r ′ (�q⊥; ȳ) = SSC

r→r ′ (�q⊥; y), (A39)

SSS
r←r ′ (�q⊥; ȳ) = SSS

r→r ′ (�q⊥; y), (A40)

i.e., the symmetries of each Fourier moment are pre-
served by the phase-space integrals.

(b) |q0| < |qz|. In this case, reflection about ysym by itself
is not a symmetry of the Fourier moments after the

phase-space integration, since now

ᾱk = −M⊥β(Y ) − �q⊥ · �P k
⊥

M�

�= αk. (A41)

Fortunately, however, some symmetry can be restored
if the reflection about ysym is accompanied in this case
by the reflection �q⊥ → −�q⊥, in which case

ᾱk = −M⊥β(Y ) − �q⊥ · �P k
⊥

M�

= −αk. (A42)

Under this combined transformation, we now find that

SCC
r (−�q⊥; ȳ) = SCC

r (�q⊥; y), (A43)

SCS
r (−�q⊥; ȳ) = −SCS

r (�q⊥; y), (A44)

SSC
r (−�q⊥; ȳ) = −SSC

r (�q⊥; y), (A45)

SSS
r (−�q⊥; ȳ) = SSS

r (�q⊥; y), (A46)

as follows immediately from Eq. (A25). Taking all of
this together with (A26), one finds that

SCC
r←r ′ (−�q⊥; ȳ) = SCC

r→r ′ (�q⊥; y), (A47)

SCS
r←r ′ (−�q⊥; ȳ) = −SCS

r→r ′ (�q⊥; y), (A48)

SSC
r←r ′ (−�q⊥; ȳ) = −SSC

r→r ′ (�q⊥; y), (A49)

SSS
r←r ′ (−�q⊥; ȳ) = SSS

r→r ′ (�q⊥; y), (A50)

so that the symmetries are again preserved in this
case.
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