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For relativistic heavy ion collisions, the Bjorken formula is very useful for estimating the initial energy density
once an initial time 7 is specified. However, it cannot be trusted at low energies, e.g., well below /s ~ 50 GeV
for central Au+Au collisions, when 1 is smaller than the finite time it takes for the two nuclei to cross each
other. Here I extend the Bjorken formula by including the finite time duration of the initial energy production.
Analytical solutions for the formed energy density in the central spacetime-rapidity region are derived for
several time profiles. Compared to the Bjorken formula at low energies, the maximum energy density reached
is much lower, increases much faster with the collision energy, and is much less sensitive to the uncertainty of
the formation time, while the energy density time evolution is much longer. Comparisons with results from a
multiphase transport confirm the key features of these solutions. The effect of the finite longitudinal width of the
initial energy production, which is neglected in the analytical results, is investigated with the transport model
and shown to be small. This work thus provides a general model for the initial energy production of relativistic

heavy ion collisions that is also valid at low energies.
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I. INTRODUCTION

Relativistic heavy ion collisions aim to create the quark-
gluon plasma (QGP) and study its properties [1,2]. Therefore
it is important to better understand the initial energy pro-
duction, including the maximum value and time evolution of
the energy density in the overlap volume. For low energies
such as the Beam Energy Scan at the Relativistic Heavy Ion
Collider, the relationship between the time evolution of the
energy density or net-baryon density and the possible critical
point of QCD becomes important [3,4]. The Bjorken formula
[5] is a very useful tool in estimating the initial energy density
in the central rapidity region after the two nuclei pass each
other:

1 dE, 0
At dy

In the above, A, represents the full transverse area of the
overlap volume, and dE_/dy is the rapidity density of the
transverse energy at midrapidity (at an early time ¢), which
is often approximated with the experimental d E /dy value in
the final state. Because the Bjorken energy density diverges
as t — 0, a finite value is needed for the initial time 7o [2].
Considering that the production of a particle takes a finite
formation time 7, one can take the Bjorken formula at time
7, to obtain the initial formed energy density.

A severe limitation of the above Bjorken energy density
formula of the initial state results from the fact that it neglects
the finite thickness of the colliding nuclei (along the beam
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direction z), which leads to a finite duration time, as well as a
finite longitudinal width in z, for the initial energy production.
Using a hard-sphere model for the nucleus, it will take the
following time for two nuclei of the same mass number A to
cross each other in a central collision in the center-of-mass
frame [6]:

P, @

sinh y,,

where y,,, is the projectile rapidity in the center-of-mass frame
and R, is the nuclear radius. Therefore the Bjorken formula
is only valid when the duration time (or crossing time) is
much smaller than the formation time 7, [2]. As an example,
for 7o = 0.5fm/c, the Bjorken formula cannot be trusted
for central Au+Au collisions well below /s ~ 50 GeV
because d; ~ 0.5 fm/c there.

My goal of this study is to derive a Bjorken-like formula so
that it is also valid at low energies where the Bjorken formula
breaks down. I accomplish this by including the finite crossing
time in the time profile of the initial energy production. I focus
on the formed energy density, averaged over the full transverse
overlap area, in the central spacetime-rapidity region (1, =
0) in the center-of-mass frame of central collisions of two
identical nuclei.

II. METHOD

Because the Bjorken formula [5] is only valid at very high
energies where the two incoming nuclei are highly Lorentz
contracted [2], it essentially assumes that the initial energy
production occurs at time ¢t = 0. Then the quanta appear (i.e.,
are formed) after a certain proper time 7j, as shown by the

©2018 American Physical Society


http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.98.034908&domain=pdf&date_stamp=2018-09-14
https://doi.org/10.1103/PhysRevC.98.034908

ZI-WEI LIN

PHYSICAL REVIEW C 98, 034908 (2018)

@ ®)

FIG. 1. (a) Schematic picture of the collision of two nuclei,
where the initial energy production takes place over the shaded area
of finite widths in ¢ and z. (b) This simplified picture is considered for
analytical derivations of energy density at central spacetime rapidity
ns — 0 (as d — 0): particles could be initially produced at any time
x within [0, d,] at z = 0 and then propagate to observation time .

lower dot-dashed hyperbola in Fig. 1(a). This proper time can
be viewed as a typical decay time of the color fields created
from primary collisions of the two nuclei [7]. Because of y =
ns in the Bjorken ansatz, the quanta appearing at n; = 0 or
y = 0 are initially produced at time ¢ = 0 on the z = 0 plane.

Once one considers the finite crossing time of the two
nuclei, however, the initial energy production actually goes on
throughout this period of time. Figure 1(a) shows a schematic
picture, where the two nuclei come into contact at time 0 and
pass each other at time d; [6]. The two solid diagonal lines
represent the light-cone boundaries (in natural units where the
speed of light was set to one), while each pair of the parallel
dashed lines represents the boundaries of the t — z trajectories
of nucleons in an incoming nucleus that moves with speed
B. The shaded area, indicating the primary nucleon-nucleon
collision region, shows that the initial energy production takes
place over a finite amount of time. Again assuming a proper
formation time ty, primary collisions at time 0 will then
produce formed quanta on the lower hyperbola while primary
collisions at time d; will produce formed quanta on the upper
hyperbola as shown in Fig. 1(a). In addition, one sees that the
initial energy is produced over a finite longitudinal width; for
example, a particle initially produced at z > 0 may propagate
with a negative rapidity and later cross the z = 0 plane.

To obtain analytical results for the central spacetime-
rapidity region, I include the finite duration time in my formu-
lation but neglect the finite longitudinal z width in the initial
energy production. Figure 1(b) shows the simplified schematic
picture for the region at ; ~ 0, where the initial particles and
energy are assumed to be produced over the crossing time
but at z = 0. To obtain analytical results, I make minimal
extensions to the Bjorken formula framework [5], thus I
also neglect secondary particle interactions or the transverse
expansion. The numerical results from a multiphase transport
(AMPT) model [8], however, include the finite longitudinal
width in z, secondary parton scatterings, and the transverse
expansion. In particular, I shall study with AMPT the effect of
the finite longitudinal width in the initial energy production,
which is neglected in the analytical formulation. Note that I
only address the Bjorken energy density formula of the initial
state [2,5] shown as Eq. (1), not the more general Bjorken

model [5] that also assumes local thermal equilibrium for the
produced quanta in the initial state and then considers the
subsequent hydrodynamic space-time evolution. Furthermore,
because I only consider the central spacetime-rapidity region,
I have written the time variable as ¢ instead of 7.

Let us write the production rate of the initial transverse en-
ergy rapidity density around y &~ 0 at time x as d°E, /dy/dx.
Thus there could be particle productions at any time x €
[0, d;], while dzET/dy/dx =0 for x <0 or x > d,. With
the picture of Fig. 1(b), I evaluate the energy density within
a narrow region —d < z < d at time ¢t > d;. For a particle
produced at time x to stay within this z region, its rapidity
needs to satisfy

d

|tanh y[ & |y < — 3

at y =~ 0. Note that the right-hand side above can always be
made small with small-enough d, so that d*E, /dy/dx does
not depend on y within this small y range. Therefore the
average energy density in this region at time ¢ is

& 2F,
=— “)
2dA, dy dx (t — x)

From now on I shall study the formed energy density by
assuming a finite formation time t, for the produced particles.
A similar analysis gives the following average formed energy
density at any time ¢ > T, as

1 ("% d’E, dx
— — . )
AL Jo dy dx (t — x)

As in the Bjorken formula, €(r < 7,) = 0. However, an im-
portant feature of the above formula is that it applies to early
times when the two nuclei are still crossing each other (i.e.,
t < d; + 7,). Note that Eq. (5) above reduces to the Bjorken
formula when one neglects the finite crossing time by taking
d’E,/dy/dx — 8(x) dE,/dy. To proceed further, I will next
take specific forms for the time profile of the initial energy
production d>E, /dy/dx.

e(t) =

III. RESULTS

For simplicity, I first assume that the initial energy is
produced uniformly from time #; to #, (with tp; =1, — 1;):
d*E, 1 dE,
= — , ifx ey, nl] 6
dydr o1 dy x € [11, 1] (6)
Note that one only needs the above assumption to apply at
y =~ 0. Also, I have not related #; and #, to d, for the sake of
generality. An illustration of this time profile is shown as the
dashed curve in Fig. 2. Equation (5) then gives the following
solution for the formed energy density:

() = ——9Ey (’ “), el +1,041];
ATl21 dy Te F F
__1 dE 1n<t_t‘>, ifr >0+, 7
ATl21 dy t—10n

One can easily verify that, for t{ =0 and # /7, — 0, this
solution reduces to the Bjorken formula of Eq. (1).
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FIG. 2. Time profiles for the initial energy production at central
spacetime rapidity: a uniform profile (dashed curve), B profiles with
integer powers n = 1 to 5 (solid curves), and a triangular profile
(dot-dashed). Circles represent the time profile of partons within
mid-spacetime-rapidity from the string melting AMPT model for
central Au+Au collisions at /s = 11.5GeV.

Qualitatively, this energy density starts from O at time
t; + 7., grows smoothly to the following maximum value €™**
at time #, + 7, and then decreases abruptly after the energy
production stops:

| dE t
i1+ 2).  8)
AT[21 dy Tr

Compared to the maximum energy density €,(z,) given by the
Bjorken formula, one has

mE}X t
i _ Ty (1 + ﬂ). )
T,

€,(t)

€t = €milh +7,) =

Therefore the €™ value above is always smaller than the
Bjorken initial energy density: €™ < €,(7;) at low energies
where 7, /1y is small, while at high energies €™ ~ €,(7,).
Furthermore, as 7./f; — 0, the peak energy density €™
grows as In(1/t,), much slower than the 1/t growth of the
Bjorken formula. This means that, after taking into account
the finite crossing time, the maximum energy density achieved
will be much less sensitive to the uncertainty of 7., especially
at lower energies where f,; = O(d,) is bigger. In addition,
Eq. (7) shows that the initial energy density at time later
than 7, 4 7, is independent of 7. One will see next that these
features are general and also apply to the other time profiles.
Because of the typical spherical shape of a nucleus, there
will be few primary nucleon-nucleon interactions when the
two nuclei barely touch or almost pass each other, while there
will be many such interactions when the two nuclei fully
overlap (around time d,;/2). I thus expect the time profile
of the initial energy production to peak around time d,/2
while diminish at time O and d,. Therefore I can choose
the following time profile based on the probability density
function of the beta distribution with equal shape parameters:

d’E,
dy dx

dE .
=ay[x(d, —x)I"—, ifx €[0,4]. (10
dy

In the above, power n does not need to be an integer, and a,, =
1/d?*"*1/B(n+1,n + 1) is the normalization factor with
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FIG. 3. Average formed energy densities at central spacetime
rapidity as functions of time for central Au+Au collisions at (a)
4.84 GeV and (b) 200 GeV from the uniform time profile with the
naive choice of t; = 0 and f, = d, (dashed), the § time profile for
n = 4 (solid), and the Bjorken formula (dotted). Three sets of curves
of each type correspond to 7, = 0.1,0.3 and 0.9fm/c.

B(a, b) being the B function. This smooth B profile reduces
to a uniform profile when n = 0; with an appropriate value of
n it can also well describe the transport model time profile, as
shown in Fig. 2. I obtain the following solution for the formed
energy density:

o 1 dE, [(t—rF)/th]”+1
€beta = -
A, dy m+1)Bn+1,n+1)¢
t—1. —T,
*F I’l+1,—n,1,n+2; ) ’
d; t

ift e[z, dr + 1.1

LdE 1 rl +1,2 +2d‘
= — — %k ,n , 2l s B

A, dy t 2 t

ift>d +r,. (11)

F above is the Appell hypergeometric function of two vari-
ables, and , F| is the Gaussian hypergeometric function. One
can verify that for n = 0 the above solution reduces to Eq. (7)
forty =0and t, = d;.

I now apply these solutions to central Au+Au collisions.
The nuclear transverse area is taken as

A, =nR3, with Ry = 1.124"3 fm, (12)

where A = 197. I take the midrapidity d E, /dy as the follow-
ing data-based parametrization [9]:

dE, dE /Sin
T 125951 — 0.456 Now 1 . (3
dy dn part 11 ( 235 (13)

where , /s, must be greater than 2.35 in the unit of GeV. Also,
I take Npuw = 2A for central collisions.

My results for central Au+Au collisions at /s, =
4.84GeV and 200 GeV are shown in Fig. 3 for differ-
ent formation times 7, = 0.1, 0.3 and 0.9fm/c. Also shown
are the results implied by the Bjorken formula: €, (¢) =
1/(At)dE,/dy for t > 7, (and =0 for t < 7,.). I have taken
n =4 for the B profile according to Fig. 2, and I take the
naive choice of #; = 0 and #, = d; for the uniform profile in
Fig. 3. At 4.84 GeV, one sees that the time evolution of the
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energy density in either time profile has a much bigger width
(e.g., full width at half maximum) than the Bjorken results,
while the maximum energy density is much lower than the
corresponding Bjorken value for the same 7,. As expected,
my maximum initial energy density €™ changes by a much
smaller factor of 2.1 (uniform profile) or 2.5 (8 profile) when
7, changes from 0.1 to 0.9 fm/c; while the Bjorken initial
energy density changes by a factor of 9. On the other hand,
my results at 200 GeV are much closer to (although still
different from) the Bjorken results; this is expected because
the crossing time there (d;, &~ 0.12fm/c) is very small. For
both energies, my results approach the Bjorken results at late
times.

Both the Bjorken formula and my method have neglected
secondary particle interactions and the transverse expansion,
which could affect the time evolution of the energy density.
These dynamics can be described by transport models such as
AMPT [8] or hydrodynamic models [10,11]. Now I compare
my analytical solutions with results from the string melting
AMPT model, which includes a conversion of excited strings
into a parton matter, partonic scatterings, a quark coalescence
for hadronization, and hadronic scatterings. For this study, the
string melting AMPT model [8] was improved by including
the finite thickness of nuclei, then I calculate the average local
energy density (over the hard-sphere transverse area A, ) for
partons at mid-spacetime-rapidity following the method of an
earlier study [12]. Circles in Fig. 2 represent the distribution
of production time of partons within mid-spacetime-rapidity
from AMPT for central (b =0 fm) Au+Au collisions at
/S = 11.5GeV. I thus take n = 4 for the 8 time profile,
because this can reasonably describe the AMPT time profile.
To get the same mean and standard deviation as the 8 profile
(forn = 4),Isett;y = 0.29d,; and t, = 0.71d, for the uniform
profile.

Figure 4 shows my results from different time profiles
together with the Bjorken results at different energies. One
sees from Figs. 4(a) and 4(d) that, unlike Fig. 3, results from
the uniform and B profiles here are quite close to each other
once the uniform profile is set to the same mean and standard
deviation as the 8 profile. Curves with filled and open circles
are, respectively, the AMPT results with and without the finite
nuclear thickness. Note that each AMPT curve with finite
thickness was shifted a bit in time, so that it peaks at the
same time as the corresponding g profile for 7, = 0.1 fm/c, to
better compare their shapes. One sees that at the high energy
of 200 GeV the AMPT results with and without the finite
nuclear thickness are essentially the same; the Bjorken result
and my analytical results are also very similar (especially
after allowing shifts in time). This confirms that expectation
that the finite nuclear thickness can be mostly neglected at
high-enough energies. One also sees that the AMPT results
are generally wider in time; partly because the parton proper
formation time in AMPT is not set as a constant but is
inversely proportional to the parent hadron transverse mass
[8]; I find that the parton formation time distribution at mid-
spacetime-rapidity has a mean value of ~0.3 fm/c but has a
long tail. The finite z width for the initial energy production,
secondary parton scatterings, the transverse expansion, and
the effective work done during the expansion [13,14] of the
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FIG. 4. Average energy densities at central spacetime rapidity for
the uniform (dashed curves), B (solid curves), triangular (dot-dashed
curves) time profiles and the Bjorken formula (dotted curves) for
7. = 0.1 and 0.3 fm/c, in comparison with the corresponding AMPT
results (circles), for central Au+Au collisions at (a) 4.84 GeV,
(b) 11.5 GeV, (¢) 27 GeV, and (d) 200 GeV. I have used #; = 0.29d;
and #, = 0.71d, for the uniform profile and #, = 0.20d, and 1, =
0.80d, for the triangular profile so that they both have the same mean
and standard deviation as the j profile.

dense matter in AMPT can also cause differences from the
analytical results. Overall, one sees that the AMPT results
without considering the finite nuclear thickness are similar
to the Bjorken results, while the AMPT results including the
finite thickness are similar to my analytical results.

IV. DISCUSSIONS

One can also take a triangular time profile, as illustrated
by the dot-dashed curve in Fig. 2, from time ¢, to t, with the
peak at t™¢ = (t; +1,)/2: d*E,/dy/dx o« (x —t;) for t €
[t1, tmia] While o (t; — x) for t € [tmid, t2]. One then obtains
the following solution:

4_dE, t+h 4T+ —1)l (t_“
- T, — n ,
A3, dy b : T

g
if t e[ty + 7, tmia + 715

€tri (t) =

4 dE[ 4t - L=8
= —th—T —1)In
A3 dy T : ! — Imid
I — Imid .
+(t, —t)In ,  if t € [tmig+T., 4T 15

4 dET t—n
= 5 (t—t)In
Aty dy t — tmid

! — Imid

+(t2—t)ln( )} ifr>n+7. (14)

t—10n
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FIG. 5. Maximum energy density at central spacetime rapidity
(ny, = 0) averaged over the transverse overlap area versus the colli-
sion energy for central Au+Au collisions from the Bjorken formula
(dashed curves), the uniform profile (solid curves), and the triangular
profile (dotted curves) for t, =0.1,0.3 and 0.9fm/c. I have used
t; = 0.29d, and 1, = 0.71d, for the uniform profile and #; = 0.20d,
and #, = 0.80d, for the triangular profile.

This energy density increases smoothly to the following max-
imum value €™ at a time within (fmig + 7, # + 7,.) and then
decreases smoothly with time:

em =€i((t+ 0+ 1, + /T2 01 + 1, )/2)
= 2 dETI:_l_i_{_ I 2_{_&
Aty dy hr VoV bi

+2m(1+v1;2&”*>} (15)

Figures 4(b) and 4(c) show that results from the 8 and
triangular profiles are almost identical in shape and close in
magnitudes, after I set t; = 0.20d; and 7, = 0.80d, for the
triangular time profile to have the same mean and standard
deviation as the B profile for n = 4. An advantage of the
triangular profile is that one has analytical expressions for its
€™ and the corresponding time.

Figure 5 compares (¢™*, the maximum value of the av-
erage energy density at central spacetime rapidity n, = 0,
in central Au+Au collisions from the Bjorken formula with
that from my analytical extension, including the uniform and
triangular time profiles that have analytical solutions for e™**.
My results from the uniform and triangular time profiles are
quite close to each other after their #; and ¢, parameters are
chosen so that each profile has the same mean and standard
deviation as the g profile for n = 4. One sees that the increase
of the maximum energy density with the collision energy is
much faster than the prediction from the Bjorken formula;
this is consistent with Eq. (9), which shows that the Bjorken
formula overestimates the maximum energy density more at
lower energies. The overestimation of €™ by the Bjorken
formula is also more severe for smaller 7. At high energies,
however, one sees that my results approach the Bjorken

3.

Average energy density €(t) (GeV/fm’)
>

T T T T T T 16
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(a) 4.84 GeV

6—© w/o finite t&z T

(© 27 GeV |

(b) 11.5 GeV

—
)
T

o—e with finite t&z |

=]

_ _ with finite t
but w/o finite z

'S
|

(=]
Pl

t (fm/c)

FIG. 6. AMPT results of average energy densities at central
spacetime rapidity for central Au+Au collisions at (a) 4.84 GeV,
(b) 11.5 GeV, and (c) 27 GeV when excluding the finite widths in
t and z (open circles), including the finite widths in ¢ and z (filled
circles), and including the finite width in ¢ but not the finite width in
z (dashed curves).

formula at the same 7,.. Note that these results are obtained
using the dE., /dy parametrization in Eq. (13) [9], in which
precision should be improved at very low collision energies,
e.g., when m < 3GeV.

Because my analytical method includes the finite time
duration but neglects the finite z width for the initial energy
production, further work may be warranted to include this
effect analytically. Note that the finite width in z is already
included in one set of the AMPT results (curves with filled
circles) shown in Fig. 4. Here I further demonstrate this effect
numerically in Fig. 6. By modifying the AMPT model to
include the finite width in 7 but not the finite width in z, |
obtain the dashed curves in Fig. 6; they are quite close to
the corresponding full AMPT result (filled circles) in both the
peak magnitude and shape (with the width slightly smaller),
while at low energies they are very different from the AMPT
results that neglect both finite widths in 7 and z (open circles).
These results suggest that the effect of the finite width in z
on my analytical results is somewhat small. Again note that,
to better compare the shapes, each AMPT curve with finite
thickness was shifted a bit in time so that it peaks at the same ¢
value as the corresponding dashed curve. Similar to Fig. 5, one
also sees in Fig. 6 that the increase of the maximum energy
density €™ with the collision energy ,/s, is much faster
after one includes the finite time duration of the initial energy
production.

The analytical results of this study only address the energy
density at spacetime rapidity n, = 0 in the center-of-mass
frame of the collision. Therefore the results for a realistic
finite range of spacetime rapidity, e.g., |n,| < 1/2, would be
somewhat different. Also, I have only addressed the energy
density averaged over the full transverse overlap area A,.
Note that the transverse overlap area at time before d,/2 is
smaller because of the partial overlap of the two nuclei. To
average over this partial overlap area, one may replace A,
in my solutions by A [1 — (1 —2t/d,)*] for t < d,/2. This
will enhance the energy density somewhat at early times. Also
note that the finite duration of proper time in the initial energy
production was considered in hydrodynamic models [15,16],
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where an energy source term with a finite time duration can
be introduced and my method can be applied to help describe
the initial stage.

V. CONCLUSIONS

I have extended the Bjorken formula by including a time
profile for the initial energy production because of the finite
nuclear thickness. By considering a simple uniform as well
as more realistic time profiles, I have obtained analytical so-
lutions of the formed energy density in the central spacetime-
rapidity region. These solutions approach the Bjorken formula
at high collision energies and/or at late times, but they are
also valid at low energies where the Bjorken formula breaks
down. I then apply the solutions to central Au+Au collisions
in the energy range /s, € [4.84, 200] GeV. After taking into
account the finite crossing time, at lower energies where the
crossing time is bigger, the maximum energy density achieved
is much less sensitive to the uncertainty of r, and increases

much faster with the collision energy than the Bjorken for-
mula. At low energies, the energy density reaches a much
lower maximum value than the Bjorken energy density for the
same formation time 7., but the width of the time evolution
of energy density is much bigger. In addition, comparisons
with the results from the string melting AMPT model confirm
the key features of the analytical solutions. The AMPT results
also suggest that the effect of the finite longitudinal width
of the initial energy production on my analytical results is
small. Therefore this extension provides a convenient tool to
model the initial energy production in relativistic heavy ion
collisions, especially at low energies.
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