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Models, measurements, and effective field theory: Proton capture on 7Be at next-to-leading order
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We employ an effective field theory (EFT) that exploits the separation of scales in the p-wave halo nucleus 8B
to describe the process 7Be(p, γ )8B up to a center-of-mass energy of 500 keV. The key leading-order (LO) and
next-to-leading-order (NLO) results appeared in our earlier papers. Here we first present full details of the EFT
calculation. We develop the lagrangian and power counting in terms of velocity scaling, thereby making manifest
that the Coulomb force between 7Be and proton plays a major role in both scattering and radiative capture at these
energies: Coulomb interactions must be included to all orders in αem. The EFT calculation of the capture reaction
is then carried out using Feynman diagrams computed in time-ordered perturbation theory, so we recover existing
quantum-mechanical technology such as the Lippmann-Schwinger equation and the two-potential formalism for
the treatment of the Coulomb-nuclear interference. Meanwhile, the strong interactions and the E1 operator are
dealt with via EFT expansions in powers of momenta, with a breakdown scale set by the size of the 7Be core,
� ≈ 70 MeV/c. This is worked out up to NLO in the EFT expansion; at this order the relevant physics in the
different channels that enter the radiative capture reaction is encoded in ten different EFT couplings. The result
is a model-independent parametrization for the reaction amplitude in the energy regime of interest. In the second
part of the paper we consider other approaches that have been used to describe 7Be(p, γ )8B in this energy range.
We discuss the relationship of EFT to each of these approaches in qualitative terms and then make the connection
quantitative by determining what the ten NLO EFT coefficients are in five different calculations that we consider
representative. The EFT parameters are of natural size in all five cases, which shows that each of these earlier
calculations corresponds to a particular point in the EFT parameter space. This understanding of the relationship
between EFT and other ways of computing 7Be(p, γ )8B allows us to update earlier results for the dependence
of S(0) on asymptotic normalization coefficients and scattering lengths, since EFT separates dependence on
these asymptotic quantities from dependence on shorter-distance contributions to the matrix element. We also
summarize the fit to experimental capture data presented in our earlier work and explain why we obtain an
extrapolated S(0) with a markedly smaller error bar than that of the previous standard evaluation. Finally, we
demonstrate that the only N2LO corrections in 7Be(p, γ )8B come from an inelasticity that is practically of N3LO
size in the energy range of interest, and so the truncation error in our calculation is effectively N3LO.
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I. INTRODUCTION

The nuclear reaction 7Be(p, γ )8B creates 8B nuclei inside
the Sun, where they quickly decay to produce neutrinos.
These 8B neutrinos constitute most of the solar neutrino
spectrum above 2 MeV [1,2] and thus nearly the entire signal
in chlorine- and water-based detectors [2]. Constraints on
neutrino properties and solar interior composition based on
this signal depend on comparisons of detected and theoretical
neutrino production rates, which require the 7Be(p, γ )8B
cross section [2]. However, this cross section must be ex-
trapolated from experimental data above 100 keV down to
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solar energies around 20 keV using a theoretical model, and
the error associated with model selection dominates recent
evaluations [1,3,4].

The so-called Halo effective field theory (halo EFT) de-
veloped in recent years [5–15] is well suited to the study
of proton capture on 7Be, because there is a nice separation
of scales in the 8B system near the proton threshold. The
effective size of the 7Be nucleus can be estimated by looking
at its lowest break-up channel, 7Be → 3He + 4He, which has
a 1.5874 MeV [16] threshold. This translates to an effective
binding momentum of

√
2M ′

R1.5874 ≈ 70 MeV/c (M ′
R is

the 3He-4He reduced mass ≈12/7MN ). In developing our
EFT below, we take this as the high momentum scale �,
where the effective theory breaks down, corresponding to a
short distance scale �−1 ∼ 3 fm. The other scales relevant
to low-energy direct capture are small compared with �.
The binding energy of 8B in the 7Be + p breakup channel is
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B = 0.1364 MeV [16,17], which translates to the bind-
ing momentum γ = √

2MRB = 14.96 MeV/c. Here the re-
duced mass MR = MnMc/(Mn + Mc ) while Mn = 938.272
MeV/c2, and Mc = 6534.18 MeV/c2. (In our notation, n de-
notes a valence “nucleon” and c denotes a “core” from which a
larger nucleus is constructed.) The static Coulomb interaction
between 7Be and the proton is important near and below
threshold, so the Coulomb momentum kC ≡ QcQnαemMR =
23.9487 MeV/c (with Qc and Qn the particle charges) is
also a key parameter. This may be written in terms of the
channel momentum k and the usual Sommerfeld parameter
as kC = kη, and it also is small compared to �. Besides
“elastic” channels containing the 7Be ground state, there is
a low-energy excited state of 7Be, with the excitation en-
ergy E∗ = 0.4291 MeV; the corresponding momentum γ� ≡√

2MRE∗ = 26.5352 MeV/c is again small compared to �.
(Note that these numbers are slightly different from those
in our previous work [18], because here we update the 8B
and 7Be masses to the latest mass evaluation [16,17].) All
these momenta correspond to large distance scales ∼10 fm.
As a result, we can consider 7Be as a “core” particle with
one low-energy excitation, and 8B as a shallow bound state
with both 7Be + p and 7Be∗ + p channels. Meanwhile, the
s-wave interaction between 7Be and p in the initial state of our
reaction—for which there are two spin channels—has scatter-
ing lengths that are markedly larger than the short-distance
scale. This is true in both the total-spin-one channel, where
a(3S1 ) ≈ 25 fm, and in the total-spin-two channel, for which
a(5S2 ) ≈ −7 fm [19]. In that sense, the s-wave interactions
between core and proton are abnormally strong. Dynamics
associated with all of these low-momentum scales—γ , kC ,
γ�, as well as 1/a(5S2 ) and 1/a(3S1 )—can be accounted for
in the EFT framework. Based on this, an order-by-order
expansion in a parameter that is ∼γ /� ≈ 0.2 exists for the
scattering and reaction amplitudes.

The resulting rapid convergence of the EFT expansion
reflects a prominent feature of all models of 7Be(p, γ )8B:
the dominance of physics at large length scales, i.e., small
momenta. Indeed, while the preceding paragraph examines
7Be(p, γ )8B in the language of EFT, much of its physics con-
tent is familiar from the existing literature. One of our goals in
this paper is to elucidate the qualitative and quantitative con-
nection between halo EFT and these model calculations. Our
discussion emphasizes models that have played a significant
role in the community’s understanding and data-fitting of this
system. These include potential models in which 8B is made
of structureless protons and 7Be nuclei interacting through
an effective potential [3,20–24], phenomenological R-matrix
models that avoid an explicit potential by reducing its effects
to a few fitted parameters [25,26], and “microscopic” models
in which 8B is a collection of eight nucleons. Until recently,
computational limits restricted microscopic models severely,
but they nonetheless incorporated important effects like core
excitation and wave function antisymmetry [4,27,28]. Com-
putational limits are less severe now, and true ab initio cal-
culations with bare nucleon-nucleon interactions and much
more complete computational bases have become possible
[29]. An extensive summary of existing models, including
shell-model and similar approaches that have seen less use for

data fitting, may be found in the review of Ref. [1]. (See also
one additional model [30] published since that review.)

In all models, the dominance of regions with large cluster
separation and effectively zero strong interaction is the most
important feature of low-energy direct capture. The main
difficulty lies in quantifying the influence of the short-range
interaction. In this work we show that an EFT formalism
can provide a convenient language for understanding and
comparing features of all models, and for fitting experimental
data with a minimum of tacit assumptions. EFT might also
provide a check on the computational consistencies of more
complex models and a convenient parametrization for dissem-
inating their results. It should also be useful for consistently
stitching together multiple types of information from different
experiments and calculations.

We have studied 7Be(p, γ )8B and its isobaric analog in
EFT and presented our results in a series of short reports
[18,31–33] (see the discussion at the end of this section).
This paper serves to present all the technical details that
have not been shown in those short papers in one place and
also to discuss the relation of our EFT calculation to other
models. Note that the same reaction has been studied in EFT
in Ref. [34] when our earlier reports were finished. Some
content of the present paper is parallel to that in Ref. [34], as
will be mentioned in the main text. Readers who are mainly
interested in the relation to previous models and data fitting
and do not care to read a detailed exposition of the EFT cal-
culation should skip Secs. II–III and begin with the algebraic
expression for the S factor given at the end of Sec. IV.

In Sec. II, a simple model is used to illustrate the EFT
Lagrangian and power counting in a Feynman diagrammatic
approach. Similar theories have been developed before in
systems without Coulomb effects [9–11]. A system with s-
wave nuclear scattering in the presence of strong Coulomb
interaction was also studied in EFT [13,35], and the related
capture has been studied in Refs. [14,36]. Here our power
counting is based on so-called velocity scaling [37], to han-
dle the effective mass scale in the nonrelativistic dynamics.
The power counting for the EM interaction is also made
transparent. Then we identify the relevant leading order (LO)
and next-to-leading order (NLO) diagrams for s- and p-wave
scattering, as well as particular diagrams that contribute to the
capture reaction. Our s- and p-wave scattering calculations
are based on a series of time-ordered-perturbation-theory
diagrams, which yields the Lippmann-Schwinger expansion
(LSE). The LSE is briefly developed in Appendix A, where
we demonstrate that the Feynman diagrams and the corre-
sponding diagrams in the LSE are the same. However, the
LSE calculation is more suitable for the non-relativistic case at
hand and also exposes the connection between EFT and con-
ventional quantum-mechanical calculations, especially for the
capture reaction. In addition, Coulomb effects and Coulomb
wave functions (discussed in Appendix B) are well developed
in the space coordinate, and the LSE enables straightfor-
ward transformation into coordinate space. The developed
Lagrangian, power counting, and calculational techniques are
applied directly in Sec. III to study the 7Be + p system. The
major challenge there is to handle the spin degrees of freedom
and the low-energy excitation of the core, but the overall
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structure of the Lagrangian and the power counting is the same
as in the previous section.

With the EFT Lagrangian and power counting established,
the capture reaction is computed in Sec. IV. The relevant LO
and NLO diagrams are displayed there and their contributions
to the S factor are calculated using time-ordered perturbation
theory. Section V begins with a discussion of the EFT in
the language of existing capture models and vice versa. In
particular we show connections between the EFT formalism
and S-factor approximations that previously appeared in the
literature [38,39]. The section concludes with the results of
fitting our EFT to a selection of models [3,4,24,40] from
the literature. The fitted parameters locate published models
unambiguously in the space of EFT parameter values, and
show that our power counting works for those models.

In our previous LO calculation [18], we used the mea-
sured binding energy and scattering lengths along with
ab initio asymptotic normalization coefficients (ANCs) of the
8B bound state to fix couplings and find a S(E) curve in good
agreement with available data (within the uncertainty of the
EFT). The results showed significant dependence of S(E) on
the s-wave scattering lengths when all other parameters were
kept fixed. A mistake there is corrected in the current paper,
but the conclusion remains intact. The same LO calculation
was applied successfully to the isospin mirror of the present
reaction, i.e., 7Li + n → 8Li + γ in Ref. [31]. By comparing
these two calculations [18,31], we found that isospin breaking
occurs at a momentum scale at or above the breakdown scale
�, so that the EFT parameters in the two systems are not the
same when the EM interaction is switched on and off. For the
NLO amplitude developed in this paper, we took a different
strategy to fix parameters. We applied Bayesian methods
to analyze the modern direct capture data, constrain EFT
parameters, and obtain stringent constraints on the low energy
S(E) even without tight constraints on individual parameters.
The major results were reported in Ref. [32] with some details
of the Bayesian analysis in Ref. [33]; we summarize these in
Sec. VI. Section VII then contains a discussion of effects that
are N2LO and beyond in the EFT. We conclude with a short
summary of major results. Two appendices contain details
regarding the derivation of the Lippman-Schwinger equation
in the EFT and the properties of Coulomb functions.

II. A SIMPLE MODEL

In this section we use a simplified model to explain the
power-counting rules for the EFT Lagrangian and Feynman
diagrams. We then identify the LO and NLO diagrams for
proton-core scattering in the s and p waves, and show that this
reproduces the Coulomb-modified effective range expansions
(ERE) for the two scattering phase shifts. The energy variable
E in the resulting T -matrix operator T (E) is then continued
from the positive- (scattering) to the negative-(bound state) E
region to locate and study the shallow bound-state pole. This
pole is the analog, in this simple model, of the 8B pole in the
7Be-proton scattering amplitude. This section adds details to
our previous brief reports [18,31] and also lays the ground
work for the realistic study of the 7Be-proton system in the
next section. Although the power-counting discussion relies

heavily on Ref. [37], we reproduce it in full here, to make this
paper self-contained. In the process we tailor the arguments of
Ref. [37] to the context of light-nuclear reactions.

A. Lagrangian

The EFT Lagrangian is

L = c†
[
i∂0 − eQcA0 + (

→
∇ − ieQc A)2

2Mc

]
c

+ n†
[
i∂0 − eQnA0 + (

→
∇ − ieQn A)2

2Mn

]
n

−φ†
[
i∂0 − eQncA0 + (

→
∇ − ieQnc A)2

2Mnc

+ �φ

]
φ

+hsφ
†nc + c.c.

+π † i

[
i∂0 − eQncA0 + (

→
∇ − ieQnc A)2

2Mnc

+ �π

]
πi

+hpπ † i n Ṽ Ri c + c.c. (1)

Here c, n, φ, and π±1,0 are the core, proton (“nucleon”),
s-wave dimer, and p-wave dimer fields and c.c. stands for
complex conjugation. The system of units we use has e =
|e| = √

αem4πh̄c, here and below we also take h̄ = c = 1.
Repeated indices are implicitly summed, as they are through-
out the paper. In the simple model of this section the c and
n are spin-zero particles. Their masses are Mc and Mn and
their charges are Qc and Qn. Meanwhile, the φ and π spins
correspond to the s-wave scattering state (zero) and the p-
wave bound state (one). These dimer fields are introduced
to simplify the EFT calculation [10,13,34,36,41]. Both have
mass Mnc ≡ Mn + Mc, and charge Qnc ≡ Qc + Qn. �φ and
�π denote the dimers’ unrenormalized binding energies. Note
that the extra “−” for the free-φ-field piece of the Lagrangian
is introduced to reproduce a positive s-wave effective range,
as will become clear in later discussion—see Eq. (17b). The
interaction associated with hs is a contact ncφ coupling which
leads to nc s-wave scattering. A similar term generates the p-
wave interaction, but it is proportional to the relative velocity

Ṽ R ≡
(

V n − V c − e
Zeff

MR
A
)

, (2)

where operator V n (V c) picks up the velocity of the n
(c) particle, and Zeff/MR ≡ Qn/Mn − Qc/Mc, with MR ≡
MnMc/(Mn + Mc ) the reduced mass for the cn system. In
this coupling, the relative velocity dependence is required by
Galilean invariance; the photon coupling results from minimal
substitution on particle momenta.

It should be pointed out that if we take the usual convention
that, under time reversal, a field with spin J and spin pro-

jection m transforms as ψm(x, t )
T→ (−1)J−mψ−m(x,−t ),

then both the s- and p-wave interactions in Eq. (1) are even
under time reversal. Thus, under this standard convention for
a spin-J field, the factor of i in the π -n-c coupling that was
present in our previous publications [18,31] should, in fact,
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be absent. However, this change makes no difference to any
physical amplitude that was calculated in those papers.

Adding the free Lagrangian for the photon, which is just
the canonical one, Lγ = − 1

4FμνFμν with Fμν ≡ ∂μAν −
∂νAμ, to the matter Lagrangian of Eq. (1), then specifies
the dynamics—apart from some higher-order cnγ contact
interactions which will be discussed below.

B. Velocity scaling

Even without considering Coulomb interactions, the La-
grangian Eq. (1) naively exhibits three distinct energy and
momentum scales: the high (�) and low (klow) momentum
scales associated with the short- and long-distance dynamics,
and the reduced mass MR. The appearance of particle masses
obscures the power-counting discussion [10]. The so-called
velocity scaling proposed in Ref. [37] solves this problem by
guaranteeing the correct scaling of momenta and energies for

a non-relativistic theory. The low-momentum and low-energy
scales are rewritten as, respectively, MRV ≡ klow (relative
momentum) and MRV 2 (relative energy).

Velocity scaling proceeds by defining the scaling factors
for space and time as λx ≡ 1/(MRV ), and λt ≡ 1/(MRV 2),
since these are the typical space and timescales of interest
in our EFT. We then scale space and time with these factors,
defining new, dimensionless co-ordinates, via x → λx X and
t → λtT . The corresponding momentum and energy variables
are P 0 and P , defined by p → P/λx and p0 → P 0/λt ; again,
P and P 0 are then of order 1 in the EFT power counting.
Meanwhile, matter fields are scaled by λ

−3/2
x while Aμ is

scaled by (MRλ3
x )−1/2, so that the normalization of the free

Lagrangian is the same after rescaling. Defining a rescaled
Lagrange density, L̃, from the original action S, via S ≡∫

d3 XdT L̃ we find that the matter and minimal-substitution
part of this rescaled Lagrange density is

L̃ = c†
[
i∂0 − eQc√

V
A0 + (

→
∇ − ieQc

√
V A)2

2
(1 − f )

]
c + n†

[
i∂0 − eQn√

V
A0 + (

→
∇ − ieQn

√
V A)2

2
f

]
n

−φ†
[
i∂0 − eQnc√

V
A0 + (

→
∇ − ieQnc

√
V A)2

2
f (1 − f ) + �φλt

]
φ

+π † i

[
i∂0 − eQnc√

V
A0 + (

→
∇ − ieQnc

√
V A)2

2
f (1 − f ) + �πλt

]
πi + h̃s√

V
φ†nc

+ h̃p

√
V π † i n (V n − V c − eZeff

√
V A)i c + c.c. (3)

Here f ≡ Mc/Mnc, and h̃l ≡ hl

√
MR for l = s, p. For sim-

plicity, the symbols for the scaled fields, space-time deriva-
tives ∂0 and ∇, and V n,c are kept the same as before, but now
the natural expectation for all free-particle terms is that they
are of order 1, since, e.g., V n − V c, is the relative velocity
operator in units of the low velocity scale V . For a matter
field with four-momentum (P 0, P ) the propagator is now
1/(P 0 − 1/2P2).

Essentially by construction then, the only dependence on
mass in the Lagrangian (3) comes through the fraction f . The
velocity scaling proposed in Ref. [37] indeed makes it explicit
that the velocity V is what determines the suppression or
enhancement of different terms in the EFT. As with the more
standard Lagrangian written in terms of momenta, explicit
factors of V in strong-interaction vertices will be compensated
by factors of V� buried in couplings, e.g., the appearance of a√

V in the denominator (numerator) of the s-wave (p-wave)
interaction term means that, once the natural scaling of h̃s (h̃p)
is taken into account, that term will be enhanced by a factor
of

√
V�/V (suppressed by a factor of

√
V/V�).

Photon-matter interactions reveal the full benefit of veloc-
ity scaling, and in Eq. (3) we have also included the interac-
tions with photon fields that minimal substitution produces.
The factors of

√
V in the minimal couplings of A0 and A

photons are simply a consequence of the (different) roles of
time and space derivatives in nonrelativistic dynamics: the A0

photon coupling is proportional to 1√
V

, while the transverse

(A) one is ∝ √
V , so transverse photons are suppressed by

a factor of V relative to A0 photons. Here, in contrast to the
strong interactions, the suppression is by V/c, i.e., the velocity
V is to be measured in units of the speed of light—since
these minimal-substitution vertices are not sensitive to the
breakdown velocity V� it is not that ratio that controls the sup-
pression, but the (significantly smaller) V/c. Meanwhile, free-
photon propagation is also clearer in terms of velocity scaling:
for an on-shell transverse photon (e.g., the photon radiated
in the reaction of interest) its momentum and energy both
scale as MRV 2, but for an off-shell photon (e.g., a photon
exchanged between the charged core and the charged proton)
the two scale as MRV and MRV 2. This is made explicit
by defining a rescaled free-photon Lagrangian density L̃γ ,
through Sγ ≡ ∫

d3 XdT L̃γ , which is

L̃γ = 1
2Ai

[(∇2 − V 2∂2
0

)
δij − ∂i∂j

]
Aj

− 1
2A0∇2A0 − V ∂iA

0∂0Ai.

For the A0 piece of the photon field that generates
the Coulomb potential the rescaled propagator is then
1/K 2, while transverse (A) photons have a propagator

(−)
K 2−(V K0 )2 (δij − KiKj

K 2 ). In the last propagator, the factor

(V K0)2 in principle should be expanded in geometric series.
However, if the transverse photon goes on shell (becomes a
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= + + +...
DLO D(0)

+ + +...=

(0) (0) (0) (0) (0)

FIG. 1. The top equation shows the leading-order fully dressed propagator for φ, DLO
φ (LHS), which results from the resummation of the

bubble diagrams (RHS). The propagators in these diagrams are the free ones D
(0)
φ , as discussed in the main text. The lower equation expands

the filled oval as a series of 0, 1, 2,...Coulomb photon exchanges (double wavy lines) between the charged proton (solid line) and core (long
dashed line). This line labeling will be used throughout the entire paper.

“radiation photon”) that series needs to be resummed. A de-
tailed discussion of this distinction can be found in Ref. [37].
Since we will, for the most part, consider only internal photon
lines that obey the kinematics K ∼ MRV and K0 ∼ MRV 2

we do not reproduce that discussion here.

C. Power counting for nc strong-interaction parameters

The power-counting for the Lagrangian will then be com-
plete if we can determine how many powers of the high scale
(now V�) the strong-interaction parameters h̃s , �φ , h̃p, and
�π carry. Naive dimensional analysis (NDA) applied to the
rescaled Lagrangian yields the scalings shown in the first row
of Table I.

We now consider the Dyson series for the φ propagator,
DLO

φ , shown on the first line of Fig. 1. Based on the rescaled
Lagrangian in Eq. (3), we can estimate the size of these
diagrams by counting factors of V in vertices and propagators.
If we adopt NDA scaling for �φ then it is order one, and
since the rescaled particle momentum are also O(1), the free
propagator of the s-wave dimer φ field, D

(0)
φ is O(1). The

diagrams that constitute the leading part of the φ self energy
are defined on the second line of Fig. 1. In this paragraph we
consider only the self-energy bubble without any Coulomb
interaction: the first diagram on the right-hand side (RHS) of
the lower line of Fig. 1. In contrast to standard EFT power
counting there is no need to keep track of factors from loops,
since the scaled-momentum integration in the loop calculation
is always of order 1. However, the one-loop self energy is
enhanced, due to the presence of a factor h̃2

s ∼ V�

V
. Then,

for a natural �φ , each term in the Dyson series for the φ
propagator is larger than the last, thus vitiating a diagram-
matic expansion for the dressed propagator Dφ . Following

TABLE I. The first row shows NDA assignments of scales for
strong interaction couplings, while in the second row are those used
to reproduce the dynamics in our problem.

�φλt h̃s/
√

V �πλt h̃p

√
V

1
√

V�

V
1

√
V
V�

V�

V

√
V�

V
1

√
V
V�

Refs. [6,7] we ensure that each term in the Dyson series is
of the same EFT order by enhancing the unrenormalized φ
mass, to �φλt ∼ V�

V
as shown in the second row of Table I.

With this counting each term in the first line of Fig. 1 is of
the same size (∼V�/V ). Since we have kept the h̃s scaling
unchanged this constitutes a fine tuning between the NDA
estimate of the self-energy bubble and the size of the dimer’s
bare mass. The fact that the rescaled �φ ∼ V�/V while the
kinetic, P 0 − f (1 − f )P2/2, piece of the inverse propagator
is still ∼1 then also justifies dropping the kinetic piece of the
φ propagator at leading-order in the EFT expansion.1 In other
words, under the scaling in the second line of Table I, the
scaled s-wave dimer propagator can be taken to be static at
LO: D

(0)
φ = (−)

�φλt
∼ V

V�
.

For the p-wave dynamics, we follow the NDA assign-
ments. The p-wave bubble is then suppressed by a factor of
V/V�—in contradistinction to the s-wave bubble. We will
see that this is indeed the correct power-counting conclusion,
except in certain special kinematic regions. Such a power
counting, in which the self-energy of the p-wave dimer is
suppressed relative to its kinetic part, has been used in earlier
EFT studies [9,10] of systems sharing the same feature of a
low-energy p-wave resonance. Those studies, were, however,
for neutron-core scattering, and so did not consider the role of
the Coulomb interaction.

D. Power counting with Coulomb

Turning our attention, then, to the power counting of
such Coulomb interactions, we first point out that s-wave
scattering with strong Coulomb effects was previously studied
in this EFT in Refs. [13,35,36]. We will now reiterate these
arguments, albeit in the context of velocity-scaling, for the φ
propagator, and discuss their extension to the π propagator. As
already discussed, the self-energy bubble without Coulomb-
photon exchange, i.e., the first diagram on the RHS of the

lower line of Fig. 1, ∼
√

V�

V
× 1 ×

√
V�

V
∼ V�

V
. As we move

from left-to-right in that figure each diagram has an extra
exchange of a Coulomb photon. That results in the diagram

1 The factor f (1 − f ) ≈ 0.1 in 7Be-p system, which may suppress
the kinetic term further in this context. In general, f (1 − f ) � 1/4.
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= + + +...
DNLO

[ ]
DLO LO LO LO LO LO

FIG. 2. The NLO φ propagator DNLO
φ as a sum of zero and one

insertions of the dimer kinetic energy term that encodes the effective
range. The bracketed diagrams containing two, three, … insertions
are strictly higher order, but resumming them allows us to exactly
match the ERE.

acquiring an additional factor associated with the product of
the two A0-photon vertices ∼αemQcQnMR

k
= kC

k
≡ η. (Recall

that the A0-photon propagator is O(1) in terms of rescaled
momenta.) This factor, η, is known as the Sommerfeld
parameter. In the energy region of interest here it is ∼1.
The loop integrations also generate factors ∼1, and so,
as long as η ∼ 1, resummation of the ladder of Coulomb
photon exchange diagrams is mandatory. This then defines
the LO s-wave dimer self-energy: �φ ∼ V�

V
. Such a self-

energy, which includes the sum of the exchange of zero, one,
two,...Coulomb-photon exchanges will henceforth be denoted
by a shaded bubble. It follows that, in the kinematic regime
k ∼ kC , the addition of Coulomb photons does not change the
order of the self energy from the order computed with the
free nc Green’s function. It is just that now the self energy
must be computed using a core-proton Green’s function that
includes one-Coulomb-photon exchange to all orders in αem.
That self energy is still—as in the αem = 0 case—resummed
in a geometric series, as per the upper line of Fig. 1, and
this procedure generates the LO φ propagator, DLO

φ , in the nc
system.

To compute the dressed propagator at NLO, DNLO
φ , the

second diagram shown in Fig. 2 should be included. The
vertex depicted there as a small filled box is the φ-field kinetic
term that got demoted to NLO when we chose to enhance �φ

over its NDA estimate. We see that the diagram with the single
insertion of this vertex ∼ V

V�
× 1 × V

V�
, which makes it NLO

compared to the LO φ propagator, DLO
φ (we established that

is ∼ V
V�

). Note that if we wish to recover the effective-range
expansion exactly, not just order by order in the effective
range, then we must resum a geometric series involving this
kinetic-energy operator. This is the content of the terms in
square brackets in Fig. 2. However, strictly speaking, only the
second diagram on the RHS of Fig. 2 is NLO.

The situation for the p-wave dimer propagator, Dπ , is
different. In Fig. 3, we show the Dyson series for this
case. Since �πλt ∼ 1, the rescaled free propagator D(0)

π =
1

P 0−2/1P2f (1−f )+�π λt
is also of order 1. Meanwhile, the p-

= + +
DLO

[ +... ]
DNLO LO LO LO LO LO

FIG. 3. The NLO π propagator, DNLO
π , is a sum of shaded SE

(�π ) insertions, by using the free propagator as the LO one, DLO
π .

Again shading the bubble diagram means a sum of diagrams with 0
to ∞ number of Coulomb photon exchanges. To differentiate the π

propagator from the φ one, here, and in the following discussion, we
use a filled rectangle to label Dπ .

(0)

FIG. 4. A LO diagram (first) and a NLO diagram (second) for
s-wave to p-wave bound state radiative capture. The LO diagram is
due to the gauged n-c-π coupling. In the second diagram, the filled
box is for the contact coupling term discussed in Eq. (6). Comparing
the two gives the size of the coupling LE1.

wave self-energy �π ∼ V
V�

, since the loops generate factors
of order one, for an arbitrary number of Coulomb-photon
exchanges, as long as k ∼ kC , and the coupling h̃p gives
suppression by a factor of V . Therefore the second diagram
on Fig. 3’s RHS is ∼ V

V�
and hence is NLO. However, as

argued in Refs. [9,10,42], when the center-of-mass energy
(i.e., P 0 − P2/2Mnc in terms of the unscaled momentum) is
close to �π , the leading-order propagator becomes larger than
the NDA expectation. In this regime the entire series shown on
the RHS of Fig. 3 must be resummed. This is the regime that
is pertinent to p-wave bound states in the proton-core system,
and since we are interested in 8B as a p-wave proton-7Be
bound state we must use that resummation here.

E. Power counting for radiative capture

Turning our attention now to electromagnetic reactions: for
a general diagram and interaction vertex the power counting is
similar to that we have done so far for scattering. The size of a
diagram can be established by the number of factors of V that
it carries. Consider the diagrams A and B that both describe
the same capture reaction. If diagram A carries a factor V NA

and diagram B carries a factor of V NB , then NDA states that
their ratio is:

V NA−NB

V
NA−NB

�

=
(

klow

�

)NA−NB

, (4)

since the explicit factors of V from the Lagrangian must
be compensated by factors of V� in couplings. (Note that
this assumes that the same types of photon, longitudinal or
transverse, appear in both diagrams A and B. Otherwise
factors of V , not V/V�, will appear.)

First we compute the order of a graph that results from the
gauged hp coupling in the Lagrangian, which is just one of a
set of LO diagrams for the capture reaction. (The full set can
be found in Fig. 7.) This first diagram in Fig. 4 is order V ,
since it includes a factor of

√
V from the πnc coupling, and

an additional factor of
√

V from the coupling to the radiated
(A) photon.

Since EFT includes all interactions consistent with un-
derlying symmetries the Lagrangian Eq. (3) must be supple-
mented by terms that are gauge-invariant by themselves. The
leading such term that describes the E1 transition between the
s-wave and the p-wave dimer,

−ieZeffLE1π
†i Eiφ, (5)

with E the electric field, contributes to the capture reaction via
the second diagram in Fig. 4, where the filled box means the
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LE1 coupling. This is a contact term and it renormalizes loop
graphs that appear at the same order in the EFT exapnsion.
The factor of i ensures that this coupling is invariant under
time reversal. The factor was omitted in the Lagrangians for
short-distance electromagnetic operators that were given in
Ref. [10], but this does not affect any of the results presented
there.

After the velocity scaling discussed at the beginning of this
section is applied, the contact term changes to

−ieZeffL̃E1V
3
2 π †i Eiφ. (6)

Here the overall factor of the reduced mass has been elimi-
nated by defining L̃E1 = LE1MR . After this scaling the sec-
ond diagram in Fig. 4 is ∼h̃s

1√
V

D
(0)
φ eZeffL̃E1V

3
2 . Assuming

NDA for h̃s and L̃E1, and inserting the power counting for the
s-wave propagator identified above, Dφ ∼ V/V�, produces
an overall scaling of V 2 for the graph involving the E1 contact
operator that is proportional to the LEC LE1. Thus, according
to NDA, the ratio of the second and first diagram should
be of order V/V�, which shows that the E1 contact term
contributes to the capture into a p-wave bound state at NLO.
(The counting is different if the reaction proceeds from a
p-wave scattering state, into an s-wave bound state [36].) This
also means that L̃E1 ∼ 1/V�, and hence LE1 ∼ 1/�.

F. Toy amplitude for s-wave scattering up to NLO

Having established the power counting through the use
of velocity scaling we now return to expressions in terms
of momenta. The discussion can be continued in terms of
velocities, and this has the benefit of yielding dimensionless
integrals. But the connection with previous work in halo EFT
is more straightforward if amplitudes are written in terms of
momenta.

The power-counting discussion of the previous subsection
is based on an expansion in Feynman diagrams. However, in
practice, time-ordered perturbation theory is more suited for
our calculations. In particular, the use of time-independent
quantum-mechanical perturbation theory allows us to employ
the Lippmann-Schwinger equation (LSE) for resummations,
such as the one that takes place for Coulomb interactions
between the proton and the core. This, in turn, allows us to
identify Coulomb wave functions—with all their well-known
properties—in our calculation.

In fact, since particle-antiparticle pair production does not
exist in this EFT, the intermediate states that occur in a
given Feynman diagram all have fixed particle content. For
proton-core scattering this diagram is the same as a particu-
lar contribution to the LSE time-ordered perturbation theory
series. The only exception is transverse photon exchange
between charged particles, for which an example is shown
in Fig. 5. Its LHS is the one-transverse-photon exchange
Feynman diagram, which in fact equals the sum of two time-
ordered perturbation theory graphs on the RHS. However, in
our problem, radiative corrections turn out not to affect the
result at the accuracy we seek. Therefore, in the following
calculation, we generate Feynman diagrams but then use the
corresponding time-ordered perturbation theory expression to
do the matrix element computation. This in no way affects

= +

FIG. 5. Diagrams for nc scattering due to transverse photon
exchange. The LHS is the Feynman diagram. The corresponding
time-ordered perturbation theory diagrams are on the RHS.

the power counting, since the time-ordered and Feynman
graphs are equivalent. The LSE in the context of our EFT is
developed in Appendix A, which includes a brief discussion of
quantization, Fock-state definition, and calculations of various
matrix elements corresponding to vertices and propagators
in a Feynman diagram. Our notation is also defined there.
(While Ref. [35] used the LSE in their EFT calculation, the
connection to the original field theory is not fully explained
there.)

First we compute the φ propagator, defined in Eq. (A21)
as a matrix element between |φ〉 plane wave states. The
discussion of power counting above implies the LO free
propagator is static: D

(0)
φ should be defined as 〈P ′

φ| 1
�φ

|Pφ〉 =
(2π )3δ( Pφ − P ′

φ ) (−)
�φ

≡ (2π )3δ( Pφ − P ′
φ )D(0)

φ ( P ′
φ, Pφ, E);

the “−” is due to the negative norm of |φ〉. Notice that
a general matrix element always has the (2π )3δ() factor
due to total three-momentum conservation in time-ordered
perturbation theory.

The φ self energy, �φ , is given by the sum of the series of
zero to infinitely many Coulomb-photon exchanges depicted
in the second line of Fig. 1. The matrix element is written as

(2π )3δ( Pφ − P ′
φ )�φ ( Pφ ; E) (7)

= 〈P ′
φ|Ws

[
1

E − H0 + i0+ + 1

E − H0 + i0+

×WC

1

E − H0 + i0+ + · · ·
]
Ws |Pφ〉

= 〈P ′
φ|Ws

1

E − HC + i0+ Ws |Pφ〉, (8)

where we have summed the series algebraically in the third
line by defining the Coulomb Hamiltonian, HC = H0 + WC .
Meanwhile, as discussed in Appendix A, Ws is the strong
potential in this system, and it produces an nc → dimer
transition. The first Ws (reading from left to right) annihilates
n and c particles from the intermediate state and creates a φ
in the final state, while the second Ws annihilates the φ in the
initial state and creates a nc pair in the intermediate state.

To compute �φ , we make use of the Coulomb-distorted
two-body states |P, χ

(±)
p 〉 that are the eigenstates of HC [see

Eq. (A15)]. Here we omit the nc subscripts on momenta in
the nc Fock-space state; dimer momenta are still indicated as
such. We also introduce the intrinsic states, defined in the nc
center-of-mass frame, for the Coulomb Hamiltonian. With the
intrinsic Hamiltonian, HC defined as

HC = − ∇2

2MR
+ e2QcQn

4πr
, (9)
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the intrinsic states satisfy HC |χ (±)
p 〉〉 = E|χ (±)

p 〉〉 with the

relative energy E ≡ E − P2
φ

2Mnc
equal to the energy of the nc

pair in its center-of-mass frame. The matrix element of Ws

can then be reexpressed as

〈Pφ|Ws |P, χ (±)
p 〉 = (2π )3δ( P − Pφ )〈〈φ|Ws |χ (±)

p 〉〉;
〈〈φ|Ws |χ (±)

p 〉〉 ≡ hsχ
(±)
p (0). (10)

Note that since the ncφ Lagrangian is a point coupling the
probability amplitude for the conversion of an nc pair into a
dimer is the product of the coupling hs and the size of the nc
wave function at r = 0.

By introducing these intrinsic wave functions, which are
the solutions of quantum-mechanical one-body problems, we
can use standard quantum-mechanical results to do our calcu-
lation. Inserting a complete set of eigenstates of HC , and using
these definitions, the matrix element becomes∫

d P
(2π )3

d p
(2π )3

〈P ′
φ|Ws

1

E − HC + i0+

× |P, χ (+)
p 〉〈P, χ (+)

p |Ws |Pφ〉

= (2π )3δ( Pφ − P ′
φ )

∫
d p

(2π )3
〈〈φ|Ws

1

E − HC + i0+

× |χ (+)
p 〉〉〈〈χ (+)

p |Ws |φ〉〉. (11)

It follows that the self energy is only a function of the

Gallilean invariant combination E − P2
φ

2Mnc
≡ E, i.e.,

�φ ( Pφ ; E) = h2
s J0(E); (12)

J0(E) ≡
∫

d3q
(2π )3

χ
(+)∗
q (0)χ (+)

q (0)

E − q2

2MR

= 2MR

∫
d3q

(2π )3
C2

ηq ,0

[
k2

q2(k2 − q2 + iε)
− 1

q2

]
,

(13)

with k ≡
√

2MR(E + i0+). Similar results have been derived
in, e.g., Refs. [13,14]. Details about χ

(±)
q (r ) and the definition

of Cηq,0 (ηq ≡ kC/|q| is the Sommerfeld parameter) can be
found in Appendix B. The integration diverges, however the
integrand has been split into a finite and a divergent piece, as
in the second step of Eq. (13). The first part yields kCH (η)/π
with

H (η) ≡ (−)

π

∫ +∞

0

C2
ηq ,0dηq(

η2
q − η2 + iε

) = ψ (iη)+ 1

2iη
− ln(iη),

(14)

η ≡ kC/k, and ψ (z) the digamma function [43]. The diver-
gent term can be analytically continued in terms of the space-
dimension variable d. The following integration is involved
[35]: ∫ +∞

0

η2−d
q dηq

e2πηq − 1
= ζ (3 − d )�(3 − d )

(2π )3−d
, (15)

with ζ (x) the Riemann ζ function. When ε → 0, ζ (ε) =
− 1

2 − ε
2 ln(2π ), ζ (1 + ε) = 1

ε
(1 + CEε + · · · ), and �(ε) =

1
ε
(1 − CEε + · · · ) with CE the Euler constant; at other inte-

gers n, ζ (n) is finite. We use the power-divergence subtraction
(PDS) scheme [7,13] and subtract the pole at d = 2. We
then use the MS scheme to remove the pole in d = 3 that is
associated with the Coulomb interaction and obtain

J0(E) = −MR

π

{
kC

[
H (η) − ln

(
μ

√
π

kC

)
+ 3

2
CE − 1

]
+μ

}
,

(16)

where μ is the dimensionful scale introduced to ensure the
correct overall dimensions of J0.

As mentioned in the power-counting discussion of the
previous section, summing up all the bubble insertions shown
in Fig. 1 gives DLO

φ = −(�φ + �φ )−1. The NLO contribution
to Dφ , as shown in Fig. 2, comes from the insertion of
the operator −φ†(i∂0 − ∇2

2Mnc
)φ, i.e., the second diagram on

Fig. 2’s RHS. However, to match the conventional ERE,
we can sum all of the bracketed diagrams in Fig. 2. This

leads to DNLO
φ = −(E + �φ + �φ )

−1
. If we then impose the

renormalization conditions:

(−)

a0
≡ 2π�φ

h2
sMR

− 2μ + 2kC

[
ln

(
μ

√
π

kC

)
− 3

2
CE + 1

]
,

(17a)
r0

2
≡ π

h2
sM

2
R

, (17b)

we get

− 2π

h2
sMR

D−1
φ = − 1

a0
+ r0

2
k2 − 2kCH (η) . (18)

Even though here we work only at the level of the dimer
propagator we have chosen to already write things in terms
of a0 and r0, which are the scattering length and effective
range in the s-wave ERE for scattering. We make three points
before moving on to discuss the scattering T -matrix in the
next paragraph. First, setting kC = 0, Eqs. (17a) and (17b)
recovers the corresponding relationships for a system without
Coulomb effects [10,31]. Second, the overall “−” sign in
the φ’s free lagrangian in expression (1) is responsible for
generating a positive r0 in Eq. (17b). Third, when PDS and
MS are employed, �φ is renormalized by the self-energy loop
diagram, but hs is not.

The scattering T -matrix diagrams are shown in Fig. 6. The
bracketed diagrams are due to pure Coulomb scattering. They
can be analytically computed (see, e.g., [44]), and won’t be
dealt with here. The so-called strong-interaction T -matrix,
i.e., the total T -matrix with pure Coulomb scattering sub-
tracted is

〈P ′, p′|T − WC −
(

WC

1

E − HC + i0+ WC

)
|P, p〉. (19)
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+ +...[ ] + +
OLOLOL

FIG. 6. The general scattering T -matrix caused by the Coulomb potential and strong interaction in s-wave channel. The bracketed diagrams
are the pure Coulomb scattering. The last two diagrams are the strong interaction LO and NLO T -matrix.

Up to NLO it is due to the last two diagrams in Fig. 6. In terms
of matrix elements, it is

〈P ′, p′|
(

1 + WC

1

E − HC + i0+

)
Ws

(
1

E − HC + i0+

)
NLO

×Ws

(
1 + 1

E − HC + i0+ WC

)
|P, p〉. (20)

If the Green’s function ( 1
E−HC+i0+ )

NLO
were sandwiched be-

tween |φ〉 states, then it would be DNLO
φ . Thus, in the follow-

ing we define

Ts ≡ Ws (E − HC + i0+)−1
NLOWs, (21)

with the first (second) Ws—reading from left to right—
annihilates (creates) the φ particle in the intermediate state
and creates (annihilates) an nc pair in the final (initial) state.
We then use the dimer completeness relation to insert a
resolution of the identity as

(−)
∫

d P
(2π )3

|Pφ〉〈Pφ| (22)

(note the minus sign) and the previously computed dimer field
propagator in Eq. (18), as well as Eq. (A15), to express the
matrix element in Eq. (20) as

〈P ′, χ (−)
p′ |Ts |P, χ (+)

p 〉 = −(2π )3δ( P − P ′)
2π

MR

× χ
(−)∗
p′ (0)χ (+)

p (0)

− 1
a0

+ 1
2 r0k2 − 2kCH (η)

. (23)

This matrix element can again be simplified to a delta function
times the matrix element between the intrinsic states:

〈P ′, χ (−)
p′ |Ts |P, χ (+)

p 〉 = (2π )3δ( P − P ′)〈〈χ (−)
p′ |T s |χ (+)

p 〉〉.
(24)

Since the states |χ (+)
p 〉〉 are already defined, the intrinsic

operator T s is then defined by its matrix elements on this
basis. On shell the strong interaction T s operator, evaluated
on this, the “intrinsic Coulomb basis,” can be expressed in
terms of a phase shift δ0(E) [13,36],

〈〈χ (−)
p′ |T s (E)|χ (+)

p 〉〉 ≡ (−)
2π

MR

e2iσ0

k(cot δ0 − i)
. (25)

Comparing Eqs. (23) and (25), and using the relation
Im[2kCH (η)] = C2

η,0k, gives the Coulomb-modified ERE up
to O(k2):

C2
η,0k(cot δ0 − i) = − 1

a0
+ r0

2
k2 − 2kCH (η). (26)

This derivation clarifies how the Coulomb modified wave
function χ

(±)
p (r ) appears in halo EFT: it is the coordinate-

space representation of the intrinsic Coulomb basis |χ (±)
p 〉〉.

The separation of transverse photons from Coulomb photons
through velocity scaling also delineates the order at which
corrections due to those photons must be considered. (See
Sec. VII.) As far as strong interactions are concerned, the next
correction to the ERE, which must be ∝ k4, occurs in the EFT
via an effect that appears in the Lagrangian only at N3LO in
the V

V�
= klow

�
EFT expansion [45].

Equation (26) justifies the use of the notation a0 and r0 in
the renormalization conditions in Eqs. (17a) and (17b). Since
a0 and r0 are observables they are μ-independent and this,
in turn, determines the μ-dependence of �φ . �φ must absorb
both the d = 2 divergence that gives the μ in Eq. (17a) and the
ln μ Coulomb (d = 3) divergence proportional to kC . Thus,
the short-distance physics is affected by Coulomb photons,
and so the separation of physics between dimer and cn parts
of the Fock space becomes dependent on the treatment of that
short-distance physics, i.e., only model-dependent statements
can be made about it. This, in turn, means that one cannot
define a scheme- and scale-independent strong proton-core
scattering length [35,46].

G. Toy amplitude for p-wave scattering up to NLO, and
computation of shallow bound-state properties

Figure 3 shows the diagrams for calculating the π propaga-
tor Di

π,j . As discussed in Sec. II C, if we are in the kinematic
regime where the free dimer propagator has a singularity then
we must resum the LO self energy to all orders, i.e., compute
the entire series shown in Fig. 3 [9,42]. As will become clear
by the end of this section, this is equivalent to requiring resum-
mation in the vicinity of a value of momentum k that is both
within the domain of the EFT (i.e., k < �) and satisfies 1

a1
=

1
2 r1k

2, where r1 is the p-wave effective range and a1 the p-
wave scattering volume. In our case this condition is satisfied
at the 8B bound-state pole. It is not satisfied in 7Be-proton p-
wave scattering, and so if our calculation were concerned with
that process we could terminate the series at NLO, i.e., include
the self-energy only perturbatively (cf. Ref. [10]) and still
have NLO accuracy. However, here the properties of the 8B
bound state are crucial to the calculation of 7Be(p, γ )8B, so
we resum the p-wave Dyson series to all orders to obtain the π
propagator.

The self-energy bubble in Fig. 3 corresponds to
〈P ′

π , πj |Wp(E − HC + i0+)−1
Wp|Pπ , πi〉. Due to rota-

tional symmetry, we can always define Di
π,j ≡ Dπδi

j and
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�i
π,j = δi

j�π . The latter can be evaluated through

�i
π,j =

∫
d P

(2π )3

d p
(2π )3

〈P ′
π , πj |Wp

1

E − HC + i0+ |P, χ (+)
p 〉〈P, χ (+)

p |Wp|Pπ , πi〉

= (2π )3δ( Pπ − P ′
π )

∫
d p

(2π )3
〈〈πj |Wp

1

E − HC + i0+ |χ (+)
p 〉〉〈〈χ (+)

p |Wp|πi〉〉. (27)

Here we again introduced the solutions of a one-body quantum mechanics problem, as we did in the previous section, i.e., we
write 〈Pπ , πj |Wp|Pnc, χ

(±)
pnc

〉 = (2π )3δ( Pnc − Pπ )〈〈πj |Wp|χ (±)
p 〉〉. This time though, the overlap of the p-wave dimer and the

nc state is given by

〈〈πj |Wp|χ (±)
p 〉〉 = i

hp

MR
∂jχ

(±)
p (0). (28)

The cm-frame energy is, once again, E ≡ E − P2
π/(2MR), so we write �π (E) ≡ h2

p

M2
R
J1(E), with

J1(E) ≡
∫

dd q
(2π )d

1

d

[∂jχ
(+)∗
q (0)][∂jχ

(+)
q (0)]

E − q2

2MR
+ iε

,

= (−)
MR

6π
k2(1 + η2)2kCH (η) + MRk2

C

6π

{
2kC

[
ln

(
μ

√
π

kC

)
− 3

2
CE + 4

3

]
− 3μ

(
1 + π2

3

)}
+ MRk2

6π

{
2kC

[
ln

(
μ

√
π

kC

)
− 3

2
CE + 4

3

]
− 3μ

}
. (29)

Equation (B3) has been used in this derivation, and the divergent parts are again removed using PDS and MS. Summing up the

bubble diagrams gives Dπ = (E + �π − �π )
−1

. The parameters are renormalized to give scattering volume a1 and effective
range r1 (i.e., the first two parameters in the ERE of the p-wave scattering phase shift):

(−)

a1
≡ (−)6π

MR�π

h2
p

+ 2k3
C

[
ln

(
μ

√
π

kC

)
− 3

2
CE + 4

3

]
− 3μk2

C

(
1 + π2

3

)
, (30a)

r1

2
≡ (−)

3π

h2
p

+ 2kC

[
ln

(
μ

√
π

kC

)
− 3

2
CE + 4

3

]
− 3μ. (30b)

We notice in the above expressions that—in contrast to the s-wave case—both �π and hp are renormalized by the self-
energy loop diagram in PDS; both also absorb kC-dependent logarithmic divergences for which we have used MS. As for �φ

in the s-wave case, the presence of kC-dependent pieces in the LECs of the “strong” Lagrangian means that isospin symmetry
is broken—and here the breaking has more physical consequences than in the s-wave case, since it affects both r1 and a1.
Notice again that setting kC = 0, the two equations reproduce the corresponding relationships for the system without Coulomb
effects [10,31].

The propagator can then be expressed as

(−)
6πMR

h2
p

(
DNLO

π

)−1 = − 1

a1
+ r1

2
k2 − k2(1 + η2)2kCH (η). (31)

The corresponding strong-interaction T matrix, evaluated on the Coulomb basis, is

〈P ′, χ (−)
p′ |Tp(E)|P, χ (+)

p 〉 = −(2π )3δ( P − P ′)
6π

MR

∂χ
(−)∗
p′ (0) · ∂χ

(+)
p (0)

− 1
a1

+ 1
2 r1k2 − k2(1 + η2)2kCH (η)

≡ (2π )3δ( P − P ′)〈〈χ (−)
p′ |T p(E)|χ (+)

p 〉〉. (32)

Here Tp ≡ Wp(E − HC + i0+)−1
Wp, with, as before, the Wp operators producing the transition from the dimer state to the nc

state. The on-shell strong interaction T -matrix is related to the strong phase shift δ1(E),

〈〈χ (−)
p′ |T p(E)|χ (+)

p 〉〉 = − 6π

MR

e2iσ1

k(cot δ1 − i)
. (33)

As a result, the phase-shift ERE can be expressed in the convention used in Ref. [47]:

(3Cη,1)2k3(cot δ1 − i) = − 1

a1
+ r1

2
k2 − k2(1 + η2)2kCH (η). (34)
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This convention is different from the one used in Refs. [34,48]
and has the advantage of approaching the non-Coulomb ERE
in the kC → 0 limit. In our previous work [18], the factor 3 in
(3Cη,1)2 was missing.

The EFT can generate a bound state in the p-wave chan-
nel, corresponding to a T -matrix pole at E = −B < 0 with
B ∼ MRV 2. This requires D−1

π (k = iγ ) = 0 (γ ≡ √
2MRB),

which, after we resum the Coulomb bubbles to all orders, as
we must near the pole, means

− 1

a1
− r1

2
γ 2 + γ 2

(
1 − η2

B

)
2kCH̃ (ηB ) = 0. (35)

Here ηB ≡ kC/γ and H̃ (z) ≡ H (−iz). Dπ has other poles
too, but in this, two-body, calculation we are only concerned
with the shallow bound-state pole. Note that, as promised, the
pole involves a cancellation between the 1/a1 and r1 terms
in the ERE, and so the nominally higher-order terms ∼kCγ 2

must be included: their effect on the pole position is not
higher-order.

Having located this pole, the remainder of this section aims
to extract the so-called asymptotic normalization coefficient
(ANC) of the bound-state wave function [10,48,49]. Here
we will derive the relationship between this quantity and
the wave-function renormalization. The latter quantity is the
residue of this pole for Dπ (E):

Z = −6π

h2
p

{
r1 − 2kC

[
2H̃ (ηB ) + ηB

(
η2

B − 1
)
H̃

′
(ηB )

]}−1
,

(36)

with H̃
′
(ηB ) = dH̃ (η)

dη
|
η=ηB

. Second, the residue of the nc

Green’s function between states having plane-wave CM mo-
tion and a relative coordinate r can be related to Z in the
following manner:

Res

[
〈P ′, r ′| 1

E − H
|P, r〉

]
= Res

[
〈P ′, r ′| 1

E − Hc

Tp(E)
1

E − Hc

|P, r〉
]

= (2π )3δ( P− P ′)Z
h2

p

M2
R

δ
j
j ′

∫
d3q ′

(2π )3

(∂j ′
χ

(−)∗
q ′ (0))χ (−)

q ′ (r ′)

B + q
′2

2MR

×
∫

d3q
(2π )3

(∂jχ
(+)
q (0))χ (+)∗

q (r )

B + q2

2MR

. (37)

The first step relies on the fact that the pure repulsive
Coulomb potential does not produce a bound state, i.e.,
〈P ′, r ′|(E − HC )−1|P, r〉 does not have a bound-state pole.
To proceed further we use the partial-wave decomposition of
χ

(±)
q (r ) in terms of Fl (q, r ) [see Eq. (B5)] in the integrations.

According to Eq. (B3), ∂jχ
(+)
q (0) aligns with q, so integrating

over q picks out the F1(q, r ) term, which then can be related
to the Whittaker functions through Eqs. (B7a) and (B7b).

Thus, we get∫
d3q

(2π )3

(∂jχ
(+)
q (0))χ (+)∗

q (r )

B + q2

2MR

= − MR

2πr

Y1j (r̂ )√
3π

∫ +∞

−∞

q2dq

q2 + γ 2

[
�(2 − iη)Wiη, 3

2
(2iqr )

+�(2 + iη)W−iη, 3
2
(−2iqr )

]
,

= MR√
3π

γ�(2 + ηB )
W−ηB, 3

2
(2γ r )

r
Y1j (r̂ ). (38)

The last step uses the fact that q[�(2 ± iη)W∓iη, 3
2
(2iqr )] is

analytic in the upper (lower) half of the complex-q plane
including the real axis (see Appendix B for proof). Note that
for any real r the oscillatory behavior of χ

(±)∗
q (r ) guarantees

convergence of the integral as long as r �= 0. Equivalently,
it is the Whittaker functions that ensure that when Cauchy’s
theorem is used to evaluate the integral over q the piece on
the contour at q = ∞ goes to zero. However, if r = 0 this
oscillatory/damping factor is absent and the integral diverges.
As long as r, r ′ �= 0 though, Eqs. (38) and (37) show that the
nc Green’s function has the form

Res[〈P ′, r ′|(E − H )−1|r, P〉]
≡ (2π )3δ( P − P ′)C2 Y

j
1 (r̂ ′)Y1j (r̂ )

×
W−ηB, 3

2
(2γ r ′)W−ηB, 3

2
(2γ r )

r ′r
, (39)

where we have identified C2 as the squared ANC. Explicitly
inserting Eq. (38) into Eq. (37) C2 is then found in terms of
the wave-function renormalization Z as

C2 = h2
p

3π
γ 2�2(2 + ηB )Z. (40)

To check our calculation against the results in Ref. [48], we
take the limit ηB � 1, where H (η = −iηB ) ≈ −1/(12η2

B )
applies, and find C2 ≈ −2γ 2�2(2 + ηB )/(r1 − kC

3 ). This is
consistent with the ANC computed in Ref. [48]. However, in
our study the ηB � 1 condition does not apply, instead we
have ηB ∼ 1.

III. 7Be–PROTON CASE: LAGRANGIAN, SCATTERINGS,
AND BOUND STATE

In this section, we apply the methods developed in Sec. II
to study the 7Be-proton system. The additional complexities
reside in the particle spins and the presence of a low-energy
excited state of the core, 7Be∗. The pertinent quantum num-
bers JP are 1

2
+

for the proton, 3
2

−
for the 7Be core, 1

2
−

for the
core excitation 7Be∗, and 2+ for the 8B ground state. We can
write the gauged (but not rescaled) free Lagrangian for all the
degrees of freedom in a very compact notation as

L0 = ψ†
[
i∂0 − e Q̂A0 + (

→
∇ − ieA Q̂)2

2M̂
+ �̂

]
ψ. (41)

Here ψs ≡ (nσ , ca, dδ, φ(1)i , φ(2)α, πα )T , and ψ†s ≡
(n†σ , c†a, d†δ,−φ

†i
(1),−φ

†α
(2), π

†α ) with nσ , ca , dδ , πα the fields
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of the proton, 7Be, 7Be∗, and 8B; φi
(1) and φα

(2) are the two
s-wave 1− and 2− dimer fields, respectively. All the fields’
indices correspond to the spin projections with a specific
convention: σ, δ, σ ′, δ′ = ±1/2, a, a′ = ±3/2, ±1/2,
α, β = ±2, ±1, 0, and i, j, k = ±1, 0. The daggered
fields are, e.g., n†σ ≡ (nσ )∗. The mass matrix M̂ =
Diagonal(Mn,Mc,Mc,Mnc,Mnc,Mnc ) and the bare binding-
energy matrix �̂ = Diagonal(0, 0,−E∗,�φ1,�φ2,�π ).
(E∗ is the excitation energy of 7Be∗.) The corresponding
charge matrix Q̂ = Diagonal(Qn,Qc,Qc,Qnc,Qnc,Qnc )
with Qn = 1, Qc = 4, Qnc = Qn + Qc = 5.

There are three different interaction terms between the s-
wave φ(1) and φ(2) dimers and the nc state; these generate the
strong s-wave 7Be-proton and 7Be∗-proton interactions,

LS = h(3S1 )φ
†i
(1)T

σa
i nσ ca + h(3S∗

1 )φ
†i
(1)T

σδ
i nσ dδ

+h(5S2 )φ
†α
(2)T

σa
α nσ ca + c.c. (42)

The couplings’ lower indices explain the interaction channel
quantum numbers; the associated T ...

... are the correspond-
ing Clebsch-Gordan coefficients [31], e.g., T σa

i ≡ 〈〈i|σa〉〉 =
( 1

2σ 3
2a|1i) and T σa

α = ( 1
2σ 3

2a|2α). h(3S1 ) and h(5S2 ) are related
to the “unnaturally” large s-wave scattering lengths [13,18].
However, based on the fact that the 7Be-proton inelasticity is
small [50], we assign h(3S∗

1 ), which describes the only inelastic
channel at these energies, 7Be + p ↔ 7Be∗ + p, as NLO, i.e.,
h(3S∗

1 )/h(3S1 ) ∼ h(3S∗
1 )/h(5S2 ) ∼ V

V�
= klow

�
[18].

There are also two terms that generate interactions between
the p-wave dimer π and the nc pair, as well as one coupling
for the 7Be∗-p-π interaction (the spins of 7Be∗ and the proton
only allow such an interaction in the s = 1 p-wave state):

LP = π †α[
h(3P2 )T

ij
α T σa

i + h(5P2 )T
βj

α T σa
β

]
nσ Ṽ Rj ca

+h(3P ∗
2 )π

†αT jk
α T δσ

k nσ Ṽ Rjdδ + c.c. (43)

Based on NDA, we expect the three couplings to have roughly
the same size, as all are natural.

Following the same procedure used in the toy-model cal-
culation, we compute the φ(1) and φ(2) propagators, which
we must now write as Dφ1δ

i
j and Dφ2δ

α
β , with the sub- and

superscripts providing spin indices. We then compute the 1−
and 2− channel strong-interaction T matrix, which is defined
in Eq. (21). Note that in the remainder of the main text of this
paper, whenever we refer to the equations in the simple model
discussion, the Hamiltonian in those equations is re-derived
from our realistic Lagrangian, and the Fock states include the
spin degrees of freedom properly.

The LO self-energy bubble diagrams—see Fig. 1—for
the two fields come from the 7Be-p intermediate state. The
d + n ↔ c + n amplitude is suppressed by h(3S∗

1 )/h(3S1 ) ∼
klow
�

compared to elastic scattering. The 7Be∗-p s-wave
contribution—which because 7Be∗ is a spin-one nucleus
only exists for the φ(1) dimer—is therefore suppressed
by ∼h2

(3S∗
1 )/h2

(3S1 ) ∼ h2
(3S∗

1 )/h2
(5S2 ) ∼ k2

low/�2, and is thus an

N2LO effect in the self-energy calculation. (Note, however,
that these scalings also imply that the 7Be∗ channel con-
tributes to the total 7Be-proton amplitude already at NLO.)
As a result, the two s-wave dimer propagators have exactly

the same structure as in the toy model; the renormalization
conditions in Eqs. (17a) and (17b) can be used directly to
connect (�φ1, h(3S1 )) to (a(3S1 ), r(3S1 )), and (�φ2, h(5S2 )) to
(a(5S2 ), r(5S2 )); the fully dressed propagators are

(−)
2π

MRh2
(3S1 )

D−1
φ1 = − 1

a(3S1 )
+ r(3S1 )

2
k2 − 2kCH (η)

≡ [Nφ1(E)]−1,

(−)
2π

MRh2
(5S2 )

D−1
φ2 = − 1

a(5S2 )
+ r(5S2 )

2
k2 − 2kCH (η)

≡ [Nφ2(E)]−1.

Here k is the nc relative momentum, equal to
√

2MRE + i0+

with E = E − P2

2MR
. The strong interaction (in)elastic T -

matrices can then be calculated straightforwardly as the prod-
uct of a cn to dimer vertex, the dimer propagator, and the
hermitian conjugate of the incoming vertex, as was done in
Eqs. (20) and (23). Here we only show the relevant results:

〈〈χ (−)
p′ , (nc)i

′ |T s (E)|χ (+)
p , (nc)i〉〉

= (−)δi
i ′

2π

MR
Nφ1(E) χ

(−)∗
p′ (0)χ (+)

p (0) , (44a)

〈〈χ (−)
p′ , (nc)α

′ |T s (E)|χ (+)
p , (nc)α〉〉

= (−)δα
α′

2π

MR
Nφ2(E) χ

(−)∗
p′ (0)χ (+)

p (0) , (44b)

〈〈χ (−)
p′ , (nd )i

′ |T s (E)|χ (+)
p , (nc)i〉〉

= (−)δi
i ′

2π

MR

h(3S∗
1 )

h(3S1 )
Nφ1(E) χ

(−)∗
p′ (0)χ (+)

p (0). (44c)

This notation indicates that we have coupled the pro-
ton and core spins to a particular total spin s: s = 1,
|(nc)i〉〉 ≡ T

† i
σa |nσ , ca〉〉; s = 2, |(nc)α〉〉 ≡ T

† α
σa |nσ , ca〉〉,

and, for the case of the excited core, s = 1 again:
|(nd )i〉〉 ≡ T

† i
σ δ |nσ , dδ〉〉. To compute the matrix elements

between direct product spin states, we simply invert
these relations: |nσ , ca〉〉 = T σa

i |(nc)i〉〉 + T σa
α |(nc)α〉〉, and

|nσ , dδ〉〉 = T σδ
i |(nd )i〉〉 + T δ

α |(nd ) singlet〉〉, where the last
component, involving the S = 0 proton-7Be∗ state, does not
couple to any dimers. For the first two matrix elements we
have elastic 7Be-proton scattering, and the initial and final
asymptotic 7Be-proton relative momenta are p and p′; with

E = p2

2MR
= p

′2
2MR

. In Eq. (44c) we consider inelastic scatter-
ing, and in that case the on-shell condition is E = p2

2MR
=

p
′2

2MR
+ E∗. To get the inelastic T -matrix with 7Be∗ in the

initial state, we simply exchange the initial and final state
quantum numbers in Eq. (44c). Elastic 7Be∗-proton scattering
is suppressed by two orders compared to 7Be-proton elastic
scattering and hence is not discussed here.

Summarizing, because the inelasticity
h(3S∗

1 )

h(3S1 )
is parameteri-

cally small (∼klow/�), the ERE in the 3S1 channel looks the
same (up to N2LO) as that in the 5S2 channel, where 7Be∗
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TABLE II. The channel-dependent factors needed to obtain the matrix elements of T p in different spin-one channels |(nc)i〉〉. These are
multiplied by the overall factor of Eq. (48).

〈〈 |T p| 〉〉 |(nc)i〉〉 |(nc)α〉〉 |(dc)i〉〉
〈〈(nc)i

′ | T
† β

i′j ′ T
ij

β h(3P2 )h(3P2 ) T
† β

i′j ′ T
αj

β h(3P2 )h(5P2 ) T
† β

i′j ′ T
ij

β h(3P2 )h(3P ∗
2 )

〈〈(nc)α
′ | T

† β

α′j ′ T
ij

β h(5P2 )h(3P2 ) T
† β

α′j ′ T
αj

β h(5P2 )h(5P2 ) T
† β

α′j ′ T
ij

β h(5P2 )h(3P ∗
2 )

〈〈(nd )i
′ | T

† β

i′j ′ T
ij

β h(3P ∗
2 )h(3P ∗

2 ) T
† β

i′j ′ T
αj

β h(3P ∗
2 )h(5P2 ) T

† β

i′j ′ T
ij

β h(3P ∗
2 )h(3P ∗

2 )

cannot play a role, therefore,

C2
η,0k(cot δ(X) − i) = − 1

a(X)
+ r(X)

2
k2 − 2kCH (η),

X = 3S1,
5S2. (45)

Turning our attention now to the p-waves, in the p-wave
self-energy bubble both 7Be-proton and 7Be∗-proton contri-
butions are at the same order: The computed ANCs (see
numbers at the end of this section) suggest the ncπ and ndπ
couplings are of the same order. Therefore, both loop contri-
butions are summed to obtain the dominant piece of the one-
loop self-energy, and we get the (resummed) full propagator
(≡ Dπδα

β )

(−)
6πMR

h2
P t

D−1
π = − 1

a1
+ r1

2
k2 − 2kCk2(1 + η2)H (η)

− 2kC

h2
(3P ∗

2 )

h2
P t

k2
∗ (1 + η2

∗)H (η∗)

≡ [Nπ (E)]−1. (46)

Here, h2
P t ≡ h2

(3P2 ) + h2
(5P2 ), γ� ≡ √

2MRE∗, k∗ ≡√
2MR(E − E∗) + i0+ =

√
k2 − γ 2

� + i0+, η∗ ≡ kC/k∗,
and (using PDS and MS)

(−)

a1
≡ (−)6π

MR�π

h2
P t

+
(

1 +
h2

(3P ∗
2 )

h2
P t

)[
2k3

C

(
ln

(
μ

√
π

kC

)

− 3

2
CE + 4

3

)
− 3μk2

C

(
1 + π2

3

)]

−
h2

(3P ∗
2 )

h2
P t

γ 2
�

[
2kC

(
ln

(
μ

√
π

kC

)
− 3

2
CE + 4

3

)
− 3μ

]
,

r1

2
≡ (−)

3π

h2
P t

+
[

2kC

(
ln

(
μ

√
π

kC

)
− 3

2
CE + 4

3

)
− 3μ

]

×
(

1 +
h2

(3P ∗
2 )

h2
P t

)
. (47)

The (in)elastic strong interaction T -matrix in the 2+ channel
can then be calculated in the same way as Eq. (32) was,
i.e., by multiplying by the vertex factors associated with the
overlap of the nc and dimer states. To get the strong interac-
tion T -matrix elements, we therefore multiply the numerical

coefficients associated with a particular channel, and given
in Table II, by the channel-independent dimer and vertex
factors:

(−)
6π

MR
Nπ (E) ∂j ′

χ
(−)∗
p′ (0)∂jχ

(+)
p (0). (48)

Here the initial-state and final-state relative momenta are p
and p′ (whether the relevant channel is elastic or inelastic),
but we reiterate that for on-shell inelastic scattering the n-d
relative momentum p, is given by E = p2

2MR
+ E∗. Also note

that in this inelastic channel, the Coulomb potential has a
negligible influence compared with the strong interaction.

Once inelasticity is involved a1 and r1 are not related to
the scattering phase shift as in Eq. (34), but since they can,
in principle, be measured through the T -matrix, a1 and r1

can be used as the renormalization conditions, i.e., they do
not have renormalization scale dependence. This connection is
straightforward when k � γ�, i.e., far below the proton-7Be∗

threshold. There D−1 can be expanded in Taylor series. By
keeping terms up to k2, we see that redefining the scattering
volumes and effective range, according to

(−)

A1
≡ (−)

a1
− 2

h2
(3P ∗

2 )

h2
P t

kCγ 2
�

(
η2

� − 1
)
H̃ (η�), (49)

R1

2
≡ r1

2
− 2

h2
(3P ∗

2 )

h2
P t

kC

[
H̃ (η�) + 1

2
η�

(
η2

� − 1
)
H̃

′
(η�)

]
,

(50)

recovers the elastic scattering ERE with A1 and R1 as ERE
parameters, i.e.,

(3Cη,1)2k3(cot δ1 − i) = − 1

A1
+ R1

2
k2

− 2kCk2(1 + η2)H (η). (51)

That is to say, far below the threshold the core-excitation
contributions are subsumed into redefined ERE parameters.
For the 7Be-p system, η� ≡ γ�/kC = 0.9, H̃ (η�) ∼ 0.1,
H̃

′
(η�) ∼ −0.1, so A1 ≈ a1, R1 ≈ r1. However, we empha-

size that Eq. (46) represents different assumptions about the
analytic structure of the 7Be-proton amplitude than those that
lead to the standard ERE.
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In this situation of a core excitation we can again compute
dD−1

π /dE at the E = −B pole to get the residue of Dπ ,

−6π

Z
= h2

P t r1 − 2kC

{
h2

P t

[
2H̃ (ηB ) + ηB

(
η2

B − 1
)
H̃

′
(ηB )

]
+h2

(3P ∗
2 )

[
2H̃ (ηB∗) + ηB∗

(
η2

B∗ − 1
)
H̃

′
(ηB∗)

]}
, (52)

with ηB∗ ≡ kC

γ ∗ . Then it is easy to compute the bound-state
ANCs by plugging the elastic scattering matrix elements [see
Eq. (48) and Table II] into Eq. (37). We find

C2
(3P2 )

h2
(3P2 )γ

2� 2(2 + ηB )
=

C2
(5P2 )

h2
(5P2 )γ

2� 2(2 + ηB )

=
C2

(3P ∗
2 )

h2
(3P ∗

2 )γ
∗2� 2(2 + ηB∗)

= Z

3π
. (53)

These ANCs have been calculated using ab initio
methods [49], yielding C2

(3P2 ) = 0.0990(57) fm−1, C2
(5P2 ) =

0.438(23) fm−1, C2
(3P ∗

2 ) = 0.1215(36) fm−1.2 The first two
of these come from the same wave function and Monte Carlo
walk, giving them a correlation coefficient of 0.672. Proper
inclusion of these correlations in the Monte Carlo uncertainty
was new in our latest work [32], as compared to the earlier
Ref. [18]. However, we note that the errors still do not include
any estimate of the uncertainty due to the Hamiltonian
employed or the precision of the variational wave functions.
We find that the ANC central values are reproduced when the
parameters used in Eq. (46) are

h2
(3P ∗

2 )

h2
P t

= 0.2749, r1 = −0.3102 fm−1, a1 = 1127.7 fm3.

(54)

Extra decimal places beyond the precision of the ANCs are
provided to aid those wishing to reproduce our calculations.
We note that these values agree with the power counting
proposed above, i.e., h(3P2 ) ∼ h(5P2 ) ∼ h(3P ∗

2 ), r1 ∼ �, and
a1 ∼ 1/(�γ 2).

They are, though, a little different from those published in
our previous work [18], because

(1) We corrected a mistake in that publication: there was
an extra factor γ ∗/γ after h2

(3P ∗
2 ) in the quantity − 6π

Z

in that paper, as compared to the one computed in
Eq. (52) of this paper. This changes the LO to NLO Z
ratio, ZLO/Z from 0.87 to 0.955, which also increases
the CLO 2

(··· ) /C2
(··· ) ratio from 0.87 to 0.955 and makes

our LO S(E) results in better agreement with data

2The ANC for the excited state is not readily accessible in trans-
fer reaction experiments. However, the other ANCs quoted here
have values consistent with DWBA analysis of transfer reactions,
by which Ref. [79] found C2

(5P2 )
= 0.414(43) fm−1 and inferred

C2
(3P2 )

+ C2
(5P2 )

= 0.466(49) fm−1.

(I) (II) (III) (IV)(I)

OLOL

FIG. 7. The LO diagrams for radiative capture to a shallow p-
wave bound state. The open elongated box denotes the LO propa-
gators for the s-wave φ(1) and φ(2) dimers. The black filled box is
the 8B state. The particle spins are not shown explicitly here, but

discussed in the main text. These four diagrams ∼V
1
2 ( V

V�
)

1
2 . The

corresponding diagrams with the photon coupled to the proton line
are not shown here for simplicity.

in Ref. [18]. Note, however, that that work’s major
conclusions are not changed;

(2) The binding energy is updated from B = 0.1375 MeV
in Ref. [18] to 0.1364 MeV in the current work.

We emphasize that our latest work [32] is not affected by
these changes.

IV. CAPTURE REACTION AMPLITUDE

The capture reaction is studied in detail in this section.
Figures 7 and 8 show the LO and NLO diagrams. According

to the power counting, the LO diagrams ∼V
1
2 ( V

V�
)

1
2 , while the

NLO ones ∼V
1
2 ( V

V�
)

3
2 . Note that diagrams (VII) and (VIII)

differ from (III) and (IV) by having 7Be∗ in the intermediate
state instead of 7Be. The last diagram, (IX), originates from
the E1 contact terms from the Lagrangian, which produce
NLO effects for the process of interest here:

Lc = − ieZeffL1π
†αT ji

α Eiφ(1)j

− ieZeffL2π
†αT βi

α Eiφ(2)β + c.c. (55)

These terms are built as in Ref. [10], which itself followed
Ref. [51]. The structure is the same as Eq. (6), except that
here spin degrees of freedom have been included. According

(VI)

(VII) (VIII) (IX)

(V)

OLOLOLOL

OLOLOL

FIG. 8. The NLO diagrams for radiative capture to a shallow

p-wave bound state. They scale as V
1
2 ( V

V�
)

3
2 . The filled boxes in

the (V) and (VI) diagrams are the effective range correction contact
coupling, as used in Fig. 2; those in (VII) and (VIII) are the h(3P ∗

2 )

couplings (the dotted line in the bubbles labels the 7Be∗ field); the
one in diagram (IX) denotes the L1 and L2 E1 contact couplings
defined in Eq. (55).
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TABLE III. The different classes of capture mechanisms which
different diagrams depicted in Figs. 7 and 8 involve, at leading order
(first line, see Fig. 7) and next-to-leading order (second line, see
Fig. 8).

EC CX SD

LO I–IV
NLO V–VI VII–VIII IX

to the power counting discussed at the end of Sec. II E, L1,2

should scale as 1/�.
As preparation for the full result, let us use Eq. (A20) to

compute the E1 matrix element of an operator, LEM , that
operates between nc Fock states and produces single-photon
radiation (see Fig. 10). Here we will relate the overall matrix
element of LEM to that of the operator that acts on the nc
Coulomb wave function:

〈P ′, χ (−)
p′ , Pγ , Aλ, nσ ′

, ca′ |LEM |P = 0, χ (+)
p , nσ , ca〉

= (2π )3δ( P ′ + Pγ )δ σ
σ ′δ

a
a′

[
〈〈χ (−)

p′
nc

|eQn

Mn

e−if Pγ rε∗
λ · p̃|χ (+)

p 〉〉 − 〈〈χ (−)
p′ |eQc

Mc

ei(1−f )Pγ rε∗
λ · p̃|χ (+)

p 〉〉
]

Pγ →0= (2π )3δ( P ′ + Pγ )δ σ
σ ′δ

a
a′ 〈〈χ (−)

p′ |eZeff

MR
ε∗

λ · p̃|χ (+)
p 〉〉. (56)

In the expression, as well as in the following discussion,
p̃ is the momentum operator operating on the intrinsic | 〉〉
state. The last step in the above derivation keeps only the
leading-order term in an expansion in powers of Pγ r , i.e.,
it is valid in the Pγ → 0 limit. The next-order terms in that
expansion correspond to E2 and M1 contributions, which we
will discuss in Sec. VII. Note for the matrix elements between
7Be∗-p states, the same results apply; they are not shown
explicitly here.

In the following, the s = 1 channel is used to illustrate
the calculation details; the s = 2 result is closely analogous
and will simply be stated at the end. We choose the frame
where the total initial nc momentum P = 0. We consider
the case that the photon is emitted, i.e., the radiative-capture
reaction, so the final nc system will then be recoiling with
a momentum −Pγ . We decompose the amplitude that con-
tributes to this process into three contributions: from external

capture (EC), where the photon is emitted from the proton or
the core; from core excitation (CX), where the excited state,
7Be∗, participates in the reaction, and from short-distance
contributions (SD). (Contributions which serve only to ensure
current conservation, e.g., diagram (II), are associated with
whatever part of the amplitude they conserve the current for.)
This means that the amplitude, M, is written

M = MEC + MCX + MSD. (57)

At LO only external capture contributes, but the other two
mechanisms enter at NLO. In fact, at NLO, and for an
arbitrary renormalization scale, the distinction between EC or
CX, on the one hand, and SD, on the other hand, is scheme
and scale dependent. But we still find it a useful mnemonic
for the computation of the different diagrams (I)–(IX), which
can be classified in this way; see Table III.

A. External capture: diagrams I–VI

We write the initial spin state as |(nc)i〉〉, and focus on 〈πα,Aλ|LEM |χ (+)
p , (nc)i〉. Since we set the initial P = 0, hence

E = E. The first diagram’s contribution in Fig. 7 is

〈Pπ , Pγ , πα,Aλ|Wp

1

E − HC + i0+ LEM |χ (+)
p , (nc)i〉

=
∑

λ′,σ ′,a′

∫
d p′

(2π )3

d P ′

(2π )3

d P ′
γ

(2π )3
〈Pπ , Pγ , πα,Aλ|Wp

1

E − HC + i0+ |P ′, χ (+)
p′ , P ′

γ , Aλ′
, nσ ′

, ca′ 〉

× 〈P ′, χ (+)
p′ , P ′

γ , Aλ′
, nσ ′

, ca′ |LEM |χ (+)
p , (nc)i〉

Pγ →0= (2π )3δ( Pπ + Pγ )
∫

d p′

(2π )3
〈〈πα|Wp

1

E − |Pγ | − |Pγ |2
2MR

− HC + i0+
|χ (+)

p′ , (nc)i〉〉〈〈χ (+)
p′ |eZeff

MR
ε∗

λ · p̃|χ (+)
p 〉〉. (58)

We define the matrix element without the total-momentum conserving δ-function and its associated factor of (2π )3 as MI . In

the last expression, the propagator is changed to (E − |Pγ | − |Pγ |2
2MR

− HC )−1, because for the nc system in the final state, the
effective energy is the total energy E minus the photon energy |Pγ | and the 8B recoil energy. However, the 8B recoil energy is

P2
γ

2Mnc
∼ B2

2Mnc
∼ 10−6 MeV, and so is small compared to B, |Pγ |, and the typical E.
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We now use the identity Zeff
MR

ε∗
λ · p̃ = iZeff[HC, ε∗

λ · r]. The nontrivial part of the matrix element Eq. (58) can then be written

MI = −ieZeff〈〈πα|Wpε∗
λ · r|χ (+)

p , (nc)i〉〉 − ieZeff(B + E)〈〈πα|Wp

1

−B − HC + i0+ ε∗
λ · r|χ (+)

p , (nc)i〉〉. (59)

The first term is calculated using Eq. (A18):

−ieZeff〈〈πα|Wpε∗
λ · r|χ (+)

p , (nc)i〉〉 = −ieZeffT
ij

α

√
Z

∫
d3r ′d3r

d3q
(2π )3

ih(3P2 )

MR
δ(r ′)(∂ ′

jχ
(+)
q (r ′))χ (+)∗

q (r )ε∗
λ · rχ (+)

p (r )

= eZeffT
ij

α

√
Z

h(3P2 )

MR
ε∗
λ,jχ

(+)
p (0). (60)

Here ε∗
λ,j is the j th component of the outgoing photon polarization vector (with helicity λ) in the coordinate system where the

outgoing photon (and hence the outgoing 8B momentum) are aligned with the ẑ axis. Spin projections of massive particles are
also measured along this axis. Note that since we are calculating the reaction amplitude using LSZ reduction [52], we have
multiplied by a factor of

√
Z, to account for the final-state wave function renormalization.

Meanwhile, diagram II of Fig. 7 generates an amplitude MII that involves the gauged p-wave interaction term in the
Lagrangian [see Eq. (43)]. It can be written as

MII = −T ij
α

√
Zh(3P2 )

eZeff

MR
ε∗
λ,jχ

(+)
p (0). (61)

This cancels the first term in Eq. (60), leaving

MI + MII = −ieZeff(B + E)〈〈πα|Wp

1

−B − HC + i0+ ε∗
λ · r|χ (+)

p , (nc)i〉〉

= −T ij
α eZeffC(3P2 )(B + E)

∫
d3r

W−ηB, 3
2
(2γ r )

r
Y1j (r̂ )ε∗

λ · rχ (+)
p (r ). (62)

We see that the EM J · A coupling used in diagram (I) and (II) is now reduced to the dipole radiation operator in Eq. (62),
reflecting the well-known Siegert theorem [53].

Let’s now turn to MIII and MIV , which represent corrections to MI and MII due to the strong initial-state interactions
that generate large s-wave scattering lengths in both spin channels. To simplify the presentation, we also compute the NLO
diagrams V and VI (corresponding amplitudes MV and MV I ) here, so that we obtain all strong-interaction corrections to
external capture at once. The sum of the corresponding diagrams without Coulomb effects has been shown to be finite in the
study of the isospin mirror system, i.e., 7Li-neutron radiative capture to 8Li, by computing loops in terms of momentum space
and PDS regularization [10,11,31]. The sum of diagrams III–VI is also finite in this case, where Coulomb is included. After
applying the identity Zeff

MR
ε∗

λ · p̃ = iZeff[HC, ε∗
λ · r], MIII + MV becomes

〈〈πα|Wp

1

−B − HC + i0+
eZeff

MR
ε∗

λ · p̃
1

E − HC + iε
T s |χ (+)

p , (nc)i〉〉,

= −ieZeff(B + E)〈〈πα|Wp

1

−B − HC

ε∗
λ · r

1

E − HC + i0+ T s |χ (+)
p , (nc)i〉〉

− ieZeff〈〈πα|Wpε∗
λ · r

1

E − HC + i0+ T s |χ (+)
p , (nc)i〉〉 + ieZeff〈〈πα|Wp

1

−B − HC

ε∗
λ · rT s |χ (+)

p , (nc)i〉〉. (63)

Here T s is the s-wave T -matrix operator up to NLO operating on the single-particle wave function. The “−B” term is used in
1/(−B − HC ), because the radiated photon takes away all the available energy in the reaction’s final state; see the discussion
below Eq. (58). By evaluating the matrix element in coordinate space, as in Eq. (60), we find the third term in Eq. (63) is zero,
and the second term cancels MIV + MV I —much as MII cancels the first term in MI . Therefore,

MIII + MIV + MV + MV I

= −ieZeff(B + E)〈〈πα|Wp

1

−B − HC

ε∗
λ · r

1

E − HC + i0+ T s |χ (+)
p , (nc)i〉〉

= −T ij
α eZeffC(3P2 )(B + E)

∫
d3r

W−ηB, 3
2
(2γ r )

r
Y1j (r̂ )ε∗

λ · rei(σ0+δ(3S1 ) )
sin δ(3S1 )

kr
(G0(k, r ) + iF0(k, r )). (64)
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To obtain this coordinate space matrix element, the momentum integration technique used in Eq. (38) has been applied twice.
Note that the final result again reflects the Siegert theorem. Since we have included diagrams up to NLO, the phase shift δ(3S1 )(k)
is defined in terms of the ERE parameters a(3S1 ) and r(3S1 ); see Eq. (45).

We note that the above derivation produces a MIII + MIV + MV + MV I that only has an s-wave initial state contribution.
In contrast, for MI + MII , the angular integration in Eq. (62) picks up s- and d-wave initial state contributions. These can
be separated by applying a partial-wave decomposition to χ

(+)
p (r ) in the expression. From now on we define MEC = MI +

MII + MIII + MIV + MV + MV I and reintroduce the (nc) spin index, dimer angular momentum, and photon helicity labels
that we previously suppressed. However, angular-momentum conservation then guarantees

MEC,αiλ ≡ T ij
α MEC,jλ. (65)

Summing diagrams I–VI then gives an s-wave contribution that is, up to NLO,

Ml=0
EC,jλ = −

√
4π

3
eZeff ε

∗
λ,j C(3P2 )(B + E)

e
i(σ0+δ(3S1 ) )

k

∫
drW−ηB, 3

2
(2γ r )r

[
sin δ(3S1 )G0(k, r ) + cos δ(3S1 )F0(k, r )

]
, (66)

≡ −eiσ0

√
4π

3
eZeff ε

∗
λ,j Cη,0C(3P2 )(B + E)SEC(3S1), (67)

with SH (X) the pertinent wave-function overlap (with the bound-state wave-function normalization/ANC absent) for an
incoming scattering channel X and a mechanism H :

SEC(X) ≡
∫

drW−ηB, 3
2
(2γ r )r

{
Cη,0G0(k, r )

−a−1
(X) + 1

2 r(X)k2 − 2kCH (η)
+ F0(k, r )

Cη,0k

−a−1
(X) + 1

2 r(X)k
2 − 2kCRe[H (η)]

−a−1
(X) + 1

2 r(X)k2 − 2kCH (η)

}
. (68)

This notation is the same as in our previous work, Refs. [18,32]. Note that the r → 0 part of this integral gives a finite result
since [54]

Fl (k, r )
kr→0→ Cη,l (kr )l+1, G0(k, r )

kr→0→ C−1
η,0, Gl �=0(k, r )

kr→0→ [(2l + 1)Cη,l]
−1(kr )−l ,

W−ηB,l+ 1
2
(2γ r )

kr→0→ (2γ r )−l�(2l + 1)/�(l + 1 + ηB ) (when l �= 0).

The integral is also finite at large r because W−ηB,l+ 1
2
(2γ r ) ∝ e−γ r (γ r )−ηB there.

The only d-wave contribution, which is also an EC contribution, is from Eq. (62):

Ml=2
EC,jλ = −eZeffC(3P2 )(B + E)

∫
d3r

W−ηB, 3
2
(2γ r )

r
Y1j (r̂ )ε∗

λ · r (4πi2eiσ2 )
F2(k, r )

kr
Y α

2 (r̂ )Y2α ( p̂)

≡ −
√

2

3
4πeiσ2eZeffC(3P2 ) ε

∗
λ,i T

iα
j Y2α ( p̂)Cη,0(B + E)DEC, (69)

with

DEC ≡
∫

drW−ηB, 3
2
(2γ r )r

F2(k, r )

Cη,0k
. (70)

Here the formula
∫

d�r̂Y1j (r̂ )Y i
1 (r̂ )Yα

2 (r̂ ) = (−)
√

1
2π

T iα
j has been used. Since F2(k, r )

kr→0→ Cη,2(kr )3, the integration is also
finite. In summary, the EC contribution to radiative capture is, up to NLO, represented by diagrams I–VI, which yield

〈Pπ , Pγ , πα,Aλ|LEM |χ (+)
p , (nc)i〉

= −(2π )3δ( Pπ + Pγ )
4π√

3
T ij

α eZeffCη,0C(3P2 )(B + E)
[
eiσ0ε∗

λ,jY00( p̂)SEC(3S1) + eiσ2ε∗
λ,k

√
2T

kβ
j Y2β ( p̂)DEC

]
. (71)

B. CX and SD diagrams: VII–IX

The LO result [18] is obtained from Eq. (71) by setting
both effective ranges, r(X) to zero. But the NLO result includes
contributions from core excitation and short-distance capture,
as well as the effect of finite effective range.

After repeating the previous calculations, but with the 7Be∗

field inside the bubbles, we get diagram (VII) and (VIII) con-
tributions to the total s-wave amplitude S that are analogous

to Eq. (68) but involve an excited core:

SCX(3S1) = h(3S∗
1 )

h(3S1 )

C(3P ∗
2 )

C(3P2 )

∫
drW−ηB∗, 3

2
(2γ ∗r ) r

×
�(1 + iη∗)W−iη∗, 1

2
(−2ik∗r )

− 1
a(3S1 )

+ 1
2 r(3S1 )k2 − 2kCH (η)

. (72)
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Here k∗, η∗, ηB∗ have been defined below Eq. (46) and
below Eq. (52). Note that �(1 + iη∗)W−iη∗, 1

2
(−2ik∗r ) equals

Cη∗,0(G0(k∗, r ) + iF0(k∗, r )) when k2
∗ � 0, and it becomes

a bound state wave function when k2
∗ � 0. The transition

between these cases is smooth. Based on this, in the limit
γ� → 0, the core excitation terms have the same structure as
Eq. (64).

Now, the diagram (IX) contribution—due to the L1 contact
term—which can be considered as a short-distance operator
(SD),

MSD,jλ = −eZeff h(3S1 )

√
ZL1ε

∗
λ,jω Dφ(1) χ

(+)
p (0), (73)

with ω the outgoing photon energy (= |Pγ |). This result can
be simplified as

SSD(3S1) =
√

3

2

L1

γ�(2 + ηB )

1
1

a(3S1 )
− 1

2 r(3S1 )k2 + 2kCH (η)
,

(74)

where L1 ≡ L12
√

3π
h(3S1 )h(3P2 )MR

. Equation (74) indicates that L1 is

independent of the renormalization scale μ, otherwise its
contribution to the capture reaction cross section would de-
pend on μ [see Eq. (81)], contradicting the requirement that
the cross section is μ-independent. In other words, the μ
dependence of L1 is dictated by the μ-independence of L1.
The specific factor, 2

√
3π , in the redefinition is motivated by

the observation [based on Eqs. (17b) and (30b) from the toy
model of Sec. II] that if μ � �, then s- and p-wave couplings
obey

hs (μ)hp(μ)MR ≈ 2
√

3π
√

r0r1 ≈ 2
√

3π.

According to the discussion at the end of Sec. II E,
L1 ∼ 1

�
and so L1 ∼ 1

�
, as long as r0r1 ∼ 1. We write the

short-distance part of the S = 2 capture amplitude in the same
way:

SSD(5S2) =
√

3

2

L2

γ�(2 + ηB )

1
1

a(5S2 )
− 1

2 r(5S2 )k2 + 2kCH (η)
.

(75)

This produces EC, CX, and SD contributions in accord
with the power counting. From Eq. (68), we know SEC ∼ 1

γ 3 ,

while Eqs. (72) and (74) give SCX, SSD ∼ 1
�γ 2 .

C. Total amplitude, S factor

The total amplitude for radiative capture in the s = 1
channel, up to NLO in our EFT, is then

Mαiλ = −T ij
α

4π√
3
eZeffCη,0C(3P2 )ω

[
eiσ0ε∗

λ,jY00( p̂)S (3S1)

+ eiσ2ε∗
λ,k

√
2T

kβ
j Y2β ( p̂)DEC

]
(76)

(where again ω is the outgoing photon energy). To extract the
overall factor of ω here we have neglected the nuclear recoil,
i.e., set B + E = ω. Here

S (3S1) = SEC(3S1) + SCX(3S1) + SSD(3S1). (77)

Finally, everything works out analogously in the s = 2
channel to yield

Mαβλ = −T βj
α

4π√
3
eZeffCη,0C(5P2 )ω

[
eiσ0ε∗

λ,jY00( p̂)S (5S2)

+ eiσ2ε∗
λ,k

√
2T

kβ ′
j Y2β ′ ( p̂)DEC

]
, (78)

where

S (5S2) = SEC(5S2) + SSD(5S2). (79)

Two points are worth noting here. First, core excitation
contributes only in the spin-one channel, since the spin quan-
tum numbers do not permit it in the s = 2 case. Second, since
DEC does not involve initial-state interactions it is the same
for both s = 1 and s = 2 channels; however, S depends on the
s-wave channel parameters through the strong interactions in
the initial state.

Finally, we use

σ =
∫

d�k̂
MR

8π2

ω

k

1

8

∑
λ,σ,a,α

|M|2, (80)

with M now expressed on the basis of particle spins σ, a, α
and depending on photon polarization λ. Hence, we convert
the computed matrix elements for |(nc)i〉〉 and |(nc)β〉〉 initial
states to those for the direct product |nσ ca〉〉 initial state to get
the total S factor:

S(E) = Ee2πησ (E)

= e2πη

e2πη − 1

5π

18
(eZeff )

2kCω3

× [
C2

(3P2 )(|S (3S1) |2 +2 |DEC |2)

+C2
(5P2 )(|S (5S2) |2 +2 |DEC |2)

]
. (81)

Note that the NLO halo EFT calculation of S(E) ultimately
depends on nine parameters once the 8B binding energy is
fixed. Of these, four enter already at LO. They are the ANCs,
C2

(3P2 ), C2
(5P2 ), and the s-wave scattering lengths, a(3S1 ), a(5S2 ).

Five more parameters are necessary to describe the NLO
pieces of the result: the s-wave effective ranges, r(3S1 ), r(5S2 ),
the two LECs parametrizing the short-distance pieces of the
matrix element L1,2, and the proton-7Be∗ mixing parameter

ε1 ≡ h(3S∗
1 )

h(3S1 )

C(3P∗
2 )

C(3P2
) [32].

V. COMPARISON TO TRADITIONAL MODELS

A. Conceptual relationship of halo EFT
and earlier calculations

There is close correspondence between halo EFT and
several aspects of the many older models of the 7Be(p, γ )8B
reaction. In fact, our EFT has been constructed to apply to
this system very generally at low momentum, so S factors
and phase shifts near threshold in any model that obeys gen-
eral physical principles should be reproducible with correctly
chosen EFT parameters. This means that differences among
models close to threshold should reduce to choices of EFT
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parameters, provided that sufficient terms of the EFT expan-
sion have been retained. We now discuss our EFT in terms
of some types of models previously in use. This will make
contact with the extensive prior literature on the 7Be(p, γ )8B
reaction, and it will provide context for matching the EFT
onto literature models below. For a complete review of prior
models up to 2010, including many that we neglect because
their more elaborate construction is less useful for insight into
the EFT, see Ref. [1].

1. Correspondence of halo EFT and
potential-model contributions

Like halo EFT, a potential model treats the 7Be nucleus and
proton as fundamental particles. It models their interaction
with a Woods-Saxon or similar potential, usually with both
central and spin-orbit terms [3,20–24,55–57]. Wave functions
are computed in configuration space, and the electromagnetic
transition operator is written in the usual Siegert-theorem
form that also appears in our Eq. (64). As first pointed out
by Christy and Duck [20], low-energy nonresonant capture
in a potential model of 8B is dominated by the part of the
matrix element integral where the 7Be and proton are well
separated, far beyond the range of strong interaction. In this
region the interaction is purely Coulombic, so the final-state
wave function is proportional to a Whittaker function while
the initial state consists of phase-shifted Coulomb waves. This
gives a matrix element integral very similar to our Eq. (64),
the only difference being that the potential-model integrand
deviates from Whittaker and Coulomb functions at small radii.
This happens at radii � 5 fm, where the 7Be-p effective
interaction differs significantly from pure Coulomb. In this
region, the initial-state wave function of the potential model
has a very small amplitude due to tunneling through the
Coulomb barrier.

In a previous effort to separate long- and short-range
effects, Jennings et al. [57] computed a potential model
and found that the radiative-capture matrix element integrand
peaks at 40 fm for s-wave capture at threshold. They also
presented a second calculation with the same phase shifts, but
otherwise pure Coulomb interaction all the way to zero radius.
For phase shifts specified through the ERE, this is exactly
our Eq. (68). The total matrix elements for the two cases are
nearly equal; even at 500 keV, Jennings et al. find only a 3%
difference in the s-wave cross section between the pure phase-
shifted Coulomb initial state and the full potential model with
the same phase shifts. The overall size of this 3% difference
has to grow with energy at about the same pace as the small
radius part of SEC to keep the initial wave function continuous,
and this gives it about the same energy dependence as our SSD.
Thus, the short-distance part of the potential-model matrix
element amounts to a cancellation between the r � 5 fm part
of our SEC integral and the short-distance counterterm SSD. In
the language of the potential model, the difference encoded in
SSD occurs in the small-r region where the effective nuclear
potential dominates the shape of the wave function. This
accords with the label “short distance” for the SSD term in
halo EFT, which corresponds to regions in the potential model
where r � �−1.

Potential models can in principle include excitation of
7Be∗ by adding another channel to the wave function, with
corresponding “diagonal” and channel-coupling terms in the
potential—at the cost of more elaborate calculations and ad-
ditional parameters. This is not needed for qualitative descrip-
tion of the data, and to our knowledge it has only been done
once in the literature [58,59]. Such a contribution corresponds
to our SCX.

2. The Pauli principle in potential models

An important consideration for the size of short-distance
effects arises from the nature of the potential-model interac-
tion: It is an effective interaction that incorporates not just
the strong nuclear force but also particle-exchange effects.
The projection of a nucleon-level wave function onto a prod-
uct of cluster wave functions has a structure constrained
by fermionic antisymmetry (first considered in the present
context in Ref. [55]). In our case, 7Be contains a practically
filled 0s shell but open 0p orbitals in both j = 1/2 and j =
3/2 subshells. The main consequences of antisymmetry are
imposed on potential models of 8B by constructing the s-wave
effective potential to have a nodeless deeply bound state that is
regarded as belonging to the 0s shell and therefore forbidden
by the Pauli principle. At threshold the l = 0 scattering state
then belongs to the 1s shell and has a single node inside the
potential well. Since there are open p-shell orbitals available
for the proton, no constraint from antisymmetry guides con-
struction of the l = 1 effective potential.

The Pauli node in s-wave scattering states has two con-
sequences for the capture reaction. First, the ∼40 MeV well
depth [3,22,24,57] needed to generate a node in potential
models greatly exceeds the scattering energy near threshold,
so that the short-range part of the scattering wave function has
a nearly energy-independent shape below 1 MeV (as features
imposed by antisymmetry would). Short-range contributions
to the capture matrix element are then largely energy inde-
pendent apart from barrier penetrability; this is in accord with
the energy dependence of SSD. Second, the presence of the
node implies some radius within the potential well where
the matrix element density goes to zero, so that regions of
opposite-sign density just on either side of that radius cancel.
As a result, short-range contributions in the potential model
are suppressed, suggesting significant cancellation between
SSD and the small-radius part of the SEC integral in the EFT.

3. Potential-model parameters and EFT couplings

The effective potential thus has two logically distinct roles
in the capture cross section: It determines phase shifts for
the external part of the initial state, and it models details
of both initial and final effective wave functions within the
potential well. The 8B system lacks empirical information
to constrain these features separately, so model construction
requires ad hoc assumptions that impose arbitrary correlations
between them. For example, traditional lore has usually pro-
vided the radius and shape of the potential. (An exception is
the model of Ref. [24], in which the p-wave potential well
was constructed to reproduce overlap functions from ab initio
calculations.)
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Woods-Saxon potentials are the most common choice, and
their radius and diffuseness are generally chosen to be the
same in all channels. A potential model of the 7Be-proton
system then has, in principle, different well depths in the s-
wave S = 1 and S = 2 channels, as well as a single well depth
and spin-orbit coupling in all other channels. This is a total
of six parameters. These models then employ spectroscopic
factors for the two p-wave channels, meaning that they have
at least eight parameters. After assuming values or relations
between values, there are usually two or three parameters
adjusted to data in actual model construction. Work in this
vein started at least as early as Ref. [55].

In such calculations the spectroscopic factors for the 3P2

and 5P2 components of the 8B wave function were generally
taken from the shell model. A final rescaling of the overall
cross section (see also discussion below) was then made, on
the understanding that the overall scale of the spectroscopic
factors should be adjusted to match capture data. It is probably
better to view this procedure as fixing ANCs rather than
spectroscopic factors, since external capture dominates the
S factor at low energies. In this regard, the role of ANCs
in a potential model corresponds almost exactly to the role
of ANCs in the EFTs. The same experimental or theoretical
constraints can be used in both frameworks.

As discussed above, halo EFT includes the possibility of
core excitation. At NLO this is encoded in the single param-
eter ε1 without adding significant complication to practical
calculations. Since most potential models do not include core
excitation this parameter has no potential-model counterpart.

A critical difference between the two approaches is that
at NLO halo EFT encodes the amplitudes of short-distance
contributions in contact couplings L̄1,2 with no large-distance
consequences; no parameter of a potential model affects
just short-distance physics. Potential models thus have im-
plicit correlations between phase shifts and short-range am-
plitudes that arise from assumed potential-well geometry
but are not part of the most general parametrization of the
amplitude.

We found a clear example of implicit correlations between
scattering lengths and small-radius contributions in the poten-
tial models of Davids and Typel [3]. One potential model in
that work was constructed to reproduce the best-fit experi-
mental scattering lengths, while a second model reproduces
the upper-limit scattering lengths and a third reproduces the
lower-limit values. In Ref. [3] the differences among the S-
factor curves of these models were interpreted as arising from
the scattering lengths. We repeated this exercise using halo
EFT, by first fitting EFT parameters to match the Davids and
Typel best-fit model and then varying a(3S1 ) and a(5S2 ) between
their experimental limits while leaving other parameters fixed
(see Sec. V B for more details on this procedure). For a(3S1 ),
we found very nearly the same dependence of S factor on
scattering length as in the Davids and Typel models. The story
with a(5S2 ) was very different: The dependence of the S factor
on a(5S2 ) in the EFT when L2 is held fixed (at its value in the
“central” model) is much weaker than the a(5S2 ) dependence
found by Davids and Typel. In the language of halo EFT, when
Davids and Typel attempted to produce an altered potential
that differed only in its values of scattering lengths, they

also changed L2 (cf. Table IV below). This change in L2

accounts for roughly half of the “a(5S2 ) dependence” Davids
and Typel found in S(E): much of the dependence they found
was a consequence of changes to the wave function inside
the altered potential well and did not come from changing
the large-distance behavior characterized by a(5S2 ) and r(5S2 ).
(A further complication here is a problem with the published
S(E) for one of the Ref. [3] models, noted below. The
calculations discussed in this paper mainly involve a corrected
version that has the stated scattering lengths.)

While the EFT contains fewer implicit assumptions than
potential models, the price of the more general parametriza-
tion of the amplitude is the need to fix nine parameters. In
a potential model this might correspond to treating the eight
parameters enumerated above as free and independent, all
unguided by lore beyond an expectation that most should have
“natural” sizes. Below, we show that it is possible to constrain
enough of the EFT parameters jointly from measured S factors
and scattering lengths to obtain a robust extrapolation for
S(E). This is presumably a simpler task for halo EFT than for
a potential model, in that there is no Schrödinger equation to
be recomputed when the potential is varied. Indeed, we have
written the amplitude for radiative capture in such a form that
the EFT parameters can all be varied without recomputing the
integrals in Eqs. (68), (70), and (72) above.

4. Cluster and ab initio calculations

Microscopic models, in contrast to potential models, treat
all nucleons as distinct particles and in principle require less
tuning to the 8B system. They are based on a nucleon-nucleon
potential and compute wave functions of the 7Be and 8B sys-
tems by solving seven- and eight-body Schrödinger equations.
The simplicity of the Siegert E1 operator in configuration
space makes the capture matrix element calculation resemble
a projection of 8B onto clusters, and a potential-model wave
function can be viewed as an ansatz for the projection of a
8B state into a purely 7Be + p space. As a result, the impor-
tant features of potential models carry over to microscopic
models: the largest contributions come from the long-range
asymptotic region, and short-distance features are dominated
by antisymmetry. However, the location of the Pauli node now
arises from explicit antisymmetrization of an eight-body wave
function, it is no longer imposed ad hoc. Importantly, micro-
scopic models include configurations not writable in terms of
the 7Be ground state. Thus, in a general sense the microscopic
models’ biggest advantage is that their wave functions at
distances from about 1 fm to the r ∼ 1/� short-distance scale
of halo EFT (or a potential model) is determined by the
underlying nuclear forces. A disadvantage is that S factors
are very sensitive to some quantities like threshold energies
and scattering lengths that do not typically emerge with high
precision from a nucleon-nucleon potential that was not fitted
to them. Some tuning to the full eight-body system is possible,
but a nucleon-level potential with few parameters can only
be tuned to one or two eight-body properties at once, while
one with more parameters probably requires a much more
demanding refit to 8B and other observables simultaneously.

034616-20



MODELS, MEASUREMENTS, AND EFFECTIVE FIELD … PHYSICAL REVIEW C 98, 034616 (2018)

It has only recently become possible to compute accurate
energies and scattering wave functions for A = 8 systems
from nucleon-nucleon interactions that reproduce many ob-
servables of two- and three-nucleon systems faithfully [29].
Such models are generally referred to as ab initio. For four
decades prior to that work, limited computer power restricted
microscopic models to greatly simplified nuclear interactions
and severely truncated basis spaces. However, a great deal of
useful work along those lines was done using the resonat-
ing group method (RGM) and generator coordinate method
(GCM) [4,27,28,60,61]; we refer to such restricted micro-
scopic models as “cluster models,” and we match one of them
onto an EFT below.

Cluster models work in a basis constructed from energy
eigenstates of clusters within a nucleus. For 8B, this means
energy levels of 7Be and 5Li built up from α particles, 3He
nuclei, and protons. The more excited states of the clusters
are included in the basis, the more exact a calculation will
be. This approach has been extended to very large bases in
ab initio calculations [29], but in cluster models the α and 3He
clusters are mostly constructed as 0h̄ω harmonic-oscillator
configurations. Core excitations like 7Be∗ are required in the
model for reasonable accuracy [4,29,62].

The mapping between cluster models and halo EFT is
roughly the same as between potential models and halo EFT.
The differences are that cluster models have a firmer ground-
ing in general principles, include core excitation explicitly,
and should need less tuning to 8B data. However, for poorly
understood reasons, cluster models almost always predict S
factors larger than the data at all energies—often by 10%
or more. Low-energy extrapolations using these models are
typically built on the assumptions that the matrix element is
entirely external capture to good approximation and that most
of the uncertainty lies in the ANCs, plausibly because of the
truncated model space. One holds the computed S(E) curve
shape of the model fixed and multiplies it by a constant to fit
capture data, just as one does to fix spectroscopic factors in a
potential model.

This does not exhaust the range of published models.
However, it does cover both the ones for which we find halo
EFT representations in Sec. V B and those used in Ref. [1] to
produce a recommended S(0).

5. Low-energy expansion of S(E)

In Ref. [39] Baye and Brainis found expressions for first
and second derivatives of S(E) at E = 0 within a given
potential model. These are elegantly derived, and they facili-
tate efficient and accurate numerical calculation of S(0) and
the next two coefficients of the Taylor series at threshold.
While these results are useful for evaluating a given model
at threshold and the solar Gamow peak, they are (as Baye
and Brainis themselves say) not suited to fit data in the
7Be(p, γ )8B problem. This is because initial-state interac-
tion effects due to the Coulomb and nuclear forces generate

nonanalyticities in E at energies k2
C

2MR
∼ 350 keV and 1

2MRa2
3S1

or 1
2MRa2

5S2

∼ tens to hundreds of keV. This limitation on

the Taylor expansion is evident in the large first and second

derivatives S ′(0)/S(0) and S ′′(0)/S(0) found for potential
models in Ref. [39]. These are consistent with a rather small
radius of convergence—smaller than the distance of important
data from threshold. In contrast, the nonanalyticities due to

the low-energy scales k2
C

2MR
and 1

2MRa2 are built into the EFT
directly through the modified effective-range expansion for
the initial-state-interaction amplitude. The EFT amplitude for
radiative capture is not a polynomial in E: only the short-
distance part of the capture operator is Taylor expanded, and
low-energy analytic structure due to nuclear and Coulomb
interactions is retained explicitly. In consequence the EFT can
reproduce the observed energy dependence of S(E) well up to
500 keV center-of-mass energy, enabling its use in data-fitting
as reported in Refs. [32,33] and summarized below. Despite
some shared features, the EFT and the Baye and Brainis
derivative formulas are thus different tools that address dif-
ferent tasks.

A subsequent paper by Baye [38] presented a formula
connecting S(0) to the ANCs of 8B, including the depen-
dence on initial-state strong interactions through the scattering
length, in a form less dependent on the particular capture
model. The correlation between S(0) and the squared ANCs
follows from the dominance of one-body external direct
capture, and it is similar to other results in the literature,
e.g., Refs. [22,39,63–65]. The form of Eq. (81) allows us
to write the EFT result for S(0) in a way that makes this
correlation manifest:

S(0) = 35.76C2
(3P2 )

[
1 − 0.002670a(3S1 )(1 + 0.9095ε1

− 0.3632L1)
]

+ 35.76C2
(5P2 )

[
1 − 0.002670a(5S2 )(1 − 0.3632L2)

]
+ 2.337

(
C2

(3P2 ) + C2
(5P2 )

)
. (82)

Here we have followed Ref. [38] and used a 8B binding
energy of 0.1370 MeV. We also linearized in the 7Be − p
scattering lengths, since their effect on S(0) is small. The final
term of this equation isolates the d-wave contributions. We
have suppressed units in Eq. (82) for readability; the leading
coefficient of each term has units eV b fm, the coefficients of
the scattering lengths, L1, and L2 have units of fm−1, and the
coefficient of ε1 is dimensionless.

The coefficient of C2
(3P2 ) + C2

(5P2 ) obtained in our EFT
analysis (35.76 + 2.34 = 38.10) agrees with that found by
Baye [38] within 0.3%. Equation (82) also agrees with Baye’s
results for the individual contributions to that coefficient from
s- and d-wave capture. Halo EFT therefore quantitatively
reproduces the well-known result that, in this reaction, S(0) is
almost completely determined by C2

(3P2 ) + C2
(5P2 ) [66]. How-

ever, the near-insensitivity of S(0) to the s-wave scattering
parameters exhibited in Eq. (82) is not generic to all reactions
that are dominated by direct external capture at low energy.
For example, the S(0) for 3He(α, γ )7Be has a significant
correlation with the 3He-4He scattering length [39,67].

Baye obtained the dependence of S(0) on scattering
lengths by retaining a potential model (that of Barker) for
the 8B bound state but replacing the scattering states with
phase-shifted Coulomb waves, with the phase shift specified
by the Coulomb-modified effective-range expansion just as
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in our Eq. (68). In contrast to the coefficient of C2
(3P2 ) +

C2
(5P2 ), the coefficient that Baye obtained for the scattering-

length dependence of S(0) appears to disagree with Eq. (82).
However, the two results cannot be compared directly. The
short-range deviations from asymptotic waves encoded in ε1,
L̄1, and L̄2 enter Baye’s calculation implicitly through the
Barker potential model used to produce the bound state; short-
range effects are contained in Baye’s computed coefficient,
but not explicitly parameterized. Taking ε1 = 0 (i.e., no core-
excitation contribution), we infer that the coefficient in Baye’s
scattering length term is reproduced by the values L̄1 = L̄2 ≈
1.4, similar to what we find for potential models in Sec. V B
below. In all our fits—whether to data or to the results of
potential models—we infer values of L̄1 and L̄2 of order, but
larger than, one. This suggests that the short-distance piece of
the radiative capture has a significant effect on the a(3S1 ) and
a(5S2 ) dependence of S(0).

Indeed, the explicit dependence of the coefficient of a(3S1 )

and a(5S2 ) in Eq. (82) on short-distance physics may clarify a
result of Ref. [38]. There it was observed that the formula for
S ′(0) in terms of scattering lengths disagrees with the S ′(0)
found by direct computation of Barker’s potential model [21].
In Ref. [38] the discrepancy was interpreted as sensitivity to
short-range physics arising from the node in the potential-
model s-waves; in the language of the EFT, the observed “sen-
sitivity to short-range physics” amounts to different implicit
values for L̄1 and L̄2 when the initial state is computed in the
potential model compared with when it is asymptotic at all
radii.

Last, we point out that changing the binding energy of
8B by 1 keV, from 0.1364 or 0.1375 MeV (see discussion in
Sec. V B), produces a 1% difference in the coefficient of C2

(3P2 )

and C2
(5P2 ) in the s-wave capture piece of Eq. (82). The effect

on the d-wave capture piece is an order of magnitude less, and
all other coefficients are changed by at most 1%. Changing the
8B binding energy by 1 keV will—if other parameters are held
fixed—change S(0) by ≈1%.

6. Phenomenological R-matrix

Some brief comments on the relation of our EFT to phe-
nomenological R-matrix models may also be useful. For scat-
tering, the connection between the latter approach and halo
EFT is derived explicitly in Ref. [68]. In the case of radiative
capture the phenomenological R-matrix has external-capture
contributions that correspond very closely to our SEC, SCX,
and DEC amplitudes, but the integrals are cut off below some
radius on the order of 3 fm: apart from these lower limits
on the integrals there is a nearly one-to-one mapping of our
matrix-element terms onto terms of the R-matrix capture
amplitude given in Eq. (6) of Ref. [25].

As a matter of computation, phenomenological R-matrix
models incorporate ANCs in exactly the same way as the
EFT (apart from the small-radius cutoff). Scattering phase
shifts enter both external and internal R-matrix amplitudes
in much the same way they enter SEC and SSD, respectively.
And the R-matrix parameterizes short-distance contributions
to radiative capture using radiative-width parameters that are

completely analogous to our L̄1,2—even down to the way they
enter amplitudes.

One difference from halo EFT is that instead of an
effective-range expansion, phase shifts are encoded in a pole
expansion of the R-matrix, each term of which has a reduced
width and a level energy. In practice there is usually only
enough information to fit one pole and all others are ap-
proximated with a single high-energy pole that provides slow
energy variation at low energies. Because the ERE applies
very generally, near threshold there must always be an ERE
that corresponds exactly to any given pole expansion: the
relationship between the R-matrix and ERE parameters is
worked out in Ref. [69]. The pole expansion implies, though,
that phase shifts are more complicated functions of R-matrix
parameters than they are of ERE parameters, and, as in po-
tential models, the R-matrix background-pole parametrization
can produce implicit correlations between ERE parameters
in the fit. This may give the halo EFT formalism, with its
explicit construction around the ERE, significant advantages
for near-threshold data fitting.

B. Mapping potential and cluster models
into the EFT parameter space

We now examine models from the literature and demon-
strate that—at least below center-of-mass energy E =
500 keV—each corresponds to a specific set of EFT param-
eters. Our strategy is to take model outputs as data to be
fitted in the EFT and show that highly accurate fits result.
This is easier than fitting experimental data because a com-
puted model produces more information than is available
from experiment, and there are no measurement errors. We
computed phase shifts and S factors for several potential
models from the literature using our own code, which included
separate S factors for each possible spin and orbital angular
momentum channel in its outputs. For the one microscopic
model considered, S factors are tabulated by channel in the
original publication, and its author provided a table of phase
shifts that were originally published as a graph [70].

We chose five different models for fitting: three variant
potential models of Davids and Typel [3] that were tuned
to the measured scattering lengths and their error limits; the
potential model based on ab initio inputs from Navratil et al.
[24]; and a cluster model by Descouvemont [4]. These provide
a wide range of conditions and were important in the S(0)
recommendations of Ref. [1]. While performing this work,
we learned that the published S factors for the Davids and
Typel potential with lower-limit scattering lengths contain a
programming error, so that the lower-limit curve apparently
reflects a(5S2 ) = −20.9 fm, not −10 fm [71]. The calcula-
tions reported here reflect a corrected version of this “lower”
Davids and Typel potential model that reproduces the intended
a(5S2 ) = −10 fm.

In fitting models, we use the 8B proton separation energy
0.1375 MeV from the 2003 mass evaluation (current when
the models were published); the fits to data discussed in
Sec. VI use the currently recommended 0.1364 MeV. The
d-wave S factor has very nearly the same threshold energy
dependence in every model (including all EFTs), so we first
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TABLE IV. EFT parameters obtained from fits to models from
the literature. The units for the ANC squared (C2) are fm−1, and
s-wave scattering scattering lengths (a(3S1 ) and a(5S2 )) and effective
ranges (r(3S1 ) and r(5S2 )), and the short distance operator coefficients
(L1,2) are fm. The core-excitation contribution’s strength (ε1) is
dimensionless. These units are implicitly assumed and will not be
shown in other places. From top to bottom the models are Davids and
Typel lower, central, and upper potential models [3], the Descouve-
mont cluster model [4], and the Navratil potential model [24].

C2
(3P2 )

a(3S1 ) r(3S1 ) ε1 L1 C2
(5P2 )

a(5S2 ) r(5S2 ) L2

0.201 16.0 1.18 0 1.12 0.534 −10.0 3.93 2.69
0.201 25.0 1.36 0 1.27 0.533 −7.03 5.02 3.10
0.201 34.0 1.45 0 1.34 0.533 −4.03 8.56 4.19
0.109 −4.15 6.80 0 4.80 0.542 −6.91 3.57 3.73
0.108 7.19 0.785 0 0.725 0.480 7.19 0.785 0.725

obtain ANCs for each model by fitting its d-wave S factor
separately in each spin channel. We then fit scattering lengths
and effective ranges to the computed phase shifts. In the
potential models there is explicitly no core excitation, so we
set SCX = 0. For the cluster model we also set SCX = 0 as
a simplifying assumption for fitting, even though the model
contains core excitation; it is difficult to fit uniquely from the
model outputs, and we obtain a precise fit without it, perhaps
because core excitation can be traded against short-distance
physics at these energies. This leaves only the contact terms
L1,2 undetermined, and we fix them from the s-wave S factor
in each spin channel.

The fitted parameters are shown in Table IV. In the table
we quote all parameters to three significant figures. Two
different implementations of our calculation agree at this
level for almost all numbers in the table. But additional
precision is needed to produce, e.g., the curves in Fig. 9.
Readers interested in higher-precision results should contact
the authors. From top to bottom, the EFT parameters are
for the Davids and Typel lower, central, and upper potential
models (corresponding to lower-limit, best-fit, and upper-limit
scattering lengths), the Descouvemont cluster model with
the Minnesota potential, and the Navratil potential model.
Crucially, we find that although the parameters change
from row to row, almost all are consistent with NDA, i.e.,
C2 ∼ �2(2 + ηB )γ 2/� [see Eq. (40)], (a(3S1 ), a(5S2 ) ) ∼ γ −1,
(r(3S1 ), r(5S2 ) ) ∼ �−1, L1,2 ∼ �−1.

In the top panel of Fig. 9 the original S(E) curves from
these models are represented as circles and the fitted EFTs
are shown as continuous curves. The models occur in the
same top-to-bottom sequence as in Table IV. The fractional
difference between each EFT and its original model is shown
in the lower panel. In the fitted energy range 0 to 0.5 MeV,
these residuals are less than 0.2% of the total S factor for
the potential models. However, residuals for the Davids and
Typel models contain cancellation between s = 2 s- and d-
waves, which individually deviate from the original model by
0.4% at 500 keV. In the s = 1 channels of the Davids and
Typel models, and in all channels of the Navratil model, the
deviation is less than 0.1%. For the Descouvemont model,
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FIG. 9. Upper panel: S factors from the EFT fits (continuous)
and the original potential [3,24] and cluster [4] models (discrete
circles). From top to bottom, the first three curves are the Davids
and Typel potential models, with scattering lengths in both channels
increasing from top to bottom. Next comes the cluster model, then
at the bottom the Navratil potential model. Lower panel: Absolute
values of S-factor residuals between the original models and fitted
EFTs as fractions of the total. Symbols correspond to models in the
same way as in the top panel.

errors are under 1% over the fitted range. Extrapolating the
EFT curves to 1 MeV, differences from the original models
increase to about 1% for potential models and 5% for the
cluster model. The behavior of residuals in this 0.5 to 1.0 MeV
energy range are consistent with the truncation error of our
EFT calculation being N3LO.

The three Davids and Typel potentials differ in their
l �= 1 well depths to produce scattering lengths a(3S1 ) =
16, 25, 34 fm and a(5S2 ) = −10,−7,−4 fm. These mod-
els use spectroscopic factors from Cohen and Kurath [72]
and produce the ANCs C2

(3P2 ) = 0.2010 fm−1 and C2
(5P2 ) =

0.5332 fm−1; ANCs fitted to the d-wave capture “data” from
the model in the EFT (Table IV) are within 0.3% of these
values. For the Navratil model the match between the fitted
EFT ANCs and the original ones in the model is of the same
level of precision.

For the cluster model, the published ANCs correspond
to C2

(3P2 ) = 0.1116 fm−1 and C2
(5P2 ) = 0.5565 fm−1; how-

ever, values 2.5% smaller were needed to fit the d-wave S
factors, apparently reflecting some unidentified difference in
cluster masses or 8B separation energy between the original

034616-23



XILIN ZHANG, KENNETH M. NOLLETT, AND D. R. PHILLIPS PHYSICAL REVIEW C 98, 034616 (2018)

calculation and our EFT code. Fitting the ERE over 0–600
keV (three tabulated energies) yielded a(5S2 ) = −6.910 fm al-
though this model was tuned for −7 fm; this probably reflects
the relatively wide energy range of our fit. The simplification
that ε1 = 0 does not seem to have serious consequences, and
our experience with experimental data (Sec. VI) indicates that
ε1 can be compensated in the fitting of L1.

The match of the cluster model onto an EFT also differs
from the other cases in that we had full information about
the potential models that we computed, at several decimal
places and on a dense grid in energy. In contrast, we fitted
to published information for the cluster model, which neces-
sarily had fewer printed data and more rounding (e.g., only
two digits for capture from 3D2 scattering states). It is worth
noting in this context that tests of the fitting procedure with a
1 keV mismatch between the binding energies of the EFT and
a potential model did not allow a fit with smaller residuals than
1%. The difficulties in getting EFT to fit the cluster model with
the same accuracy as for the other models considered could
either be due to larger higher-order effects for that model, or
to these fitting issues.

We also obtained a second set of EFT parameters matched
to potential models, this time using ANCs and binding en-
ergies directly from the original model and ERE parameters
fitted over 0–30 keV, and still fitting L̄1,2 to 0–0.5 MeV
S factors as before. These EFT fits reproduce the original
models at threshold even more accurately; by construction,
deviations of this EFT fit from the original model grow with
energy. The results for S(E) are not plotted, but in the 0-
500 keV they match the original models about as well as the
fits in Table IV and Fig. 9 do. The growth with energy is again
consistent with a calculation in which the leading omitted
effect is N3LO.

VI. REALISTIC ANALYSIS: RECAPITULATION

Here, for completeness, we summarize the results of our
analysis of experimental data for 7Be(p, γ )8B. Further details
are given in Ref. [32]. Some details related to Bayesian priors
and computational issues can also be found in Ref. [33].

A. Data selection

We included 42 data points measuring total S factors in
our analysis. They come from all modern experiments with
more than one data point for the direct-capture S factor up
to E = 500 keV. All data lie at energies above 0.1 MeV. We
subtracted the M1 contribution of the 8B 1+ resonance from
the data using the resonance parameters of Ref. [73]. This has
negligible impact for E � 0.5 MeV due to the smallness of
the correction and the small uncertainty on the correction.
Since we retain only points in this region, this eliminates
the resonance’s effects. Reference [1] summarizes these ex-
periments, which are Junghans et al. (two experiments) [74],
Filippone et al. [73], Baby et al. [75,76], and Hammache et al.
(two measurements published in 1998 and 2001) [77,78]. We
assigned common-mode errors, listed in Ref. [32], according
to the published accounting of experimental systematics. The
Junghans BE1 target data were left out of the final Ref. [1]

analysis because of correlations with the BE3 data; we kept
both sets because their wide energy coverage provides valu-
able constraints on our model’s energy dependence, most
likely outweighing the disadvantage of correlations in overall
normalization that are estimated to be small.

B. Analysis

We wish to extrapolate S(E) from the region of these
data, 100 keV < E < 500 keV, to the region of relevance
for solar modeling, 30 keV and below (with peak sensitivity
at 18 keV). We used the 42 data points to constrain the
nine EFT parameters, computing the posterior probability
distribution function (PDF) of the parameter vector g given
data, D, our theory, T , and prior information, I . To account
for the common-mode errors in the data we introduced data-
normalization corrections, ξi . Since these errors affect all data
from a particular experiment in a correlated way there are
only five parameters ξ1–ξ5: one for each experiment that has a
shared normalization error of this kind. (See Ref. [32] for the
one that does not.)

We performed a Bayesian analysis and used Markov chain
Monte Carlo to determine the posterior PDF, with details
described in Refs. [32,33]. All EFT parameters but the s-
wave scattering lengths are assigned flat priors over ranges
that correspond to, or exceed, natural values. We do, though,
restrict the parameter space by requiring that there is no s-
wave resonance in 7Be-proton scattering below 0.6 MeV.

We also constrain the EFT parameter space further by
incorporating independent experimental information on the s-
wave scattering lengths via Gaussian priors on (a(3S1 ), a(5S2 ) ),
centered at the experimental values of Ref. [19], (25, −7)
fm, and with widths equal to their reported errors, (9, 3) fm.
In fact, these numbers were extracted from an analysis of
scattering data using the ERE in s-waves and a single-pole
R-matrix resonance in p-waves, with no value of the effective
range recommended. It is possible that interesting correlation
structures in the EFT parameter space would result from a full
analysis of those cross-section data; an EFT analysis along
these lines is deferred to a future publication.

This “Bayesian model averaging” samples the part of
the EFT parameter space that is consistent with the scatter-
ing lengths quoted in Ref. [19]. Regions in that space that
reproduce the shape and the magnitude of the S(E) data
more accurately are then weighted more strongly in the final
extrapolant.

C. Results

The tightest parameter constraint in our fit to capture data is
on the sum C2

(3P2 ) + C2
(5P2 ) = 0.564(23) fm−1, which sets the

overall scale of S(E). Neither ANC is strongly constrained
by itself, but they are strongly anticorrelated. The ab initio
calculation of Nollett and Wiringa [49] predicts ANCs that
agree with our extraction within error bars, C2

(3P2 ) + C2
(5P2 ) =

0.537(26) fm−1, while there is some disagreement with an-
other ab initio prediction of 0.509 fm−1 [29] from Navratil
et al. The extraction of these ANCs from transfer reac-
tions has been fraught with ambiguities, particularly with
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regard to optical potentials. From (7Be, 8B) reactions on
heavier targets, Tabacaru et al. inferred C2

(3P2 ) + C2
(5P2 ) =

0.466(0.049) fm−1 [79]. Efforts based on deuteron strip-
ping have yielded results ranging from about 0.45 to 0.70
[80–84], with the more recent results in fair agreement with
ours.

In addition to the correlation between ANCs, our analysis
also showed that the effect of core excitation, parameterized
by ε1 in the EFT, can be traded against the short-distance part
of the spin-1 E1 matrix element: There is a slight nonzero
signal for the quantity 0.33 L̄1/fm − ε1. The data do prefer
a positive L̄2: Its one-dimensional PDF yields −0.58 fm <
L̄2 < 7.94 fm at 68% degree of belief.

We then computed the PDF of S(E) at many energies
and extracted each median value and 68% interval. At 0 keV
(20 keV) we found S = 21.33+0.66

−0.69 eV b (S = 20.67+0.60
−0.63),

again at 68% degree of belief, including all errors associated
with parameter selection. A choice of the EFT-parameter
vector g that corresponds to natural coefficients, produces
curves close to the median S(E) curve and has a large value of
the posterior probability is given in Ref. [32]. Reference [32]
also supplies information on the derivatives of S(E) at 0, as
well as a simple parametrization for the thermal reaction rate.

D. Comparison to solar fusion II value

Reference [1] recommends S(0) = 20.8 ± 0.7(expt) ±
1.4(theory) eV b. In that work experimental errors were
inflated by a factor of 1.65 to account for large χ2 values
with respect to the models employed. Each fit in Ref. [1]
consisted of an overall rescaling of one model for S(E),
based on the idea that the models could accurately predict the
shape of the S factor but needed further adjustment of ANCs
(or spectroscopic factors) to match the data. The theoretical
error in Ref. [1] was taken as half the difference between the
lowest and highest extrapolated S(0) obtained in this way.
The models that determined the theory error bar in Ref. [1]
were ultimately the Navratil semi- ab initio model [24] (last
line of Table IV and lowest curve of Fig. 9, upper panel) and
the original Davids and Typel low-scattering-length model
that is now known to inadvertently have had a(5S2 ) outside the
empirical range; see Sec. V. This procedure was motivated
by a desire to consider a set of models that were consistent
with general physical principles, and then not discriminate
between them on the basis of small differences of χ2.

Our S(0) is consistent with the result of Ref. [1]. But our
total error, including model selection, and without any error
inflation, is about the same size as the inflated experimental
error quoted there. It is therefore markedly smaller than the
combined 0.7(expt) ± 1.4(theory) error bar given there. We
attribute this smaller total uncertainty to two things. First, our
Bayesian sampling of the EFT parameter space means we
explore the full range of reasonable models of this process.
We showed in Sec. V B that differences amongst models
below E = 0.5 MeV—including the Navratil and Davids and
Typel models that defined the error bar obtained in 2011—
can be encoded in nine EFT parameters. Our Monte Carlo
sampling of that space thus includes the capture models that
set the bounds in Ref. [1], the other models from that analysis

whose results lie between those two, and models which fall
elsewhere in EFT-parameter space as well. The computation
of a PDF on this EFT-parameter/model space then permits
discrimination—based on experimental data—regarding the
shape of the S(E) curve. Not all of the physics in that curve
comes from the external-capture part of the matrix element,
so rescaling a model curve to match the data only produces a
reliable result up to a certain level of accuracy. In contrast, the
Bayesian model averaging that we implemented through EFT
parametrization of the capture amplitude favors regions of
the model space that produce better descriptions of the S(E)
data. Second, although the Navratil and Davids and Typel
models are included in this model averaging, they correspond
to a(5S2 ) = +7.2 and a(5S2 ) = −20.9 fm, respectively, and are
thus strongly disfavored by the prior on a(5S2 ) that we have
taken from the Angulo data. In other words, neither of the
models that ultimately determined the theory error bar in
Ref. [1] was consistent with the scattering lengths published
in Ref. [19]. Had those models been excluded, the range of
extrapolated S(0) would have been substantially narrower.

The near-equality of our 68% degree-of-belief interval with
the experimental error estimated in Ref. [1] appears to be
entirely coincidental. The analysis there indicated a nearly 2σ
inconsistency among data sets, given the assumption that any
one of nine theoretical S(E) shapes was correct. The errors
in that analysis were then inflated by a factor of about 1.65 to
account for the inconsistency. Our analysis does not include
this inflation factor. In Refs. [32,33] we looked for, but did not
find, quantitatively clear indications of inconsistency amongst
the data sets in the results of our analysis.

Our final uncertainty on the extrapolated S(0) accounts
for both the experimental errors and the differences among
a wide class of models that are consistent with naturalness
and information on the 7Be-p scattering lengths. In Bayesian
model averaging there is no way to divide the degree-of-belief
interval into a “theory” and an “experimental” error bar:
the data determine the weightings of many different models,
which all contribute to the final extrapolation. We are able to
take full advantage of this more quantitative accounting of
model uncertainties because of the simultaneous generality
and consistency with basic physics provided by the halo
EFT parametrization. Bayesian model averaging over the EFT
parameter space yields a more general, and more rigorous,
accounting of model uncertainties than examining a range of
broadly plausible models.

VII. EFFECTS AT N2LO AND BEYOND

The calculation we have carried out here is complete to
NLO in the expansion in powers of klow/�. In the numerator
klow any of the soft scales k, γ , kC , γ�, or 1/a(5S2 ) and 1/a(3S1 )

can appear. This suggests an expansion parameter ≈20% for
amplitudes, so errors due to higher-order effects in the S
factor could be as large as 10%. However, our success in
fitting the NLO halo EFT amplitude both to models and to
experimental data suggests that 10% is an overestimate of
the EFT truncation error. In this section we examine various
higher-order effects and attempt to assess their impact on the
S factor.
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A. Higher orders in the proton-7Be interaction

First, it is important to recognize that although we
nominally worked to NLO, we captured a large set of
higher-order corrections by resumming the range corrections
in both the s-wave scattering ERE and the formulas for the
p-wave ANCs. A strict NLO calculation would have re-
expanded observables in powers of r(3S1 ) and r(5S2 ). In the
single-channel s-wave case such a resummation improves the
accuracy of the EFT amplitude from NLO to N2LO, because
the shape parameter (coefficient of the k4 term in the ERE)
affects the EFT amplitude only at N3LO [45].

However, the presence of 7Be∗ as an explicit degree of
freedom in the EFT means that core excitation enters the
s-wave ERE at N2LO (for a natural coupling). In the limit
that γ� is well below the maximum momentum of interest
this could have a 5% effect on the amplitude. This is mitigated
by the restriction of our S-factor study to proton-7Be energies
below 500 keV, which corresponds to a momentum kmax =
28.7 MeV/c: this is less than 10% higher than γ�. The limited
phase space available to the 7Be∗-proton channel reduces the
amount it can change the cross section in the energy domain of
interest. For the natural-sized coupling assumed in this work
we estimate its effect to be a few percent at most.

Second, we recall that in this paper we consider only
the Coulomb potential between the proton and the core.
Transverse photons can also be exchanged between these two
charged particles. However, as noted above, their effect is
suppressed by V 2/c2 � 0.1%. This estimate is for “potential”
photons, which obey q0 � |q|. One might be concerned that,
e.g., “ultrasoft” photons, which have q0 ∼ |q| ∼ E, will pro-
duce larger effects, since they receive an infra-red enhance-
ment from the photon propagator. However, the small amount
of phase space available for these modes more than com-
pensates for that enhancement, ultimately making “ultrasoft”
photons an O(V 3/c3) effect.

B. Higher multipoles

Next, we turn our attention to the accuracy of the ap-
proximations that we made in evaluating the matrix element
of the electromagnetic current in Sec. IV. There we wrote
ei Pγ ·r ≈ 1, which means we have neglected multipoles higher
than E1 in the external photon field.

In the region up to 500 keV there are no resonances in the
proton-7Be system, and so standard dimensional arguments
give a reasonable estimate of the effect of higher multipoles.
Photon radiation of M1 character will, for example, be radi-
ated from the system with an amplitude that is ∼V/c smaller
than the E1 amplitude we have computed here. Since M1 and
E1 photons do not interfere in the total radiative capture cross
section, the M1 multipole then has an effect in the S factor
only at O(V 2/c2). As already mentioned above, this means
neglecting M1 radiation is an approximation that is good to
better than 0.1%. We note that this approximation breaks
down immediately above E = 500 keV, due to the presence
of the 1+ resonance in proton-7Be scattering and its allowed
M1 transition to the 8B ground state.

E2 transitions to the 8B ground state are also allowed,
e.g., from p-wave proton-7Be scattering states. Using an

estimate for the amplitude for E2 radiation [85], we find
that it is suppressed by ω〈r〉/5 compared to E1 radiation,
where 〈r〉 is the size of the emitting region. (The factor in
the denominator is the (2L + 1)!! that enters the amplitude
for multipolarity L.) For very-low-energy capture the size of
the emitting region can be tens of fermis, and ω can be as
large as 500 keV. Thus, we conservatively take ω〈r〉 ≈ 0.1,
suggesting an E2 amplitude that could be a couple of percent
of the E1 amplitude at the upper end of our energy range. As
is the case for M1 radiation, E2 and E1 amplitudes enter the S
factor incoherently, so even with these conservative estimates
we expect that E2 transitions affect S(E) by less than 0.05%.

This analysis of higher multipoles within the EFT for-
malism agrees with previous estimates using potential-model
[86,87], R-matrix [88], and microscopic [89,90] approaches,
and with our own potential-model calculations [32] using the
potential of Ref. [40]. Indeed, more detailed models generally
yield even smaller effects than our EFT estimate, accounting
for less than 0.01% of the total direct-capture S factor for
energies up to 500 keV.

C. Higher-order pieces of the E1 amplitude

Finally, we must consider the fact that the evaluation of the
direct-capture E1 amplitude in Sec. IV amounts to considering
only the leading term in the expansion of the pertinent spheri-
cal Bessel function j0(ωr ). The next term in the j0(ωr ) Taylor
series—sometimes called a “retardation term”—is, however,
a factor of ω2r2/6 smaller than the O(ω) term. It too is at
most a 0.2% effect. Moreover, the proton magnetic moment’s
contribution to the direct-capture E1 amplitude is suppressed
by about ω/Mn [85], which increases to ≈0.05% at 0.5 MeV,
and thus its contribution to the S factor are less than 0.1% (the
contribution of the nuclear magnetic moment is even smaller).

There also are higher-order pieces of the short-distance
part of the amplitude SSD. They are represented by higher-
dimensional operators that contain derivatives acting on
photon, n, or c fields. However, parity conservation ensures
that these contain at least two spatial derivatives. (The equa-
tions of motion can be used to convert all time derivatives to
spatial derivatives.) They are thus suppressed by k2 ≈ 2MRE
compared to the NLO short-distance effects we have included
here. This makes them N3LO. We have tested the impact
that the inclusion of this kind of N3LO term has on our
Bayesian analysis [32]. This revealed no statistical evidence
for nontrivial energy dependence of either L̄1 or L̄2 in the
experimental data on 7Be(p, γ )8B.

VIII. SUMMARY

We have studied the 7Be(p, γ )8B reaction in a low-energy
effective field theory up to NLO. This yields an amplitude
valid over the entire <500 keV energy range directly relevant
to astrophysical modeling and data extrapolation. Major re-
sults at LO and NLO were presented in previous reports. In
this paper we provide details of our work.

We first discussed the EFT power counting based on ve-
locity scaling. The Coulomb potential is very important in
our reaction, and velocity scaling—originally developed in the
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context of a system of two heavy quarks interacting via gluon
exchange—is well-suited to its treatment. We used velocity
scaling to include electromagnetic interactions in a simple
EFT in which strong interactions are classified according to
the power counting developed for systems with large s-wave
scattering lengths and shallow p-wave bound states. To make
a connection between EFT calculations and ordinary quan-
tum mechanics we computed amplitudes using time-ordered
perturbation theory and the Lippmann-Schwinger equation,
since the intermediate states are easily identified there. This
also allows us to fully exploit existing knowledge of Coulomb
wave functions in coordinate space. Indeed, one major feature
of this work is the development of EFT matrix elements in
position space. It will be interesting to explore higher-order
loop diagrams using this method.

We applied the Lagrangian, power counting, and cal-
culational methods developed in our simple EFT to the
7Be(p, γ )8B reaction, including all the complications neces-
sary for a realistic calculation, i.e., spin degrees of freedom
and a 7Be core excitation at low energy. The latter modifies
the corresponding effective range expansion within the EFT:
The s-wave acquires a small inelasticity, while the p-wave
becomes an elementary coupled-channel problem. The 8B
ANCs were also computed in terms of the underlying EFT
parameters. This connection was used in our previous LO
work to fix the EFT parameters to ANCs computed ab initio
and produce a LO estimate of the S factor [18].

We then computed the reaction amplitude using time-
ordered perturbation theory and found that loop diagrams
are finite in calculations using the spatial coordinate. The
final results bear similarities to those of quantum-mechanical
models, but with the crucial difference that there is an explicit
hierarchy of contributions—external capture, core excitation,
and short distance terms—that had never before been studied
as systematically. This displays the power of EFT, which
provides a systematic way to organize the matrix element.
The resulting amplitude is model independent in the sense
that it has no regulator dependence and a minimal param-
eter set for a specified accuracy. The generality of the for-
malism places estimates of theory uncertainties on firmer
ground.

As an explicit demonstration of this, we showed that sev-
eral published models can be defined as specific points in the
EFT parameter space—at least as far as the capture amplitude
up to center-of-mass energies of 500 keV is concerned. The S
factors and phase shifts of each model permit extraction of an
unambiguous set of EFT parameters: ANCs from the d-wave
S factors, s-wave couplings from phase shifts, and contact
couplings from the s-wave S factors. The coordinates of
these models in the space of EFTs (i.e., corresponding values
of EFT couplings), in general, agree with power-counting
expectations. From the difference between the fitted EFTs
and the original models outside the fitted energy range, we
estimate that the truncation error of our calculation is actually
N3LO and thus <1%.

The halo EFT developed here thus covers the space of
low-energy theories of 7Be(p, γ )8B and has omitted terms
that are negligible over the energy range important for extrap-
olation from laboratory to astrophysical conditions. This facil-

itates our data-driven extrapolation, wherein we use Bayesian
methodology to sample the space of EFT parameters and
compute the posterior PDF in that parameter space based
on data on 7Be(p, γ )8B and the scattering lengths extracted
in Ref. [19]. The resulting extrapolant does not include the
tacit assumptions of a potential model and produces a smaller
(combined theory and experiment) uncertainty than that of
previous evaluations.

Finally, we point out that the EFT and Bayesian method-
ology used here is applicable to other systems with similar
features.
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APPENDIX A: LIPPMANN-SCHWINGER EXPANSION

Following the canonical quantization procedure (e.g.,
Ref. [52]), we can derive a Hamiltonian from the toy-model
Lagrangian in Eq. (1). Without showing the details, we list the
free Hamiltonian density and the strong-interaction potential
density:

H0(x) = c†
(
−

→
∇

2

2Mc

)
c + n†

(
−

→
∇

2

2Mn

)
n

−φ†
(
−

→
∇

2

2Mnc

− �φ

)
φ

+π † i

(
−

→
∇

2

2Mnc

− �π

)
πi, (A1a)

Ws (x) = −hsφ
†nc + H.c., (A1b)

Wp(x) = −hpπ † i n Ṽ Ri c + H.c. (A1c)
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The free Hamiltonian and potential H0 = ∫
dxH0(x),

Ws = ∫
dxWs (x), and Wp = ∫

dxWp(x). In principle, the
daggered fields should be represented by the corresponding
conjugate momentum fields, e.g., �φ ≡ ∂L/∂φ̇, but for sim-
plicity we just use the daggered fields themselves. After quan-
tization, the fields are operator-valued functions depending on
the space coordinate x; when acting on a state in Fock space
the fields annihilate particles while the daggered fields create
particles, for example φ(x) = ∫ d Pφ

(2π )3 e
i Pφ ·xφPφ

and φ†(x) =∫ d Pφ

(2π )3 e
−i Pφ ·xφ†

Pφ
. We stress that no antiparticle degrees of

freedom exist in this theory.
The subtlety due to the extra minus sign for the s-wave

dimer (φ field) free Hamiltonian in Eq. (A1a) should be
properly dealt with. For this field we impose the canonical
commutation relation [φ(x) , φ†(x′)] = −δ(x − x′). Then,
if |0〉 is the vacuum state and |Pφ〉 ≡ φ

†
Pφ

|0〉, it follows

that 〈P ′
φ|Pφ〉 = −(2π )3δ( Pφ − P ′

φ ). This will not cause any
problems in our EFT, because the particle number is con-
served and finite, and therefore the energy is bounded from
below. However, the completeness relation for the φ-mode
subspace is

Iφ = −
∫

d Pφ

(2π )3 |Pφ〉〈Pφ|. (A2)

An alternative approach to deal with the “−” sign is
to introduce an extra sign for defining the ket state,
〈Pφ| ≡ 〈0|(−)φPφ

, so that the state’s norm and the ex-
pectation value of Hamiltonian are positive. Physical re-
sults, e.g., the scattering T -matrix, computed in this way
are the same as in the approach we have used here. All
the other fields have conventional norms and complete-
ness relations, e.g., [c(x) , c†(x′)] = δ(x − x′), 〈P ′

c|Pc〉 =
(2π )3δ( Pc − P ′

c ), and Ic = ∫
d p

(2π )3 |Pc〉〈Pc|. (Of course, for
a fermion, the anticommutator should be used.)

Quantization of the electromagnetic sector of the the-
ory needs more care and will not be discussed here (see,
e.g., Ref. [52]). After quantization the Hamiltonian can be
written as

Wγ =
∑
λ=1,2

∫
d Pγ

(2π )3
ωPγ ,λa

†
Pγ ,λaPγ ,λ

− e

∫
dx JN (x) · A(x)

+ e2

8π

∫
dxdx′ ρN (x)ρN (x′)

|x − x′| . (A3)

The first term is the free Hamiltonian for a transverse photon
with two polarizations. The last term is the pure Coulomb
potential WC , while the second term is what remains of the
canonical JμAμ interaction, which elsewhere in the text we
refer to as −LEM . The current and charge densities associated
with the matter fields, JN and ρN , can be derived from the
EFT Lagrangian.

Since the two-particle state |n, c〉 appears frequently in
the calculation, we now list several important relations be-
tween the individual-particle coordinates Rn and Rc (mo-
menta Pn and Pc), on the one hand, and the center-of-mass

coordinate Rnc (momentum Pnc) and relative coordinate rnc

(momentum pnc) on the other:

Rn = Rnc + f rnc, (A4)

Rc = Rnc − (1 − f )rnc, (A5)

Pn = (1 − f )Pnc + pnc, (A6)

Pc = f Pnc − pnc. (A7)

As mentioned before, f = Mc/Mnc. Based on the single-
particle Fock-state definition, the two-particle-state normal-
izations are

〈R′
n R′

c|Rn Rc〉 = δ(R′
n − Rn)δ(R′

c − Rc ), (A8)

〈P ′
n P ′

c|Pn Pc〉 = (2π )3δ( P ′
n − Pn)(2π )3δ( P ′

c − Pc ). (A9)

The Fock states with given space coordinates are defined as
|Rn Rc〉 ≡ n†(Rn)c†(Rc )|0〉. Equivalently, these states can be
labeled by variables that manifestly separate out CM motion,
i.e., |Pnc pnc〉 ≡ |Pn Pc〉 and |Rnc rnc〉 ≡ |Rn Rc〉. Since

d Rnd Rc = d Rncd rnc, (A10)

d Pnd Pc = d Pncd pnc, (A11)

the normalizations for the states of Eq. (A8) and (A9) can be
rewritten as

〈R′
ncr ′

nc|Rncrnc〉 = δ(R′
nc − Rnc )δ(r ′

nc − rnc ), (A12)

〈P ′
nc p′

nc|Pnc pnc〉 = (2π )3δ( P ′
nc − Pnc )(2π )3δ( p′

nc − pnc ).

(A13)

Plane waves are then written as

〈Rn Rc|Pn Pc〉 = ei( Pn Rn+Pc Rc ) = ei(Pnc Rnc+ pnc rnc)

= 〈Rnc rnc|Pnc pnc〉. (A14)

We make extensive use of the so-called Coulomb distorted
states, defined in terms of the plane waves as

|Pnc, χ
(±)
pnc

〉 ≡
(

1 + 1

E − HC + i0± WC

)
|Pn, Pc〉, (A15)

with HC ≡ H0 + WC . These states can be computed analyti-
cally, and are

〈Rnc rnc|Pnc, χ
(±)
pnc

〉 = ei Pnc Rncχ (±)
pnc

(rnc ), (A16)

with χ
(±)
pnc

(rnc ) the so-called Coulomb wave functions in
coordinate space [35,91], details of which can be found in
Appendix B.

Now we are in a position to compute several matrix ele-
ments used in the scattering and reaction calculations. For Ws ,
we have

〈Pφ|Ws |Pnc, χ
(±)
pnc

〉

= 〈Pφ|
∫

d r (−)hsφ
†(r )n(r )c(r )|Pnc, χ

(±)
pnc

〉

= hs (2π )3δ( Pnc − Pφ )χ (±)
pnc

(0). (A17)

Note the subscripts of momentum variables in the Fock state
indicate the particle type therein. In the second step of the
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derivation, the sign is flipped because of the φ state’s negative norm. Hermitian conjugation of this vertex’s matrix element
amounts to complex conjugation of Eq. (A17).

If some care is taken with the operation of derivatives, we can compute the matrix element for Wp in a similar fashion:

〈Pπ , πj |Wp|Pnc, χ
(±)
pnc

〉 = 〈Pπ , πj |
∫

d r (−)hpπ
†
i (r )n(r )Ṽ

i

Rc(r )|Pnc, χ
(±)
pnc

〉

= i
hp

MR
(2π )3δ( Pnc − Pφ )

∫
d rδ(r )∂jχ

(±)
pnc

(r ) = i
hp

MR
(2π )3δ( Pnc − Pφ )∂jχ

(±)
pnc

(0). (A18)

The index j corresponds to the dimer state with spin projection j on the ẑ axis.
We can also calculate the vertex shown in Fig. 10 in the plane-wave basis (in Coulomb gauge):

〈P ′
n, P ′

c, Pγ , Aλ|LEM |Pn, Pc〉 = (2π )6δ( Pnc − P ′
nc − Pγ )δ( pnc − p′

nc − f Pγ )e
Qn

Mn

ε∗
λ · [ pnc + (1 − f )Pnc]

+ (2π )6δ( Pnc − P ′
nc − Pγ )δ( pnc − p′

nc + (1 − f )Pγ )e
Qc

Mc

ε∗
λ · [− pnc + f Pnc]. (A19)

Again, Aλ means the transverse photon with polarization λ. Pγ and ε∗
λ are the photon’s outgoing momentum and its polarization

vector. It is then straightforward to convert this to a matrix element between Coulomb-distorted states in the frame where the
total initial momentum of the nc system, Pnc = 0:

〈P ′
nc, χ

(−)
p′ , Pγ , Aλ|LEM |Pnc = 0, χ (+)

pnc
〉

= (2π )3δ( P ′
nc + Pγ )e

∫
d rncχ

(−)∗
p′

nc
(rnc )

[
e−if Pγ ·rnc

Qn

Mn

−ei(1−f )Pγ ·rnc
Qc

Mc

]
(−iε∗

λ∂rnc
)χ (+)

pnc
(rnc ). (A20)

We can also define the full propagator for all the fields,
which is useful in diagrammatic calculations. For example,
we define the full propagator Dφ

〈P ′
φ| 1

E−H+i0+ |Pφ〉 ≡ (2π )3δ( Pφ−P ′
φ )Dφ ( P ′

φ, Pφ ; E).

(A21)

The states are free dimer states here. The other fields’ prop-
agators are defined in the same way and hence will not be
shown explicitly here. The matrix elements can be expanded
using the LSE.

APPENDIX B: ASYMPTOTIC COULOMB
WAVE FUNCTION

The Coulomb-distorted incoming and outgoing wave func-
tions in coordinate space are

χ
(±)
k (r ) = e− π

2 ηeikr�(1 ± iη)M (∓iη, 1; ±ikr − ikr ), (B1)

Pn P’n

P’cPc P’c

P’nPn

Pc

+

FIG. 10. The matrix element of the EM vertex LEM—defined in
Eq. (A3)—between initial free n − c state and final free n − c plus
one transverse photon state.

with η ≡ ZcZnαemMR
k

= kC

k
and k2

2MR
for the relative energy of

the two-particle system. M (a, b; z) is the Kummer function
[43], and at small z,

M (a, b; z) = 1 + a

b
z + a(a + 1)z2

b(b + 1)2!
+ · · · . (B2)

By using this expansion, we get

χ
(±)
k (r = 0) = Cη,0e

±iσ0 ,

∂jχ
(±)
k (0) = 3Cη,1e

±iσ1 ikj , (B3)

with Cη,l ≡ 2l e− π
2 η|�(l+1+iη)|
�(2l+2) and e2iσl ≡ �(l+1+iη)

�(l+1−iη) .

As with the plane wave, the χ
(±)
k (r ) have a partial-wave

decomposition:

χ
(+)
k (r ) = 4π

∑
l,m

il
Fl (k, r )

kr
eiσl Ylm(k̂)Ym

l (r̂ ), (B4)

χ
(−)
k (r ) = 4π

∑
l,m

il
Fl (k, r )

kr
e−iσl Y m

l (k̂)Ylm(r̂ ). (B5)

Here Ym
l (r̂ ) is a conventional spherical harmonic, but

Ylm(r̂ ) ≡ Ym
l (r̂ )∗. Meanwhile, Fl (k, r ) is the regular solution

of the Schrödinger equation with pure Coulomb interaction at
angular momentum l:

Fl (k, r ) = Cη,le
ikr (kr )l+1M (l + 1 + iη; 2l + 2,−2ikr ).

(B6)

It is a real function for real k, r , and kC , as can be checked
using M (a, b, z) = ezM (b − a, b,−z). Associated with it is
an irregular real solution, known as Gl (k, r ). (More details
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can be found in Ref. [43].) The two can be related to the
Whittaker function [43] for real k, r , and kC :

Gl (k, r ) + iFl (k, r ) = eiσl e
π
2 η(−i)lW−iη,l+ 1

2
(−2ikr ), (B7a)

Gl (k, r ) − iFl (k, r ) = e−iσl e
π
2 η(i)lWiη,l+ 1

2
(2ikr ). (B7b)

Here Wκ,μ(z) is analytic in κ , μ, and z. An important
property about this function needs to be pointed here, i.e.,
kl�(l + 1 − iη)Wiη,l+ 1

2
(2ikr ) as a function of k is analytic

on the whole lower complex plane, including the real axis. To
prove this statement first observe that �(l + 1 − iη) is analytic
when Im k � 0, and, as mentioned before, the Whittaker
function is analytic for nonzero k. Therefore, to prove the
proposed analyticity property, we only need to focus on k →
0 − i0+ from the lower plane. The Whittaker function can be
represented in integral form [92] [for z �= 0, −π < arg z < π ,
and Re( μ+1

2 − κ ) > 0]:

Wκ, μ
2
(z) = zκe−z

�
(

μ+1
2 − κ

)∫ +∞

0
e−ww

μ−1
2 −κ

(
1 + w

z

) μ−1
2 +κ

dw,

(B8)

which leads to

Wiη,l+1/2(z)�(l + 1 − iη)zl|z=2ikr

= e−2ikr

∫ +∞

0
e−wwl (w + 2ikr )l

[
1 + 2ikr

w

]i
kC
k

dw

=
∫ +∞

0
e−ww2le−2kCr/wdw (when k → 0 − i0+), (B9)

which is finite. Note that as long as Im(k) � 0, the
−π < arg z < π and Re( μ+1

2 − κ ) > 0 conditions are satis-
fied. Equation (B9) indicates that we can analytically con-
tinue kl�(l + 1 − iη)Wiη,l+ 1

2
(2ikr ) from k’s lower half-plane

[Im(k) < 0] to the real axis [Im(k) = 0]. Following the
same arguments, we can analytically continue kl�(l + 1 +
iη)W−iη,l+ 1

2
(−2ikr ) from k’s upper half-plane [Im(k) > 0]

down to the real axis [Im(k) = 0]. This proves the analyticity
properties claimed in the main text.
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