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We present a description of the breakup of halo nuclei in peripheral nuclear reactions by coupling a model of
the projectile motivated by halo effective field theory with a fully dynamical treatment of the reaction using the
dynamical eikonal approximation. Our description of the halo system reproduces its long-range properties, i.e.,
binding energy and asymptotic normalization coefficients of bound states and phase shifts of continuum states.
As an application we consider the breakup of 11Be in collisions on Pb and C targets. Taking the input for our
halo-EFT-inspired description of 11Be from a recent ab initio calculation of that system yields a good description
of the Coulomb-dominated breakup on Pb at energies up to about 2 MeV, with the result essentially independent
of the short-distance part of the halo wave function. However, the nuclear dominated breakup on C is more
sensitive to short-range physics. The role of spectroscopic factors and possible extensions of our approach to
include additional short-range mechanisms are also discussed.
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I. INTRODUCTION

The quantitative description of nuclear structure and reac-
tions on the same footing is a major challenge of contempo-
rary nuclear theory [1–3]. Ab initio approaches to calculate
nuclear scattering observables are limited by the computa-
tional complexity of the nuclear many-body problem. This
limitation applies especially to exotic isotopes along the
neutron and proton drip lines which are weakly bound or
unbound. With new radioactive beam facilities such as FRIB
and FAIR on the horizon, the quest for improved approaches
for nuclear reactions with exotic isotopes has become a major
topic in the nuclear-theory community. The ultimate goal of
this effort is to have a robust and reliable model of nuclei
and nuclear reactions with predictive power and quantified
uncertainties [4].

In this work we focus on the structure and reactions of
halo nuclei. Halo nuclei are weakly bound objects consisting
of one or more valence nucleons and a tightly bound core
nucleus (see, e.g., Refs. [5,6]). They exemplify the emergence
of new effective degrees of freedom close to the drip lines.
Accurate models for the breakup of halo nuclei have been
shown to be sensitive mostly to the tail of the wave function
[7] for both the bound state and the continuum states [8]. This
means that the structure observables to which these calcula-
tions are sensitive are the one-neutron separation energy and
the asymptotic normalization coefficient (ANC) for the bound
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state and the phase shifts in the continuum. This suggests
that it is not really necessary to include a detailed (and
computationally expensive) microscopic description of a halo
projectile in reaction models. On the contrary, an effective
two-body description of the projectile which replicates the
experimental information and/or the results of a microscopic
nuclear-structure model for on-shell quantities, like ANCs and
phase shifts, to a given accuracy should be enough to obtain a
reaction model with good predictive power.

Here we consider the example of the one-neutron halo
nucleus 11Be. 11Be has two bound levels which can be viewed
as a neutron and a 10Be core in a relative s and p wave, respec-
tively. For 11Be the ANCs and 10Be-n scattering phase shifts
were recently obtained in an ab initio no-core shell model
with continuum (NCSMC) calculation [9]. Although it needed
to be tuned phenomenologically to correctly reproduce the
experimental binding energies, this calculation is the most
thorough extant microscopic description of 11Be.

In this paper, we take a first step towards the ultimate
goal expressed in Ref. [4] by complementing the dynamical
eikonal approximation (DEA) from Refs. [10,11] with the
expansion of the halo effective field theory (halo EFT) for
11Be, developed in Ref. [12]. Halo EFT is based on an
expansion in powers of the distance scale associated with the
10Be core, Rcore, divided by that associated with the 11Be
halo, Rhalo (see Ref. [13] for a recent review of halo EFT).
Consideration of the relative sizes of these nuclei, together
with the results of Ref. [12], suggests an expansion param-
eter of Rcore/Rhalo ∼ 0.4. Reference [12] used halo EFT to
compute the differential E1 strength of 11Be; when combined
with a simplified reaction model this reproduces data on the
Coulomb dissociation of 11Be on a 208Pb target [14].
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Our aim here is to use a sophisticated reaction theory
to describe this collision, while also identifying the nuclear-
structure inputs—which can be obtained from ab initio calcu-
lations or directly from experiment—needed for a description
of the breakup reaction at a given accuracy. The amplitudes
computed in Ref. [12] are not suitable for incorporation in a
sophisticated reaction theory. Such a theory of the breakup of
neutron halos on a target requires the specification of target-
core, target-neutron, and core-neutron interactions. Therefore
in this work we develop a series of halo-EFT potentials
to simulate the 10Be-n interaction. Instead of pure contact
interactions, we use for practical reasons potentials with a
Gaussian shape and ranges 1.7, 2.1, and 2.8 fm—all of which
are of the order of the distance scale Rcore.

We construct versions of these potentials at leading order
(LO) and next-to-leading order (NLO) in the halo-EFT calcu-
lation of the E1-dissociation strength of 11Be in Ref. [12].1 We
also construct a third set of potentials, in which the NLO EFT
interaction is supplemented by potentials in the p3/2, d5/2,
and d3/2 channels that reproduce known 11Be resonances. This
allows us to diagnose the ingredients necessary to reproduce
features observed in reaction cross sections at higher energies.
This last “NLO EFT + resonances” set of potentials can be
regarded as a proxy for a halo EFT of 11Be in which additional
degrees of freedom corresponding to those resonances are
included. We use a combination of experimental data (e.g.,
for bound-state and resonance energies) and ab initio results
(e.g., for ANCs and phase shifts) to determine the pertinent
potential parameters.

Comparing the results obtained with these three sets of
halo-EFT potentials therefore allows us to trace which on-
shell 10Be-n matrix elements affect which features of the
breakup cross section. The use of different ranges in the
Gaussian potential provides various interiors of the 10Be-n
wave function while keeping the on-shell properties fixed.
This enables us to estimate the influence of short-distance
physics in the reaction mechanism.

The paper is structured as follows. We begin by describing
the ingredients of our calculation. In Sec. II, we describe the
reaction theory used to compute the collision of the 11Be
projectile with the lead and carbon targets. Then, in Sec. III,
we summarize the key features, power counting, and results
of the halo-EFT treatment of 11Be from Ref. [12]. Section IV
summarizes the ab initio calculation [9] that provides the input
we use to fix the potentials. The EFT expansion encourages a
focus on interactions in the s1/2 and p1/2, and so we describe
the construction of potentials for those two channels in Sec. V.
Results of the reaction calculations for 11Be impinging on
208Pb and 12C targets at about 70 MeV/nucleon using those
potentials are presented and compared to experiment [15] in
Sec. VI. Section VII revisits the construction of potentials,
explaining how the interactions in the resonant p3/2, d5/2,
and d3/2 channels are constructed, and Sec. VIII shows results
for 11Be breakup with these “NLO + resonances” potentials.

1We note that the NLO and higher-order potentials will be iterated
to all orders, in contrast to the strictly perturbative treatment in halo
EFT. We will discuss this in detail in Sec. V E.

Finally, Sec. IX provides some examples of quantities to
which the breakup cross section is not sensitive, and Sec. X
offers our conclusions.

II. THREE-CLUSTER DESCRIPTION OF THE COLLISION

To describe the collision of a one-neutron halo nucleus,
like 11Be, on a target, such as Pb or C, we consider the usual
few-body framework of reaction theory (see Ref. [1] for a
recent review). The projectile P is seen as a core c—10Be
in the present case—to which a valence neutron n is loosely
bound. This two-cluster structure is described by the effective
Hamiltonian

H0 = − h̄2∇2
r

2μ
+ V (r ), (1)

where r is the c-n relative coordinate and μ = mcmn/mP is
the c-n reduced mass, with mc, mn, and mP = mc + mn the
masses of the core, the neutron, and the projectile, respec-
tively. The potential V simulates the interaction between the
halo neutron and the core. Its explicit form is described in
Secs. V and VII below. In this simple effective description of
the halo nucleus, the internal structure of the core is neglected
and its spin is assumed to be zero.

The relative motion between the halo neutron and the core
is described by the eigenstates of H0. In the partial wave of
orbital angular momentum l and total angular momentum J ,
which is obtained from the composition of l and the neutron
spin s, and projection M , they read

H0ϕlJM (E, r ) = E ϕlJM (E, r ), (2)

with

ϕlJM (E, r ) = ulJ (E, r )

r
[χs ⊗ Yl (r̂ )]JM, (3)

where χms
s are spinors and Ym

l are spherical harmonics.
Negative-energy states [E < 0 in Eq. (2)] are discrete and

correspond to the spectrum of the projectile below the one-
neutron separation threshold. We add the number of nodes n
in the radial wave function to the other quantum numbers to
enumerate them. The reduced radial wave functions of these
bound states exhibit the following asymptotic behavior:

unlJ (EnlJ , r ) −→
r→∞ CnlJ κnlJ r kl (κnlJ r ), (4)

where kl is a modified spherical Bessel function of the sec-
ond kind, κnlJ =

√
2μ|EnlJ |/h̄2, and CnlJ is the asymptotic

normalization coefficient (ANC) associated with that bound
state. Note that for s waves the combination xk0(x) = e−x .

The positive-energy states [E > 0 in Eq. (2)] describe
the continuum of the nucleus. They exhibit the following
asymptotic behavior:

ulJ (E, r ) −→
r→∞ cos δlJ (E) kr jl (kr ) + sin δlJ (E) kr nl (kr ),

(5)

where jl and nl are the regular and irregular spherical Bessel
functions, respectively, k =

√
2μE/h̄2 is the wave number for

the c-n relative motion, and δlJ is the phase shift.
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In the center-of-mass frame of the P -T system our three-
body model of the collision is specified by the Hamiltonian

H = − h̄2∇2
R

2μPT

+ H0 + UcT (RcT ) + UnT (RnT ). (6)

Here R is the coordinate of the projectile center of mass
relative to the target and μPT = mP mT /(mP + mT ) is the
P -T reduced mass, with mT the target mass. The optical
potentials UcT and UnT simulate the c-T and n-T interac-
tions, respectively. They depend on the c-T and n-T relative
distances RcT and RnT , respectively. We neglect the internal
structure of the target T , and use optical potentials from the
literature for UcT and UnT .

Within this framework, studying the collision reduces to
solving the three-body Schrödinger equation

H �(r, R) = E �(r, R), (7)

where E is the total energy in the P -T center-of-mass rest
frame and the wave function � describes the thee-body rela-
tive motion. Equation (7) has to be solved with the condition
that the projectile, initially in its ground state ϕn0l0J0M0 of
energy En0l0J0 , is impinging on the target

� (M0 )(r, R) −→
Z→−∞

eiKZ ϕn0l0J0M0 (r ), (8)

where the Z axis has been taken along the beam direction. In
Eq. (8), the projectile-target initial momentum h̄K is related
to the total energy E = h̄2K2/2μPT + En0l0J0 .

Various methods have been developed to solve that prob-
lem (see Ref. [1] for a recent review). In the time-dependent
(TD) approach, the P -T relative motion is simulated by a clas-
sical trajectory, while the internal structure of the projectile
is treated quantum mechanically [16–19]. It is affected by a
time-dependent field because of its interaction with the target.
This leads to the resolution of a time-dependent Schrödinger
equation. On the contrary, the coupled-channels technique
with a discretized continuum (CDCC) is a fully quantal
approach, within which the three-body wave function � is
expanded upon the projectile eigenstates ϕlJM (E) [20–22].
To be numerically tractable, the c-n continuum is discretized
into energy “bins.” This expansion leads to a set of coupled
equations. Finally, the eikonal approximation assumes that,
at sufficiently high energy, most of the R dependence of
� is in the initial plane wave eiKZ of Eq. (8) [10,23,24].
Factorizing this plane wave out of � simplifies the three-body
Schrödinger equation (7). Additional simplification can be
obtained by performing a subsequent adiabatic approximation
[23].

In the present study, we choose to use the dynamical
eikonal approximation (DEA) [10,11], which, although based
on the eikonal approximation, does not include the adiabatic
treatment of the projectile. This model works very well for
one-neutron [11] and one-proton [25] halo nuclei impinging
on both light and heavy targets. The DEA has been compared
to the TD and CDCC methods in Ref. [26]. It exhibits similar
computational times to the TD approach but naturally includes
quantal interferences, which are absent in the TD method due
to its inherent semiclassical hypothesis. At the intermediate
energies considered here, the DEA shows excellent agreement

with the fully quantal CDCC calculations in different breakup
observables (viz. energy and angular distributions). We there-
fore believe the results presented below do not depend on the
particulars of the reaction model and can be seen as general.

III. HALO EFT FOR COULOMB DISSOCIATION OF 11Be

The nucleus 11Be is the archetypical one-neutron halo nu-
cleus. Its valence neutron is bound by a mere S1n = 503 keV
[27],2 and its 1

2
+

ground state corresponds predominantly
to a 1s1/2 neutron bound to a 10Be core in its 0+ ground
state. Thanks to this loose binding and the absence of any
centrifugal or Coulomb barrier, the valence nucleon can tunnel
far into the classically forbidden region and hence has a high
probability of being a large distance from the core. At least
qualitatively, this explains the large one-neutron removal and
breakup cross sections observed experimentally for 11Be [29].

This “intruder” ground state differs from the 1
2

−
expected

in an extreme shell model, which predicts a 0p1/2 valence
neutron structure. That p state corresponds to the first—and
only—bound excited state of 11Be: it lies 184 keV below the
one-neutron threshold. Above the neutron threshold, various
states can be interpreted as single-particle resonances, includ-
ing the 5

2
+

state at E = 1.274 MeV in the continuum, which is
often seen as a d5/2 resonant neutron coupled to the 0+ ground
state of the 10Be core [15,30].

Halo EFT provides a systematic treatment of (bound or
unbound) nuclei in which, as in 11Be, the last few nucleons are
loosely bound compared to a nuclear core (see Ref. [13] for a
recent review). In halo EFT, quantum-mechanical amplitudes
are expanded in powers of the small parameter Rcore/Rhalo,
where Rcore (Rhalo) is the size of the core (halo) of the
nucleus. The degrees of freedom are then the halo nucleons
and the core. These are treated as structureless at leading
order in the expansion, although structure is included through
higher-order terms, much as in a multipole expansion. The
breakdown scale of the theory is then set by the size of the
core—reactions that resolve its features will not be properly
described in the theory—or by the energy required to excite
the core—reactions that proceed through the excitation of the
core also cannot be described in this most basic version of the
theory.

The theory can be extended by including “core excitation,”
at the cost of introducing additional parameters [31–33]. In the
case of our 11Be calculation we do not include the 2+ state of
10Be core at E(2+) = 3.4 MeV above the ground state as an
explicit degree of freedom. Thanks to the loose binding of the
valence neutron in 11Be, we obtain an expansion parameter of√

S1n/E(2+) ≈ 0.4. A similar estimate is obtained from the
ratio of sizes of the core to the halo.

Halo EFT is formulated through a Lagrangian that includes
all operators up to a given order in this expansion. The inter-
actions that appear in this Lagrangian are contact interactions

2Note that there is a newer value S1n = 501.6 keV for the neutron
separation energy of 11Be [28] but this 0.3% change is far below the
accuracy of our calculation.
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and derivatives thereof, and so correspond to zero-range po-
tentials. The coefficients of these operators, the “low-energy
constants” (LECs) of the theory, are free parameters, that must
be adjusted to reproduce experimental data or inputs from
nuclear-structure calculations. At leading order (LO) there
is only one interaction, which appears in the s1/2 channel.
Its coefficient is tuned to reproduce S1n = 0.503 MeV. At
next-to-leading order (NLO) another parameter appears in
this channel. For reactions involving the 11Be bound state it
is optimal to tune this parameter to the ANC of the ground
state, C1s1/2 [see Eq. (4)] [34]. Up to the order we consider
this is equivalent to fixing the s1/2 effective range, rs1/2. The
parameters in this channel then scale as S1n ∼ (2μR2

halo)−1

and rs1/2 ∼ Rcore. As a consequence the ANC scales as

C1s1/2 =
√

2κ1s1/2

1 − rs1/2κ1s1/2
∼ R

−1/2
halo . (9)

If p-wave interactions are “natural,” i.e., of the order
anticipated by naive dimensional analysis with respect to the
scale Rcore [35], then these are the only free parameters in
the Coulomb dissociation amplitude up to O[(Rcore/Rhalo)3]
in the expansion [12]. This situation is realized for 19C, where
a good description of the data of Ref. [36] can be obtained
with only S1n and C1s1/2 as inputs [37]. It is also the situation
in the p3/2 channel of the 10Be-n system, since there is no
resonance or bound state with an energy �1 MeV there. The
corresponding expression for the breakup spectrum induced
by the E1 operator is [12]

dB(E1)

dE

(J=3/2),NLO

= 4 Q2
effe

2μ

h̄2π2
C2

1s1/2
k3(

k2 + κ2
1s1/2

)4 , (10)

where Qeff = Zc mn/mP ≈ 4/11 for 11Be. This dB(E1)
dE

is
a universal function, in the sense that the E1 dissociation
spectrum for any weakly bound system has the same shape
(up to N3LO corrections) as long as there are no enhanced
final-state p-wave interactions [13,38–40].

However, in the p1/2 channel such interactions are present,

since they must be strong enough to generate the 1
2

− 11Be
excited bound state, whose one-neutron separation energy is
S∗

1n = 184 keV [27]. As already shown by Typel and Baur
[38,39], those p-wave interactions significantly affect the
Coulomb dissociation spectrum. Two parameters are needed
to describe the low-energy physics at LO in the p1/2 channel:
both S∗

1n, and the p-wave effective “range,” rp1/2, are required
as input to the LO EFT amplitude in this channel. The neces-
sity to fix two parameters for a LO description of a p-wave
bound state, in contrast to the sole parameter needed for a LO
description of an s-wave bound state, results from the need to
properly renormalize the propagator that describes this state
[41]. The parameters scale as S∗

1n ∼ (2μR2
halo)−1, rp1/2 ∼

R−1
core. We note that the p-wave effective range determines

C0p1/2, the ANC of the p-wave bound state, at LO in the halo
EFT expansion [12].

Since the Coulomb dissociation experiment is not one
where the E1 transition accesses the p-wave bound state
(cf. Ref. [42]) the p1/2 channel is entered “off resonance.”
Consequently, the p1/2 amplitude that encodes final-state

interactions can be expanded in powers of Rcore/Rhalo [12].
The NLO result for the E1 dissociation spectrum in this
channel is then

dB(E1)

dE

(j=1/2),NLO

= 2 Q2
effe

2μ

h̄2π2

k3(
k2 + κ2

1s1/2

)4

×
(
C2

1s1/2 + 4κ2
1s1/2

rp1/2

κ2
1s1/2 + 3k2

k2 + κ2
0p1/2

)
.

(11)

The second term in the round brackets includes final-state in-
teractions and is formally NLO: it is suppressed by Rcore/Rhalo

relative to the first term. Since rp1/2 < 0 it acts to reduce
the cross section. Equation (11) agrees with the scaling
formulas derived in Refs. [38,39] if we take k3 cot δp1/2 =
rp1/2

2 (k2 + κ2
0p1/2)—in accordance with the power counting for

a shallow p-wave bound state [13,35]—and neglect terms of
O(R2

core/R
2
halo). The total dB(E1)

dE
for 11Be is then obtained by

summing (10) and (11).
The parameters S1n and S∗

1n are well determined, but
Ref. [12] did not thoroughly explore the parameter choices
for C1s1/2 and rp1/2—or, equivalently, C0p1/2—i.e., how to
determine the ANCs of the two bound states of 11Be. These
values have not been directly measured. Fortunately, the work
of Calci et al. [9] provides numbers for these two inputs from
an ab initio 11-body calculation of this system.

Once these two parameters are fixed the halo EFT of 11Be
predicts the distribution of E1 strength with energy (and with
angle for that matter; see Ref. [37]). It also predicts the B(E1)
value for the 1

2
+ → 1

2
−

transition, as well as the electric radius
of the ground state. These quantities agree with experiment
for the parameter values chosen in Ref. [12]. In that paper
predictions were also made for the—as yet unmeasured—
electric radius of the 1

2
−

state.
Finally, we note that integrating out the 2+ core excita-

tion effectively generates a short-range interaction between
the target and 11Be in the Coulomb breakup reaction. This
interaction is small at momenta significantly below 1/Rcore.
It cannot be included at the level of the reduced transition
strength discussed in this section but would naturally appear
in a full reaction calculation as discussed below. In the present
work, however, such terms are not considered.

IV. AB INITIO CALCULATION OF 11Be BY CALCI ET AL. [9]

Due to the strong clustering observed in their structure
and the intrinsically large extension of their wave function,
halo nuclei are real challenges for ab initio nuclear-structure
calculations. In the recent Ref. [9], Calci et al. have performed
a tour de force by successfully computing the nuclear structure
of 11Be ab initio within the no-core shell model with contin-
uum (NCSMC) [43–45].

The no-core shell model (NCSM) performs an exact di-
agonalization of a particular A-body Hamiltonian that can
include two- and three-nucleon forces within a harmonic-
oscillator basis [46]. This model converges well for nuclei
whose size is of order the oscillator length. Hence systems
like 11Be that are weakly bound converge very slowly with
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basis size in the NCSM. The solution to this is to include
in the model space additional basis functions that have the
cluster structure observed in the halo system. If the clusters
contain a and b particles respectively (with A = a + b) then
these clustered wave functions are products of solutions of
the Hamiltonian in the a- and b-body spaces, with the wave
function representing the relative degree of freedom between
the two clusters initially unknown [43–45]:

|�(Jπ )〉 =
∑

λ

|AλJπ 〉 +
∑

channels ab,ν

γν (rab )

rab

×Aν

[[∣∣aλaJ
π
a

〉∣∣bλbJ
π
b

〉]s
Yl (r̂ab )

]Jπ

. (12)

The first term of this expression corresponds to the stan-
dard NCSM expansion of the A-body wave function, with
λ indicating the quantum numbers of the harmonic-oscillator
basis (orbital-angular momentum, spins...). The second term
includes all relevant two-body clusterizations and has ν as
a collective label that enumerates the states in the product
representation of the two harmonic oscillator bases, coupled
to appropriate spins (Ja and Jb for each of the clusters,
coupled to a total spin s), relative orbital angular momen-
tum l, total angular momentum J , and isospin (not shown):
ν = {λaJ

π
a ; λbJ

π
b ; s, l, J }. The wave function describing the

relative motion between both clusters is also a function of the
relative coordinate between the centers of mass of the clusters,
rab. The antisymmetrizer Aν ensures that the resulting wave
function is antisymmetric. (For a full discussion with more
explicit notation, see Refs. [44,45].)

The basis (12) is overcomplete, but this is dealt with using
an extension of the standard RGM norm-kernel procedure
[45]. The clustered part of the NCSMC basis contains exactly
the states needed to improve the convergence of the diago-
nalization for halos built on those clusters. Scattering phase
shifts are also accessible via matching the wave function to
the scattering state: in practice this is done via an R-matrix
technique.

In their calculation of 11Be, Calci et al. considered a family
of chiral EFT forces including two- and three-nucleon inter-
actions [9]. They found that without including the continuum,
i.e., when only the NCSM is considered [the first term in
Eq. (12)], no converged 11Be can be obtained, confirming
the significant clusterization of its structure. Even with the
basis extended as in Eq. (12), the shell inversion between the
bound states is difficult to achieve, and only the N2LOsat NN
force reproduces it. That interaction is obtained by adjust-
ing simultaneously the two- and three-nucleon interactions
to reproduce low-energy nucleon-nucleon scattering data, as
well as binding energies and radii of few-nucleon systems and
selected isotopes of carbon and oxygen [47].

Since reaction calculations are quite sensitive to the exact
value of the energies of the states, Calci et al. have phe-
nomenologically tuned some matrix elements of the interac-
tion in the 11Be system to ensure these energies are correctly
reproduced. These NCSMC-pheno calculations then provide
predictions for nuclear-structure properties such as the bound-
state ANCs (see Tables I and II) [9]. As mentioned in Sec. III,
these predictions help us constrain the parameters of the

TABLE I. Depths of the Gaussian 10Be-n potential (13) in the
s1/2 partial wave. The energy and ANC of the 1s1/2 state obtained
through this fit are also provided, as well as the scattering length
as1/2 and effective range rs1/2. The ab initio predictions of Calci et al.
are listed in the last line [9].

σ V
(0)
s1/2 V

(2)
s1/2 E1s1/2 C1s1/2 as1/2 rs1/2

(fm) (MeV) (MeV fm 2) (MeV) (fm −1/2) (fm) (fm)

1.2 −50.375 −45 −0.5031 0.7865 9.20 3.72
1.5 −100.19 0 −0.5033 0.791 9.23 3.76
2 −80.755 +2.5 −0.5031 0.7845 9.21 3.76
Ab initio −0.5 0.786 9.21 3.68

effective potential we use to simulate the 10Be-n interaction
within our reaction calculations (see Sec. V).

In addition to improving the discrete spectrum of the
nucleus, the inclusion of the continuum in this ab initio
model provides predictions for the phase shift in the 10Be-n
continuum, in both resonant (e.g., 5/2+) and nonresonant
(e.g., 1/2+) partial waves. These predictions first help us
check the quality of the fits performed on the bound states
(see Secs. V B and V C). Second, they help us constrain the
10Be-n interaction in higher partial waves (see Sec. VII).

V. CONSTRUCTION OF 10Be-n POTENTIALS

A. Potential shape

We now turn our attention to the Hamiltonian that describes
the 10Be-n system, H0, given in Eq. (1). Following the philos-
ophy of EFT, we exploit the fact that low-energy dynamics
in this system should not be sensitive to details of the short-
distance physics. As explained in Sec. III, this suggests that
contact interactions plus derivatives of contact interactions
can be used for the 10Be-n potential V in Eq. (1). The halo
EFT Lagrangian is formulated as a derivative expansion and
the operators that appear at order 2l in the derivative expan-
sion can be mapped to yield potentials that are different in
each (lJ ) channel. A potential derived from halo EFT can thus
be fitted partial wave by partial wave, similar to the treatment
of the short-range part of the chiral EFT potential in Ref. [48].
We exploit this fact to construct our halo-EFT potential on the
partial-wave basis. The halo EFT for 11Be described in Sec. III

TABLE II. Depths of the Gaussian 10Be-n potential (13) in the
p1/2 partial wave. The energy and ANC of the 0p1/2 state obtained
by this fit are provided, as well as the scattering “length” ap1/2 and
effective “range” rp1/2. The results of the NCSMC calculation are
listed in the last line [9,57].

σ V
(0)
p1/2 V

(2)
p1/2 E0p1/2 C0p1/2 ap1/2 rp1/2

(fm) (MeV) (MeV fm 2) (MeV) (fm −1/2) (fm 3) (fm −1)

1.2 −96.956 0 −0.1841 0.1288 235 −1.23
1.5 −83.625 +5.2 −0.1842 0.1290 236 −1.22
2.0 −57.504 +3.3 −0.1841 0.1295 243 −1.17
Ab initio −0.1848 0.1291 237 −1.21
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implies that at NLO the potential in both s1/2 and p1/2 waves
includes a contact term and an operator corresponding to two
derivatives of a contact term, while the potential in all other
partial waves is zero. To evaluate the sensitivity of the reaction
to the short-range physics of the projectile, and to render the
s1/2 and p1/2 interactions numerically tractable, we regulate
them with a Gaussian, whose range can be varied. To simplify
its handling, the potential is parametrized as follows:

VlJ (r ) = V
(0)
lJ e−r2/2σ 2 + V

(2)
lJ r2e−r2/2σ 2

. (13)

This potential provides us with two adjustable parameters
per partial wave, viz. the depths V

(0)
lJ and V

(2)
lJ . The fact that

the parameters are adjusted in each partial wave is notated
in Eq. (13) by the subscript lJ added to the potential and
its fitting parameters. As will be detailed in the following
sections, they are fitted so as to reproduce the asymptotic
properties of the projectile that affect the reaction calculation,
viz. the binding energies of the two 11Be bound states and
their ANCs, or the phase shifts in other prominent partial
waves [7,8]. By constructing the potential (13) in this way we
reproduce observables in the partial waves where the potential
is active and ensure there is no interaction in the other waves.
When possible, we use experimental data for this fitting.
However, since there is no direct experimental determination
of the ANC of the 11Be bound states nor of the 10Be-n phase
shifts, we also rely on the ab initio calculation of Calci et al.
to fully determine the LECs of the potential (13).

The range of the Gaussian σ is an unfitted parameter that
is varied to evaluate the sensitivity of the reaction calculations
to this effective description of the projectile. We consider
σ = 1.2, 1.5, and 2 fm. We define the range of the potential
as the distance scale at which the potential has decreased to
e−1 ≈ 0.368 of its value at the origin. In terms of momentum,
this corresponds to the scale � ∼ 1/(

√
2σ ). For momenta of

order � and larger (or distances below 1/�), the details of
the potential matter and the effective theory breaks down. We
do not consider potentials with σ larger than 2.0 fm, since
such large coordinate space cutoffs would produce distortions
of the long-distance physics of the 11Be system. The smallest
σ considered, 1.2 fm, is already markedly smaller than the
size of the 10Be nucleus, which—as explained above—can be
taken as the distance scale at which this description of 11Be
breaks down.

We note that simple Gaussian potentials like these have
recently been used to describe the nucleon-nucleon interaction
[49]. In that case, in the three-nucleon and four-nucleon
systems the Gaussian nucleon-nucleon interaction must be
supplemented by a three-nucleon interaction (for which a
Gaussian regulator may also be chosen). We emphasize that
we do not expect that the potentials constructed here could,
on their own, describe beryllium isotopes further along the
isotopic chain. Any study of 12Be that builds on the ideas laid
out here would have to supplement the 10Be-n potential by a
“three-body” 10Be-n-n interaction that was tuned to reproduce
a low-energy property of 12Be. Using three-body forces to re-
dress the deficiencies of simple two-body potentials in bigger
systems is very much in the spirit of halo and pionless EFT
[50–55].

Asymptotics
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FIG. 1. Radial wave functions for the 11Be 1
2

+
ground state

obtained within the effective description of the nucleus. The 10Be-n
overlap wave function obtained from the NCSMC calculation of
Calci et al. [9] is shown as well.

B. s1/2 wave

In the s1/2 partial wave, the two potential parameters are
adjusted to reproduce the one-neutron separation energy in the
ground state of 11Be and its ANC. For the former, we choose
the experimental value S1n = 503 keV cited in Ref. [27],
while for the latter, we use the prediction of Calci et al. [9].
The corresponding depths are listed in Table I with the actual
energy E1s1/2 and ANC C1s1/2 obtained for each potential
identified by its width σ . The scattering lengths as1/2 and
effective ranges rs1/2 obtained with these potentials are also
provided. The last line provides the results of the NCSMC
calculation [9].

The reduced radial wave functions thereby obtained for this
1s1/2 state are displayed in Fig. 1 for the three potential ranges
considered in this study: σ = 1.2 fm (red solid line), 1.5 fm
(green dashed line), and 2 fm (magenta dotted line). Because
of the way they were constructed, these three potentials lead
to the same asymptotics of the wave function. However,
they produce different behaviors in its interior. The ab initio
overlap wave function is shown as well for comparison (blue
dash-dotted line). By construction, the wave function of the
potentials agree with it at large distances, but they start to
deviate from it as soon as the ab initio overlap function ceases
to follow the asymptotic form shown by the thin dashed line.

Because breakup calculations are sensitive not only to the
initial ground state of the projectile, but also to the description
of its final states, i.e., its continuum [8], we examine in
Fig. 2 the s1/2 phase shift generated by the three potentials
adjusted to the ground-state properties and compare them to
the NCSMC results. Effective-range theory guarantees that,
for a shallow bound state like this one, there will be a tight
correlation between E1s1/2 and C1s1/2, on the one hand, and
the scattering length and effective range on the other [56]. Ac-
cordingly, the scattering length and effective range for these
three potentials are very similar (see Table I). Interestingly,
they are also in excellent agreement with the ab initio ones.
Therefore, all three potentials provide nearly identical phase
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FIG. 2. Phase shifts obtained in the s1/2 partial wave as a function
of the 10Be-n relative energy E. The phase shift predicted by the
NCSMC calculation is shown as well [9].

shifts, which agree perfectly with the ab initio phase shift up
to about 1.5 MeV.

C. p1/2 wave

In the p1/2 wave we fit the potential parameters in a similar

way using data for the 1
2

−
excited bound state of 11Be: S∗

1n =
184 keV [27] and the ANC C0p1/2 obtained by Calci et al.
[9,57]. The fitted depths of the Gaussian potentials in that
partial wave and the nuclear-structure outputs obtained from
these values are listed in Table II along with the predictions of
the NCSMC calculation of Calci et al. [9].

The corresponding 0p1/2 radial wave functions are dis-
played in Fig. 3, alongside the ab initio overlap wave function.
We observe this time that, although all wave functions exhibit
the same ANC, they do not reach their asymptotic behav-
ior at the same radius. While the wave functions obtained

ab initio

Asymptotics
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FIG. 3. Radial wave functions for the 11Be 1
2

−
excited state

obtained within the effective description of the nucleus. The 10Be-n
overlap wave function obtained from the NCSMC calculation of
Calci et al. is shown as well [9,57].
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FIG. 4. Phase shifts obtained in the p1/2 partial wave as a func-
tion of the 10Be-n relative energy E. The NCSMC calculation is
shown as well [9].

with the narrow potentials (σ = 1.2 and 1.5 fm) reach their
asymptotics at a rather short distance (r < 5 fm) as in the
1s1/2 state, the broad potential (σ = 2 fm) does not reach it
before r ∼ 7 fm. Interestingly, this is also observed for the ab
initio prediction. This suggests that the couplings with other
channels in the NCSMC calculation of Calci et al. extend to
large distances and that they are attractive at the surface of
the nucleus. Since this state corresponds to the expected shell-
model state, significant couplings with various configurations
are expected, in particular with those in which the 10Be core
is in one of its excited states [58]. This might explain the
late reach of the asymptotics by the NCSMC overlap wave
function for this state. However this has not been investigated
by Calci et al. in Ref. [9].

The p1/2 phase shifts obtained by the three Gaussian
potentials exhibit similar energy dependencies, especially at
low energy (see Fig. 4). This follows from the fact that they
have very similar effective-range expansion parameters (see
Table II). However the differences between them are larger
than in the s1/2 wave, a phenomenon that is probably related to
the nonzero orbital angular momentum [56]. In particular, the
σ = 2 fm potential leads to a phase shift that is significantly
lower than the others at E � 1 MeV. Nevertheless, all three
potentials provide p1/2 phase shifts that are in fair agreement
with the ab initio prediction on the whole energy range [9].

D. Leading-order potentials

In order to estimate the significance of the NLO terms in
the description of 11Be on the reaction dynamics, we also
construct a LO potential. At LO, the only parameter in the
halo-EFT calculation of E1 breakup of 11Be is the one-neutron
separation energy of the ground state [13]. To reproduce this
observable, we take only the first term of the effective poten-
tial (13) in the s1/2 partial wave and set the potential to zero in
all other partial waves. In particular, the potential in the p1/2

channel is taken to be zero, in accord with the above halo-EFT
calculation, where the p1/2-wave interaction’s effect on the
reaction cross section only appears at NLO (see Sec. III). We
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TABLE III. Depths of the LO (purely central) Gaussian 10Be-n
potential that serves to simulate the 1

2

+
ground state of 11Be. The

energy and ANC of the resulting 1s1/2 state are also provided.

σ V LO
s1/2 E1s1/2 CLO

1s1/2

(fm) (MeV) (MeV) (fm −1/2)

1.2 −153.25 −0.5032 0.735
1.5 −100.19 −0.5033 0.791
2 −58.40 −0.5031 0.892

adjust our sole LO parameter to the one-neutron separation
energy of 11Be. The ANC is then not controlled, and some
variation in the asymptotic part of these potential-model wave
functions results. The fitted depths and the energy and ANC
of the resulting 1s1/2 state are displayed in Table III.

E. Iteration of higher orders and Wigner bound

We note that for practical reasons higher-order interactions
will be iterated in our approach. Strictly applying the power
counting of halo EFT (cf. Sec. III and Ref. [13]), however,
such higher-order interactions should be treated in perturba-
tion theory. Two comments are in order here. First, such a
partial inclusion of higher-order terms will not make the cal-
culation more accurate since some higher-order contributions
are missing. Second, the iteration of higher-order interactions
should not create any problems as the additionally included
contributions are small.

However, closer inspection reveals that the second argu-
ment is too simplistic. The iteration of higher-order terms can
alter the ultraviolet behavior of the amplitude and generate
additional divergences which cannot be renormalized by the
terms present in the effective interaction to the given order.
Such a partial resummation is permissible if the regularization
cutoff

√
2σ ≡ 1/� is kept above or close to the breakdown

scale Rcore, since then the unrenormalized terms are of natural
size [59]. This partial resummation approach has, e.g., been
used for two-neutron halos and the triton [60,61].

This restriction placed on the regulator is connected to
the Wigner causality bound [62] which constrains the mini-
mum range of short-range (energy-independent) interactions
if exact unitarity is to be maintained. The corresponding
constraints on EFT interactions have been worked out in
Refs. [63–65]. In our case, the Wigner bound corresponds to
a constraint on the values of the parameter σ in Eq. (13) and
effectively excludes values below 1 fm.

VI. BREAKUP OF 11Be ON Pb AND C AT
70 MeV/NUCLEON WITH HALO-EFT POTENTIALS

A. Two-body inputs

In this section, we initiate our study of the influence
of the effective description of the halo nucleus on reaction
observables by analyzing the breakup of 11Be into 10Be + n
on Pb at 69 MeV/nucleon and C at 67 MeV/nucleon. These
reactions have been measured at RIKEN by Fukuda et al. [15]

and various breakup observables have been obtained.3 They
therefore constitute excellent test cases for our study.

In addition to the description of the 11Be projectile, for
which we use the halo-EFT potentials described in Sec. V,
the few-body model of the reaction requires optical potentials
to simulate the interaction between the projectile constituents
and the target. The potentials are the same as those used in
Refs. [19,30].

In the collision on the Pb target, we use the Becchetti
and Greenlees parametrization for the n-Pb optical potential
[67]. The 10Be-Pb interaction is simulated by an α-Pb optical
potential [68] scaled to account for the different size of the
nuclei. Since, at this energy, this reaction is dominated by
Coulomb excitation of 11Be the particular choice of optical
potential does not make a large difference to the final results
[19].

When we consider the collision on C, we follow Ref. [30]
for the choice of the optical potentials. For the n-12C inter-
action, we use a potential developed by Comfort and Karp
that reproduces the elastic scattering of protons on 12C at
energies between 12 and 183 MeV [69]. To obtain a potential
at the energy of interest, we use a linear interpolation between
the parameters obtained at 61.4 and 96 MeV. The 10Be-C
interaction is simulated by the optical potential developed by
Al-Khalili, Tostevin, and Brooke to reproduce the experimen-
tal elastic-scattering cross section of 10Be on C measured at
59.4 MeV/nucleon [70].

The numerical conditions of the DEA calculations are
similar to those used in Ref. [11].

B. Breakup on Pb with the NLO potentials

The breakup cross section of 11Be on Pb at
69 MeV/nucleon is displayed in Fig. 5 as a function of
the energy E between the 10Be core and the halo neutron
after dissociation. To be able to compare these calculations
with the RIKEN data [15], this cross section is computed for
a 10Be-n center-of-mass scattering angle � � 6◦. The figure
presents results obtained from the Gaussian 10Be-n potentials
of ranges σ = 1.2 fm (solid red lines), 1.5 fm (green dashed
lines), and 2 fm (magenta dotted lines). In addition to the total
cross section [Fig. 5(a)], the contributions of the major partial
waves are shown as well: the dominant p3/2 in Fig. 5(a) and
the s, p1/2, and d ones in Fig. 5(b). It should be remembered
that in the halo-EFT calculations presented in this section
the 10Be-n interaction in the p3/2 and higher partial waves is
set to zero. These partial waves still contribute to the cross
section—substantially in the case of p3/2—even though they
are described as plane waves.

All three halo-EFT 10Be-n potentials provide nearly iden-
tical results, even though they lead to significant differences
in the interior of the projectile wave functions (see Figs. 1 and
3). This confirms previous studies that have shown breakup

3Note that we refrain from discussing the GSI data by Palit
et al. [14] since they are at a much higher beam energy of
520 MeV/nucleon where relativistic effects may be important. A
study dedicated to these effects is in progress [66].
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FIG. 5. Breakup cross section for 11Be impinging on Pb at
69 MeV/nucleon as a function of the relative energy E between
10Be and the valence neutron after dissociation. The calculations are
performed with the three NLO Gaussian 10Be-n potentials described
in Sec. V. (a) The total breakup cross section and the contribution of
the dominant p3/2 partial wave. (b) The contribution of the s1/2, p1/2,
and d partial waves.

reactions to be peripheral [7], in the sense that they probe only
the tail of the projectile wave function, and are basically insen-
sitive to its short-range description. Our new analysis shows
that when the asymptotics of the projectile wave functions,
viz. their ANC and phase shifts, are constrained, the computed
breakup cross section is independent of the interaction used to
obtain these nuclear-structure outputs.

Although the three 11Be descriptions lead to nearly iden-
tical breakup cross sections, there is interesting information
in this figure pertaining to the small differences between the
three calculations. At the maximum, the σ = 1.2 fm potential
leads to a cross section barely lower than the σ = 1.5 fm
one, while the σ = 2 fm cross section lies about 10% lower
than the other two. These differences are attributable mostly
to the p1/2 contributions [see Fig. 5(b)], which scale as the
p1/2 phase shifts (see Fig. 4): those for the σ = 1.2 fm and
σ = 1.5 fm potentials are nearly superimposed, whereas that
obtained for the broader σ = 2 fm potential lies lower. The
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FIG. 6. Comparison of the theoretical predictions shown in Fig. 5
to the data of RIKEN Ref. [15] for the breakup of 11Be impinging
on Pb at 69 MeV/nucleon. The theoretical cross sections have been
folded with the experimental energy resolution.

three s1/2 contributions on the contrary are nearly identical,
as expected from the fact that the corresponding phase shifts
are very close to one another (see Fig. 2). This confirms
the role played by the continuum description, and hence by
the phase shifts, in breakup calculations (see Sec. III and
Refs. [8,38,39]).

For all the potentials considered here, the other partial
waves are described identically by plane waves. Therefore, be-
sides the couplings within the continuum, the only difference
between them should be due to the ANC of the 11Be ground
state; and this is what we observe. For example, in the p3/2

contribution, the calculation preformed with the σ = 1.5 fm
Gaussian potential lies about 1% higher than the other two;
this corresponds exactly to the small difference in C1s1/2 that
can be noted in Table I.

Similar results are obtained in other breakup observables
measured at RIKEN [15], such as the energy distribution
obtained with a forward-angle cut (� < 1.3◦) and the angular
distribution, where the breakup cross section is integrated in
a low-energy range and given as a function of the scattering
angle �.

To directly compare our results with the RIKEN data [15],
it is necessary to fold our theoretical calculations with the
experimental resolution. This is done in Fig. 6. We observe
a rather good agreement between our calculations and the
data: all three curves would require no or little adjustment in
magnitude to exactly fit the data.

One of the advantages of the halo EFT over usual phe-
nomenological descriptions of halo nuclei is its inherent es-
timation of the uncertainty within the model. We estimate the
relative error due to the truncation of the EFT expansion to
the NLO by E+S1n

E(2+ )+S1n
, where E(2+) is the excitation energy

of the first 2+ state of the 10Be core, the first degree of
freedom neglected in this model of 11Be. The corresponding
uncertainty is provided as the grey band in Fig. 6. All the
experimental points lie within that uncertainty band, which
confirms that the truncated orders and/or missing degrees
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FIG. 7. The significance of the NLO term in the halo-EFT
description of 11Be is estimated by computing the breakup cross
section for 11Be impinging on Pb at 69 MeV/nucleon using the LO
Gaussian 10Be-n potentials given in Sec. V D. The total breakup cross
section for all three potentials together with the contributions of the
dominant p3/2 and p1/2 partial waves for the specific case of the
σ = 1.2 fm potential are shown. The data of Ref. [15] are provided
for comparison.

of freedom most likely explain the remaining discrepancy
between the theory and the experiment.

C. Results with LO halo-EFT potentials

To evaluate the role played by the NLO term in the halo-
EFT expansion, we repeat the calculations with the LO 10Be-n
potentials described in Sec. V D. The difference with the NLO
analysis of the previous section is thus that the ground-state
ANC is no longer constrained and that the p1/2 wave no longer

hosts the 1
2

−
excited bound state of 11Be. The results shown

in Fig. 7 illustrate that, as expected, the variation of the cross
section with the potential width σ is markedly larger at LO
than at NLO (compare to Fig. 5).

The variation between these LO results is due to the change
in ANC obtained with different σ s (see Table III). It goes
away when the cross sections for the three values of σ are
all scaled to the same value of the ANC. Note however that
the ANC is not the sole 11Be structure observable at play in
this reaction. As already pointed out in Sec. III, the p1/2 phase
shift plays a non-negligible role. If this were not the case, the
σ = 1.5 fm calculation, for which the ANC remains the same
at LO and NLO, would be the same in Figs. 5 and 7. However,
it is not the case: constraining the p1/2 wave to host the 1

2
−

state of 11Be puts a constraint on that phase shift (see Fig. 4),
which reduces the corresponding contribution to the breakup
cross section as shown by Eq. (11)—bearing in mind that the
effective range rp1/2 is negative (see Table II). Therefore, the
confrontation of LO calculations to data cannot be used to
directly extract an ANC for the 11Be ground state, as already
pointed out in Ref. [71].
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FIG. 8. Breakup cross section for 11Be impinging on C at
67 MeV/nucleon as a function of the 10Be-n energy E. The calcula-
tions are performed with the three NLO Gaussian 10Be-n potentials
described in Sec. V. The contributions of the dominant p3/2, p1/2,
and d5/2 partial waves are shown separately. The data of Ref. [15] are
shown for comparison.

D. Breakup on C with the NLO potentials

The Coulomb breakup of 11Be is not the sole measure-
ment that has been reported by Fukuda et al. in Ref. [15].
They have also studied the breakup on a carbon target at
67 MeV/nucleon. Because the DEA has been shown to be
valid on both heavy and light targets at these energies, we
complete our study by a series of calculations for that colli-
sion. The breakup cross sections obtained on C with the three
Gaussian potentials are displayed in Fig. 8 as a function of
the relative energy E between the 10Be core and the halo
neutron after dissociation. The contributions of the dominant
p3/2, p1/2, and d5/2 partial waves are shown separately.

All three NLO 10Be-n potentials lead to nearly identical
cross sections, hence confirming the result of Ref. [7], where it
was seen that, even when the reaction is dominated by nuclear
interactions, it remains sensitive mainly to asymptotic prop-
erties of the halo-system wave function. As for the Coulomb
breakup, the tiny differences between these calculations can
be directly related to the small changes in the ANC or phase
shifts produced by the potentials (see Table I and Sec. V).

Although the calculations have not been convoluted with
the experimental energy resolution, we include the RIKEN
data in Fig. 8 to estimate the accuracy of our calculations.
Besides the dominant p-wave contributions, we observe that
the nuclear interaction between the projectile and the target
significantly populates higher partial waves, like the d5/2 il-
lustrated here. This interaction also leads to a slower decrease
of the cross section with the continuum energy E. These
two effects combine to provide a total cross section that is
flatter than in Coulomb breakup. This behavior is in very good
agreement with the data. However, although they reproduce
most of the experimental cross section, our calculations miss
its structure above E = 1 MeV, viz. the two bumps at about
1.3 MeV and around 3 MeV. As explained in Refs. [15,30],
these structures correspond to the 5

2
+

and 3
2

+
resonant states
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TABLE IV. Depths of the Gaussian 10Be-n potentials (13) ob-
tained by fitting the position and width of the d5/2 resonance in 11Be
[28]. The energy and width of this resonance found in the ab initio
calculations of Calci et al. [9] are also provided.

σ V
(0)
d5/2 V

(2)
d5/2 Ed5/2 �d5/2

(fm) (MeV) (MeV fm 2) (MeV) (MeV)

1.2 −106.61 −30 1.274 0.096
1.5 −139.945 +2 1.274 0.101
2.0 −104.597 +4.5 1.274 0.105
Ab initio 1.31 0.1

in the 11Be continuum spectrum. In an extreme shell model of
the nucleus, they correspond to d5/2 and d3/2 single-neutron
resonances. They do not appear in the theoretical cross section
because they are not included in our NLO description of the
projectile. In the next two sections, we explore this part of the
model space by extending the (strict) halo-EFT expansion to
the next three partial waves: d5/2, p3/2, and d3/2, for which
experimentally known resonant states can be used to adjust
our Gaussian potentials.

VII. ADDING RESONANCES TO THE NLO
HALO EFT POTENTIAL

We now turn our attention to what is needed for an im-
proved description in waves other than the s1/2 and p1/2. At
this point we leave the strict halo-EFT expansion of Ref. [12]
and embark on a more phenomenological investigation, in an
attempt to find the ingredients that are needed to describe the
data at energies beyond those where the EFT expansion breaks
down.

A. d5/2 wave

There is no physical bound state to which we could fit our
Gaussian potentials in the d5/2 partial wave. However, there

is a narrow 5
2

+
state in the low-energy 10Be-n continuum,

which is usually seen as a single-particle d5/2 resonance:
Ed5/2 = 1.274 MeV with �d5/2 = 100 keV [30].4 This seems
confirmed by the structure observed in the d5/2 phase shift
computed within the NCSMC framework of Calci et al. (see
Fig. 3 of Ref. [9] and the blue dash-dotted line in Fig. 9).
To constrain our Gaussian potentials in this partial wave,
we choose to reproduce the experimental energy and single-
particle width of this resonant state. (The NCSMC calculation
produces a resonance that is slightly displaced from the ex-
perimental location, and we choose to reproduce the latter.)
The depths of the Gaussian potentials obtained in this fit, and
the energy and width of the d5/2 resonance they produce, are
listed in Table IV alongside the ab initio results of Ref. [9].
The corresponding phase shifts are plotted in Fig. 9.

4These values differ slightly from the more recent Ref. [28] for the
same reason mentioned in Sec. III.
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FIG. 9. Phase shifts obtained in the d5/2 partial wave from our
effective single-particle description of 11Be and the NCSMC calcu-
lation of Calci et al. [9].

As in the s1/2 wave, all potentials provide very similar
phase shifts, which also agree very well with the ab initio
prediction up to E = 2 MeV.

B. p3/2 wave

In the p3/2 partial wave, we fit the depth of the potentials

to reproduce the experimental energy and width of the 3
2

−

resonant state: E3/2− = 2.15 MeV and �3/2− = 210 keV [28].
The resulting potential depths are provided in the first three
lines of Table V and the corresponding phase shifts are plotted
in Fig. 10 together with Calci et al.’s results, which exhibit
the clear signature of a single-particle resonance. Interest-
ingly, the ab initio phase shift is consistent with 0 below
E ∼ 1.5 MeV, which confirms our choice made in the NLO
description to neglect the 10Be-n interaction in that partial
wave.

Although they have been adjusted to the same resonance
properties, the three Gaussian potentials lead to different
phase shifts, suggesting that some short-range physics plays
a role in the structure of this state and that a simple single-
particle description will not be enough to describe it ac-
curately. Moreover, only the narrow potential (σ = 1.2 fm)
yields phase shifts in good agreement with the ab initio
prediction. If, as we expect, this phase shift plays a role in the

TABLE V. Depths of the Gaussian 10Be-n potentials (13) ob-
tained by fitting the resonance position and width from Ref. [28] in
the 3

2

−
partial wave. The energy and width of the p3/2 resonance

obtained in the ab initio calculation of Calci et al. [9] are also shown.

σ V
(0)
p3/2 V

(2)
p3/2 Ep3/2 �p3/2

(fm) (MeV) (MeV fm 2) (MeV) (MeV)

1.2 −599.545 +138 2.150 0.211
1.5 −386.112 +58 2.150 0.203
2.0 −215.84 +18.5 2.150 0.209
1.0 −860.292 +282 2.150 0.207
Ab initio 2.15 0.19
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FIG. 10. Phase shifts obtained in the p3/2 partial wave with the
three usual Gaussian potentials (σ = 1.2, 1.5, and 2.0 fm). The
prediction of Calci et al. [9] is shown, as well as the best fit obtained
with a narrow Gaussian potential (σ = 1.0 fm).

breakup reaction, we should expect some differences between
all three calculations, at least in the p3/2 contribution to the
breakup cross section [8].

Since our goal is to reproduce the output of the NCSMC
calculation of Calci et al., we develop, for this partial wave,
a potential with σ = 1 fm, which reproduces nearly perfectly
the ab initio p3/2 phase shift (see the back dashed line in
Fig. 10; the depth of this potential is provided in the fourth line
of Table V). Since it best simulates the ab initio predictions in
this partial wave, this potential is probably the one that should
be considered as the best effective description of 11Be to be
used in reaction models.

C. d3/2 wave

The depths of the Gaussian potentials in the d3/2 partial
wave are adjusted to reproduce the energy and width of the
3
2

+
resonant state: E3/2+ = 2.90 MeV and �3/2+ = 122 keV

[28]. These depths are listed in Table VI and the resulting
phase shifts are displayed in Fig. 11. Albeit better than in the
p3/2 partial wave, these fits are not very satisfactory. First,
the different potentials lead to significant differences in the
phase shifts. Second, they do not reproduce the ab initio

TABLE VI. Depths of the Gaussian 10Be-n potentials (13) ob-
tained by fitting resonance position and width from Ref. [28] in
the d3/2 partial wave. The energy and width of the d3/2 resonance
obtained in the ab initio calcuation of Calci et al. [9] are also
provided.

σ V
(0)
d3/2 V

(2)
d3/2 Ed3/2 �d3/2

(fm) (MeV) (MeV fm2) (MeV) (MeV)

1.2 −325.87 +50 2.90 0.12
1.5 −229.22 +28 2.90 0.117
2.0 −136.98 +11 2.90 0.122
Ab initio 2.92 0.06
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FIG. 11. Phase shifts obtained in the d3/2 partial wave, including
the ab initio calculation of Calci et al. [9].

calculation very accurately. This is partly due to the fact that
the NCSMC predicts too narrow a d3/2 resonance: Calci et al.
obtain �d3/2 = 60 keV, instead of the experimental 122 keV.

It is usually believed that this state is not well described
by a single-particle model in which the 10Be core is in its 0+
ground state. Instead, a significant part of the overlap wave
function corresponds to a configuration in which the core is in
its first 2+ state [72]. The influence of that state is visible in
the cusp observed in the ab initio phase shift at E ≈ 3.4 MeV.
We therefore do not expect our effective description of the 3

2
+

state of 11Be to fully account for the underlying physics of that
state.

VIII. RESULTS WITH NLO + RESONANCES
HALO EFT POTENTIAL

A. Coulomb breakup

We now augment the previous calculation of Coulomb
breakup on 208Pb at 69 MeV/nucleon by including the res-
onances in the d5/2, p3/2, and d3/2 channels, using the poten-
tials described in the previous section. All other ingredients
of the reaction calculation—viz. the descriptions of the s1/2

and p1/2 partial waves, the target-neutron, and target-10Be
potentials, and the numerical parameters—are as in Sec. VI.

The corresponding DEA cross sections are displayed in
Fig. 12. The upper panel (a) presents the results obtained with
the three Gaussian potentials of widths σ = 1.2, 1.5, and 2 fm
detailed in Sec. VII. Contrary to the previous series of tests,
we note significant differences between these potentials: there
is a significant variation in the magnitude at the maximum of
the cross section and the behavior around the 3

2
−

resonance
changes a lot from one potential to the other. As expected,
these differences are mostly due to the p3/2 contribution and
can be directly related to the differences in the p3/2 phase
shifts obtained with the three potentials (see Fig. 10).

In the vicinity of the maximum, the ordering of the curves
follows that of the phase shifts: the σ = 2 fm potential, pro-
ducing the most negative phase shift, gives the lowest p3/2

contribution to the breakup cross section, while the σ = 1.2 fm
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FIG. 12. Study of the role played by the resonant continuum in
the breakup cross section for 11Be on Pb at 69 MeV/nucleon. The
calculations performed with the three Gaussian 10Be-n potentials
fitted in Sec. VII to reproduce the 5

2

+
, 3

2

−
, and 3

2

+
resonant states

are displayed in the upper panel (a). In the lower panel (b), the cross
sections are obtained with the same potentials, but in the p3/2 partial
wave we use the narrow Gaussian potential (σ = 1 fm), which best
reproduces the ab initio δ3/2− . In both panels the contributions of the
dominant p3/2, p1/2, and d5/2 partial waves are shown separately.
Although no folding with the experimental resolution has been per-
formed, the experimental data of Ref. [15] are shown for comparison.

potential, generating the phase shift closest to zero, leads to
the largest cross section.

Near the 3
2

−
resonance, the strikingly different behavior

between the potentials can be related to the way that state
is described. The σ = 2 fm potential, which produces a p3/2

phase shift at odds with the ab initio prediction, leads to a
large bump in the cross section. Since this bump is not seen
in the data, we can infer that this description of the p3/2 phase
shift is unrealistic.

These results confirm the analysis of Ref. [8], which
showed that breakup calculations are affected by variations
in the description of the continuum of the projectile, viz. by
the phase shifts. This is the reason why we have developed a
fourth Gaussian potential with a narrow width σ = 1 fm that

produces a phase shift in nearly perfect agreement with the
NCSMC one (see the black short dashed line in Fig. 10). We
have repeated our calculations using that potential in the p3/2

partial wave while keeping the Gaussian potentials with the
different widths (σ = 1.2, 1.5, and 2 fm) in the other partial
waves. The resulting cross sections are displayed in Fig. 12(b).

Once the p3/2 partial wave is fixed in this way, the cal-
culations are nearly independent of σ , confirming the results
of Sec. VI, where it was suggested that the reaction is purely
peripheral and is not affected by the short-range physics of
the projectile. At low energy—viz. E � 1 MeV—they are
nearly identical to those obtained at the strict NLO level (see
Fig. 5), at which the partial waves other than s1/2 and p1/2 are
described by plane waves. This is is due to the nearly zero
p3/2 phase shift obtained with the narrow σ = 1 fm Gaussian
potential in that energy range.

At the 5
2

+
resonance energy, we observe a small bump in

the d5/2 contribution, which seems to fit the bump observed
in the data at the same energy. Unfortunately, this bump is
washed out by the convolution with the experimental resolu-
tion, which suggests that the description of that 5

2
+

state is
probably more complex than the single-particle description
considered here.

The breakup cross section obtained with all three potentials
now exhibits the same behavior in the vicinity of the 3

2
−

resonance. Although that particular shape disappears after
convolution with the experimental resolution, let us note that
it is very similar to the energy dependence of the ab initio
dB(E1)

dE
computed by Calci et al. (see Fig. 5 of Ref. [9]).

At larger energy, the effect of the 3
2

+
state on the cross

section is marginal. Since it does not seem to affect the
experimental data, we cannot conclude anything about the
accuracy of the halo-EFT description of this state in the d3/2

partial wave.
We thus observe that, at least for Coulomb breakup, the

nuclear-structure properties that ultimately matter in the de-
scription of reactions involving halo nuclei are the ANC of
the ground state and the phase shifts in the dominant partial
waves. Interestingly, halo EFT provides a useful organization
of the set of these properties that are important for low
energy. Once the s1/2 and p1/2 potentials are fixed from the ab
initio results a σ -independent description of the breakup cross
section that agrees with the experimental data is found. We
note that in the strict NLO halo-EFT calculation the p3/2 wave
is treated as free, and in fact this produces a better outcome for
the breakup cross section than is obtained with a broad p3/2

potential tuned to the resonance energy. Unless the p3/2 partial
wave is tuned to agree with ab initio input simply setting this
interaction to zero may produce a better result than does an
inclusion of the p3/2 resonance which results in unconstrained
low-energy p3/2 phase shifts.

B. Nuclear breakup

The Coulomb-breakup calculations presented in the pre-
vious section are not strongly sensitive to the resonances
added phenomenologically to the NLO description of 11Be.
As explained at the end of Sec. VI, the nuclear breakup on 12C
is much more affected by these resonances. In this section, we
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FIG. 13. Breakup cross section for 11Be impinging on C at
67 MeV/nucleon as a function of the 10Be-n energy E. The cal-
culations are performed with the three Gaussian 10Be-n potentials
described in Secs. V and VII assuming a σ = 1.0 fm in the p3/2

partial wave following the constraint obtained from our analysis of
the Coulomb breakup. The contributions of the dominant p3/2, d5/2,
and d3/2 partial waves are shown separately.

study how the single-particle description of these resonances
detailed in Sec. VII affects the breakup calculations and
how they compare to experiment. As on Pb, we consider
all three 10Be-n Gaussian potentials. However, following the
conclusion of the previous section, we have systematically
used the σ = 1 fm potential in the p3/2 partial wave, which

best reproduces the NCSMC 3
2

−
phase shift.

The results of these calculations are displayed in Fig. 13.
The total breakup cross section obtained from our dynamical
calculations as well as the p3/2, d5/2, and d3/2 main contribu-
tions are plotted as a function of the 10Be-n relative energy E.
As already seen in Ref. [30], the contributions of the d waves
are no longer negligible and dominate the calculation in the
vicinity of the resonances. This is especially true for the d5/2

partial wave, whose contribution exhibits a huge and narrow
peak at the resonance energy. That peak has the same width as
the resonance (�d5/2 ≈ 100 keV), which confirms that nuclear
breakup is, in principle, an excellent tool to study unbound
states in loosely bound nuclei [15,30]. Albeit as narrow as
the d5/2 continuum state, the d3/2 resonance produces a much
smaller peak in the cross section.

With the potential constrained in the p3/2 partial wave, all
three calculations provide very similar cross sections, inde-
pendently of the potential range σ . Even here, in the collision
with 12C, there is not great sensitivity to the interior of the
11Be wave function. In particular, the three d5/2 contributions
are nearly superimposed on each other. These three potentials
describe the ab initio d5/2 phase shift equally well (see Fig. 9)
but do differ in what they predict for the interior of the wave
function in that channel. On the contrary, in the d3/2 partial
wave, the three potentials lead to different peaks in the second
resonance region. However, once again, these differences be-
tween potentials can be directly related to their different phase
shifts (see Fig. 11). These results confirm the sensitivity of
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FIG. 14. Comparison of the theoretical prediction for the
breakup cross section for 11Be impinging on C at 67 MeV/nucleon
with the experimental data of Ref. [15]. Our calculations have been
convoluted with the experimental resolution.

breakup calculations to the description of the continuum of the
projectile. In particular, similar descriptions of the phase shifts
will lead to similar partial-wave contributions to the breakup
cross section, independent of the details of the potential used
to generate the continuum states.

To confront these results with the RIKEN data, it is neces-
sary to fold our calculations with the energy resolution of the
experiment; see Fig. 14. As already observed in Ref. [30], this
comparison shows that a simple single-particle description of
the projectile reproduces most of the breakup strength, provid-
ing a theoretical cross section rather close to the experimental
value. However, it also shows that the breakup strength in
both d resonances is clearly underestimated in our single-
particle model of the projectile. As already suggested in the
calculations on the Pb target, our description of the d5/2 does
not provide the entire breakup strength measured experimen-
tally. And the small peak induced by the single-particle d3/2

resonance is completely washed out by the folding, indicating
that the 3

2
+

resonance cannot be reliably described within
a single-particle model of 11Be. We emphasize that these
deficiencies in our reaction cross section are almost certainly
not due to the simple potentials used. If the results were
sensitive to the form of the potential then we would see a σ
dependence in the cross sections predicted here.

Even though the data are covered by the NLO uncertainty
band, which suggests that they could be reached by the
calculation, were they performed with higher orders in the
halo-EFT expansion, these results suggest that our calculation
is missing a degree (or degrees) of freedom. In this case the
lack of strength in the d resonances seems to confirm the work
of Moro and Lay, who have shown within a DWBA model the
significant role played by the first 2+ excited state of the core
in these resonant breakup reactions [72].

IX. SPECTROSCOPIC FACTOR VS ANC

So far all breakup calculations have been performed us-
ing single-particle wave functions normalized to unity, even
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FIG. 15. Difference between breakup calculations with a 11Be bound-state wave function normalized to unity or to the spectroscopic factor
predicted by the ab initio calculation [9]. Left: Pb at 69 MeV/nucleon. Right: C at 67 MeV/nucleon.

though the NCSMC calculations of Calci et al. predict a spec-
troscopic factor S1s1/2 = 0.90 for the s-wave configuration
of the ground state [9]. The analysis presented in Ref. [7]
shows that breakup reactions, both on light and heavy targets,
are purely peripheral and hence that no information about
possible spectroscopic factors could be extracted from them.
In this section, we test this result by repeating our calculations
with an initial ground-state wave function normalized to the
spectroscopic factor predicted by the ab initio model. To this
end, we have refitted the Gaussian potential in the s wave to
conserve the same ANC while reducing the norm of the wave
function to

√
0.90. Since we could not find a combination of

depths that would allow this for the σ = 1.2 fm potential, we
have used a slightly larger range of the Gaussian form factor
(σ = 1.3 fm). (This is related to the Wigner bound discussed
in Sec. V E.) In Fig. 15 we confront the corresponding results
(blue dashed lines) with the calculation performed with a
wave function normalized to one (red solid line) for both the
Pb (a) and C (b) targets.

For both Coulomb- and nuclear-dominated breakups, we
observe virtually no difference between the two calculations,
hence confirming the results of Ref. [7]. This means that—
at least in breakup reactions—spectroscopic factors are not
observables. Interestingly, the only energies where the re-
action seems slightly more sensitive to the internal part of
the wave function are in the vicinity of the resonances. As
already noted in Ref. [7], these are the only places where both
calculations are notably different. The present work provides
a more quantitative estimate of this effect. A reduction of
10% in the spectroscopic factor while keeping the same ANC
leads to a reduction of 10–15% in the contribution of the
resonant partial wave at the resonance energy. This indicates
that resonant-breakup reactions are more affected by the in-
ternal part of the projectile wave function and hence could
be more sensitive to short-range physics like couplings with
other configurations, as suggested by the work of Moro and
Lay [72].

X. CONCLUSIONS AND PROSPECTS

In this work, we have successfully coupled a halo-EFT
description of 11Be to the dynamical eikonal approximation.
This has enabled us to include an efficient effective descrip-
tion of halo nuclei guided by the principles of halo EFT within
an accurate and fully dynamical model of nuclear reactions.
Our description includes the dominant nuclear-structure in-
puts, like the ANC of bound states and phase shifts in the
continuum, in the reaction modeling.

This approach works well for peripheral reactions. A de-
tailed description of the projectile’s interior is not neces-
sary: we just need to reproduce the asymptotic (and hence
observable) part of the wave function, both in the bound
state and in the continuum region. In particular, we have
explicitly demonstrated that our results are independent of
nonobservable quantities: details of the potential at short
distances and spectroscopic factors. Our results hence provide
another example of the fact that the neutron-core potential
is not observable. Instead, the input information for the halo
EFT description can be taken from observables measured in
experiment or calculated ab initio. For our example, 11Be,
we have matched the effective description of the projectile
to a recent ab initio calculation in no-core shell model with
continuum (NCSMC) [9].

Halo EFT organizes the 10Be-neutron properties needed for
a description of a given fidelity: here we considered 11Be mod-
els at LO, NLO, and “NLO-plus-resonances” accuracy. At
NLO the inputs needed to construct 10Be-neutron potentials in
the s1/2 and p1/2 channels are taken from the ab initio results
of Ref. [9]. This produces an accurate description of 11Be
collisions with 208Pb up to about 2 MeV. It also yields a good
description of collisions of 11Be with 12C up to E ≈ 1 MeV
[15]. In all cases we find very little dependence on the range
of the Gaussians in EFT results.

At higher energies the nuclear dominated breakup reac-
tion, corresponding to the C target, shows some sensitivity
to shorter range parts of the wave function. The inclusion
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of the 11Be resonance in the d5/2 partial wave produces a
feature in the 12C-11Be cross section in the right location,
but not one that is strong enough to reproduce the data. This
failure to reproduce the data indicates that relevant degrees
of freedom are missing. The effect of core excitation to the
2+ state in 10Be can be included as an explicit degree of
freedom in halo EFT, although this comes at the expense of
additional parameters. Such effects, together with the role of
neutron-core-target “three-body” forces, and the limits of our
approach for nuclear dominated reactions also seem fruitful
avenues for future work. Finally, it would be interesting to
apply this framework to other types of reactions, such as
transfer reactions or reactions of astrophysical interest. A first
study in this direction was carried out in Refs. [73,74].
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