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Energy-density functionals inspired by effective-field theories: Applications to neutron drops
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New energy-density functionals (EDFs) inspired by effective-field theories have been recently proposed.
The present work focuses on three such functionals, which were developed to produce satisfactory equations
of state for nuclear matter. We aim to extend these functionals to treat finite systems including a spin-orbit
contribution and pairing correlations. We illustrate here a first step toward this direction, namely a generalization
of such functionals tailored to perform applications to neutron gases confined in harmonic traps. Sets of
available ab initio results are used as benchmark pseudodata for adjusting the additional parameters (with
respect to the nuclear matter case) that have to be introduced for finite-size systems. Several quantities are
predicted and compared to ab initio and other EDF results such as total energies, potentials, and density profiles.
The associated effective masses are also analyzed. Two of these functionals globally provide predictions that
are close to one another as well as to ab initio values when available. It is shown that, in general, this is
not the case for several currently used Skyrme functionals. Directions for improving the third functional are
discussed.
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I. INTRODUCTION

Chiral effective-field theories (EFTs) provide a framework
for building internucleon interactions that offers several ad-
vantages [1–4]: (i) a direct link with QCD, (ii) consistent two-
body and three-body forces, (iii) the possibility of systematic
improvements by means of the order-by-order inclusion of
diagrams, (iv) an estimate of theoretical uncertainties. Such
Hamiltonians are now commonly employed together with
sophisticated many-body methods to perform ab initio calcu-
lations for light nuclei or nuclear matter, see Refs. [5–11].

Whereas reliable ab initio calculations are limited to a
small number of particles, EDF theories [12,13] represent the
unique approach allowing us to investigate the nuclear chart as
a whole as well as dense matter, traditionally on the basis of
phenomenological effective interactions such as Skyrme and
Gogny forces [14–18].

Recently, efforts have been undertaken to bridge EFT
and EDF theories [19,20]. The aim in borrowing concepts
from EFT is the development of a new generation of func-
tionals potentially able to encode beyond-mean-field effects,
to describe correlated exotic nuclei, and, more importantly,
to involve less adjustable parameters. The construction of
next-to-leading order Skyrme-like effective forces addressing
regularization and renormalizability issues [21,22] and a first
attempt for defining power-counting schemes to build EDFs
[23] are examples of steps toward this direction. Note that, in
parallel, alternative extensions of the Skyrme EDF that also
incorporate higher-order contributions (but not in the sense
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of the Dyson perturbative expansion) without invoking EFT
techniques have been proposed [24].

The present work focuses on three EFT-inspired func-
tionals, namely YGLO1 [25], KIDS2 [26], and ELYO3 [27].
YGLO consists of a hybrid EDF gathering standard Skyrme-
type velocity- and density-dependent contributions together
with a resummed term whose formal expression is based on
a resummation formula used in EFTs for systems with large
scattering lengths [28,29]. The KIDS functional is written as a
power expansion in the Fermi momentum with the same first
orders as those naturally emerging in EFTs. Finally, ELYO
relies on the equation of state (EOS) of very dilute neutron
matter (first obtained by Lee and Yang in the 1950s [30,31]
and derived more recently within the framework of EFTs
[32]) extending its validity domain to reach density regimes
of interest for finite nuclei via the introduction of a density-
dependent neutron-neutron scattering length.

The aforementioned studies mainly concern nuclear matter
for which the link between EFT and EDF theories is easier.
Whereas KIDS was already applied to atomic nuclei [33–35],
this is not the case for the YGLO and ELYO functionals that
are therefore characterized only by the EOS to which they
lead. In this paper, our purpose is to generalize these EDFs
to enable the treatment of finite systems. In particular, we
address systems composed exclusively of neutrons confined
in isotropic harmonic traps. These drops offer a simple model
for extremely neutron-rich nuclei (where the unbound valence
neutrons are trapped by an external well from the core).
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Owing to their isospin composition, these systems allow for a
direct assessment of the isovector channel of the functionals:
This is indeed the less constrained part in common EDFs,
which are usually fitted to measured observables of stable
or near-stable isotopes and, hence, produce large dispersions
in the predictions for strongly isospin-asymmetric nuclei.
Moreover, the properties of low-density neutron systems are
crucial ingredients for understanding systems located in the
inner crust of neutron stars. Last, a strong linear correlation
has been discovered between the radii of neutron drops and
the neutron skin thickness of 208Pb and 48Ca [36].

All these features of neutron drops have motivated a large
number of theoretical studies, especially based on ab initio
calculations [37–39]. Contrary to infinite matter, the spin-
orbit (and the tensor, omitted here) interaction impacts the
properties of finite-size systems such as their shell structure.
Furthermore, the role played by superfluidity in affecting the
shell structure cannot be neglected. The ab initio description
of these properties provides precious pseudodata to bench-
mark the nuclear EDF approach and to constrain functionals
in specific spin-isospin channels that can hardly be optimized
otherwise [38,40–43]. In particular, we resort here to a collec-
tion of available ab initio results to adjust the extra parameters
needed to extend the YGLO, KIDS, and ELYO functionals
to finite systems. In the present work, we generalize the two
functionals YGLO and ELYO to account for spin-orbit and
pairing contributions. In addition, we discuss the constraints
on the effective masses induced by the chosen strategies for
extending the functionals. The available applications of the
KIDS EDF to doubly magic nuclei include the spin-orbit
interaction [35]. This functional is complemented here by
explicitly treating pairing correlations.

The paper is organized as follows. Section II reviews the
properties of the three EFT-guided EDFs considered in this
work. Their generalization for applications to neutron drops
is detailed in Sec. III. Results are presented and discussed in
Sec. IV and conclusions are drawn in Sec. V. Some expres-
sions for the Skyrme EDF, which will be useful through this
paper, are given in Appendix.

II. EFT-INSPIRED FUNCTIONALS

We briefly describe here the three functionals in their
original versions, that is, as they were proposed for nuclear
matter. We therefore focus on the corresponding EOSs, plot-
ted in Fig. 1. For the YGLO EDF, we represent here only
the YGLO (Akmal) case [25], which we call for simplicity
YGLO. In this figure, we display some EOSs obtained with
selected conventional sets of Skyrme parameters. We choose
as an illustration the SkM* [44], the Sly5 [45], and the
UNEDF0 [46] parametrizations. The parameters of Sly5 have
been specifically adjusted to reproduce the EOS in neutron
matter while UNEDF0 is one of the latest adjusted Skyrme
functionals. For comparison, we report the EOSs for neutron
matter [Fig. 1(a)] from QMC calculations [37,38] using the
AV8′ two-body force only [47] or using AV8′ supplemented
by the UIX [48] or IL7 [49] three-body interactions. The
Friedman-Pandharipande (FP) results of Ref. [50] and the
Akmal et al. (Ak) results of Ref. [51] are also shown.

 0

 5

 10

 15

 20

 25

E
/ A

 (
M

eV
)

(a)

AV8’+UIX
AV8’+IL7

AV8’
FP
Ak

χEFT

-20

-15

-10

-5

 0

 0  0.05  0.1  0.15  0.2  0.25  0.3

E
/A

 (
M

eV
)

ρ (fm-3)

(b)

SkM*
Sly5

UNEDF0

YGLO
KIDS

ELYO

FIG. 1. EOSs of (a) PNM and (b) SNM obtained with the three
EFT-inspired functionals (full lines) compared with those provided
by some commonly used Skyrme EDFs (dashed lines), SkM* [44],
Sly5 [45], UNEDF0 [46]. For neutron matter, also shown are the ab
initio results from: QMC calculations [37,38] using the AV8′ two-
body force only [47] or using AV8′ supplemented by the UIX [48]
or IL7 [49] three-body interactions (dots); Friedman-Pandharipande
[50] (FP, green plus); Akmal et al. [51] (Ak, magenta crosses); and
Ref. [52] (χEFT, red bars). For the latter that are based on chiral
EFT, the size of the bars represents the theoretical uncertainties.

All Skyrme and EFT-inspired functionals lead to a similar
behavior for the EOS of symmetric nuclear matter (SNM)
and, qualitatively, to the same trend in pure neutron matter
(PNM), at least for densities up to ∼0.1 fm−3. We emphasize
that, compared to the Skyrme case where the number of
adjustable parameters for reproducing the EOS of matter is
nine, the YGLO functional has seven parameters and the
ELYO functional only five. In this sense, the ELYO results can
indeed be considered very satisfactory. In spite of the strongly
reduced number of parameters (almost one-half compared
to the Skyrme case), the EOS produced for SNM is very
good and the EOS predicted for PNM is satisfactory up to
neutron densities at play in finite nuclei. The rest of the ELYO
PNM EOS (at higher densities) is comparable to PNM EOSs
provided by other Skyrme functionals such as SIII [53] or SkP
[54] as shown in Ref. [27].

The KIDS and YGLO PNM EOSs are almost identical for
densities ρ < 0.15 fm−3. The Sly5 PNM EOS follows also
closely these two EOSs with some departure at low densities
ρ < 0.05 fm−3. The UNEDF0 and SkM* PNM EOSs are
located at lower energies (compared to Sly5, YGLO, and
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KIDS) over the whole range of densities displayed in the
figure. These differences will be useful in some cases for
discussing to what extent the properties of neutron drops are
sensitive to infinite matter EOSs.

A. YGLO functional

The YGLO functional [25] produces the following EOS:

E

A
= Kβ (ρ) + Yβ (ρ)ρ + Dβρ5/3 + Fβρ1+α, (1)

with α = 0.7 and where ρ is the total density of either PNM
(β = 0) or SNM (β = 1). Kβ stands for the usual kinetic
contribution and Yβ (ρ) for a resummed term of the form

Yβ (ρ) = Bβ

1 − Rβρ1/3 + Cβρ2/3
. (2)

Bβ and Rβ are constrained by imposing the correct limit at
very low density, that is by matching the resummed term with
the Lee-Yang expansion [30] up to second order in (askF )
where as is the s-wave scattering length and kF is the Fermi
momentum. They are hence expressed as

Bβ = 2πh̄2

m

ν − 1

ν
as,

Rβ = 6

35π

(
6π2

ν

)1/3

(11 − 2 ln 2)as. (3)

ν = 2 (4) is the degeneracy for β = 0 (1) and m is the nucleon
mass taken to be equal for protons and neutrons. Note that,
in Eq. (3), different values of as are employed for PNM
and SNM. The Dβ, Fβ , and Cβ parameters for β = 0 and
1 were obtained by a fit of PNM and SNM EOSs, Eq. (1),
on the two sets of quantum Monte Carlo (QMC) pseudodata
taken from Refs. [50,55] and [51,55], yielding two possible
parametrizations called YGLO (FP) and YGLO (Akmal),
respectively. In the present work, we only consider the latter
(denoted simply by YGLO) but all the drawn conclusions also
apply to the former. It is interesting to mention that another
functional based on a resummed formula was suggested to
reproduce the unitary limit of Fermi gases and neutron matter
at low density [56–58].

B. KIDS functional

The KIDS functional [26] consists in a power expansion in
the Fermi momentum kF = (6π2ρ/ν)1/3 equivalent to

E

A
= Kβ (ρ) +

3∑
i=0

C
(i)
β ρ1+i/3. (4)

Here, we consider the specific ad-2 parametrization on which
is based the application to nuclei [33–35] and that does not
retain the logarithmic term. The C

(i)
β coefficients are deter-

mined by a fit on SNM properties at saturation density and
QMC calculations for PNM.

C. ELYO functional

The ELYO functional [27] is designed to provide an EOS
for PNM corresponding to the first terms of the Lee-Yang

formula with only s-wave contributions. It is constructed in
such a way that the Lee-Yang-type formula holds at all density
scales for neutron matter. The resulting EOSs for both SNM
and PNM may be written as pure s-wave Skyrme-like EOSs,
that is neglecting the p-wave term (E2 = 0 in Appendix), and
with the power of the density-dependent term equal to 1/3.
From the EOS of PNM, the Skyrme parameters are linked to
the low-energy constants through

t0(1 − x0) = 4πh̄2

m
as,

t1(1 − x1) = 2πh̄2

m

(
rsa

2
s + 0.19πa3

s

)
, (5)

t3(1 − x3) = 144 h̄2

35m
(3π2)1/3(11 − 2 ln 2)a2

s ,

where as = −18.9 fm is the neutron-neutron scattering length
and rs = 2.75 fm is the associated effective range. The ti’s
coefficients are adjusted to generate a satisfactory EOS for
SNM around the equilibrium point, whereas the xi’s pa-
rameters are given by Eq. (5). This implies that the PNM
EOS does not depend on the adjusted parameters. However,
such a direct mapping to the Lee-Yang formula is valid only
when |askF | � 1, that is in the very low-density regime up
to 10−6 fm−3. To allow using the low-density expansion at
all density scales, the constraint |askF | � 1 is extended by
assuming a density-dependent as :

as (ρ) =
{−18.9 fm if (18.9kF ) � �

−�/(3π2ρ)1/3 if (18.9kF ) > �
, (6)

with � � 1 a chosen limit value for |as (ρ)kF |. Furthermore,
the effective range in the regime where as departs from its bare
value is used as an adjustable parameter and rs = −4.5 fm
was found to give a reasonable PNM EOS for � = 1 at least
up to densities of interest for finite nuclei (see Fig. 1). The
set of parameters {xi} are thus tuned by the density-dependent
neutron-neutron scattering length.

For all the above-described functionals, the different EOSs
for intermediate asymmetries may be deduced via the so-
called parabolic approximation where the symmetry energy
is computed as the difference between the EOSs of PNM and
SNM.

III. EXTENSION TO NEUTRON DROPS

It is well known that the adjustment of a functional done
only on infinite matter is not enough to correctly describe
finite systems. This is the reason why, in general, additional
constraints on specific nuclei are added in the fitting process.
As discussed in Sec. I, the spin-orbit interaction should be
added to properly account for shell effects. In addition, pairing
correlations should be explicitly incorporated within the EDF.
In the present section, we describe for each functional how
these new components are introduced. For YGLO and ELYO,
guided by the procedure employed for KIDS, we also propose
a strategy to separate the functional into density-dependent
and velocity-dependent terms (which generate an effective
mass in leading-order calculations).
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A. EDF treatment and adjustment procedure

1. Generalities

Let us now consider a system composed of a finite number
N of neutrons trapped in an isotropic harmonic well of fre-
quency ω. Such a potential makes relevant the use of spherical
coordinates. Within the framework of EDF theory, the total
energy of the system is given by E = ∫

d3�rE (�r ) where the
energy density E (�r ) is decomposed in terms depending on the
neutron ρ, kinetic τ , spin-current �J , and anomalous pairing ρ̃
densities as

E (�r ) = T (�r ) + Eω(�r ) + Ec(�r ) + Eso(�r ) + Epp(�r ). (7)

T (�r ) = h̄2τ (�r )/2m is the kinetic contribution with a neutron
mass taken as h̄2/m = 41.44 MeVfm2. Eω(�r ) describes the
trap contribution related to the potential mω2�r 2/2. The drop
being localized, there is no center-of-mass correction. In
Eq. (7), we explicitly separate the spin-orbit Eso(�r ) and the
pairing Epp(�r ) contributions from the rest that is generically
denoted by Ec. We adopt a mixed surface-volume pairing
interaction,

V (�r ) = Vpp

(
1 − 1

2

ρ(�r )

ρc

)
δ(�r ), (8)

with ρc = 0.16 fm−3 and a standard smooth (diffuseness of
1 MeV) cutoff at 60 MeV in the quasiparticle spectrum.

The quasiparticle wave functions from which the various
densities are built are obtained self-consistently by solving
Hartree-Fock-Bogoliubov (HFB) equations. The expressions
of the densities in spherical symmetry, as well as the particle-
hole and particle-particle fields in the case of a Skyrme EDF,
may be found in Ref. [54]. For the present purpose we updated
the spherical HFB code HFBrad [59] to be able to treat
finite-size systems such as neutron drops with the functionals
YGLO, KIDS, and ELYO. The results reported in this work
have been computed with a radial space coordinate discretized
in 150 steps of 0.2 fm and by taking into account orbitals
up to angular momentum j = 15/2. These values are such
that for all the systems treated here the calculations are well
converged. The other numerical parameters are those defined
by default in the program [59].

Adapting to finite neutron droplets the EFT-inspired func-
tionals defined in Sec. II requires us to establish a possible
expression for their Ec part in terms of the densities. To this
end, we rely on the traditional Skyrme energy functional:
When possible, the terms of the YGLO, KIDS, and ELYO
EOSs are identified as stemming from Skyrme-like terms of
the functional Ei (i = 0, 1, 2, 3, see Appendix). It is worth
mentioning that, as in the Sly5 parametrization, the so-called
J 2 contributions are not neglected. The resummed part of
YGLO, for which a mapping with usual Skyrme terms is
not possible, is directly transposed by extending functions
to functionals: Y (ρ) → Y [ρ(�r )]. This procedure necessitates
the introduction of new parameters that will be adjusted on
a set of pseudodata extracted from ab initio calculations (see
Sec. III C).
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FIG. 2. Energies of neutron drops in a h̄ω = 10 MeV trap, scaled
by h̄ωN 4/3, obtained from a variety of ab initio calculations with
different two- and three-body interactions. The dots refer to the three
QMC calculations producing the EOSs plotted in Fig. 1(a). The
squares indicate results from a configuration-interaction method [37]
with the JISP16 force [60]. The pentagons represent no-core shell-
model and coupled-cluster calculations with an interaction derived
from chiral EFT [39]. The average of all these results is denoted as
“ab initio” (full line). Also shown (but not included in the reference
data set) are relativistic Brueckner-Hartree-Fock calculations [61,62]
with the Bonn A interaction [63] (triangles). The upper limit for free
neutrons gives an horizontal line at E/h̄ωN4/3 ≈ 1.082.

2. Selection of ab initio pseudodata and fitting protocol

For a given neutron number, we choose as reference pseu-
dodata the average of the ab initio energies for h̄ω = 10
MeV compiled in Fig. 2. In the following, adjustments of the
functionals are performed on this average. Figure 2 displays
in particular QMC calculations producing the EOSs plotted in
Fig. 1(a), configuration-interaction calculations [37] with the
JISP16 force [60], no-core shell-model and coupled-cluster
calculations with an interaction built within chiral EFT [39].
The average of all these results is denoted as “ab initio”
(full line). Figure 2 also shows relativistic Brueckner-Hartree-
Fock calculations [61,62] with the Bonn A interaction [63].
The dispersion of the different estimates observed when the
neutron number increases, represented by the yellow area,
is well understood from the properties of the corresponding
interactions, as discussed in detail in Refs. [37,61]. The refer-
ence values within this area seem physically reasonable since
they quantitatively agree well with χEFT [39] and Bonn A
[61,62] results (for N � 30), the latter not being comprised in
the benchmark data set. Note that, as a consequence, adjusting
the EDFs to calculations relying on EFT interactions only, in
the spirit of EFT-inspired functionals, leads to parameters very
close to those obtained by fitting to the average.

The new parameters entering in Ec as well as the spin-
orbit coupling and pairing strength, Vso and Vpp respectively,
are determined simultaneously by adjusting HFB results for
the scaled energy E/h̄ωN4/3 on the benchmark data for
N = 8, 12, 14, 16, and 20 with h̄ω = 10 MeV. These neutron
numbers are retained for the fit insofar as they belong to the
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range where the various approaches agree rather well thus
ensuring well-constrained reference data. Indeed, N ≈ 30, for
instance, could in principle also be a good constraint for Vpp

(half-filled fp-shell systems). Nevertheless, as observed on
Fig. 2, the benchmark data exhibit a surprising shell closure at
N = 32 that is not due to the harmonic trap and that mainly
comes from the AV8′+IL7 calculation. This closure artifi-
cially reduces the reference energy of the N ≈ 30 drops. Once
the parameters are adjusted, the physical quantities computed
for N > 20 with h̄ω = 10 MeV and for any value of N with
other trap frequencies will allow us to assess the quality of the
resulting functionals and can be regarded as predictions.

In the following sections, the Ec functional derived for
the considered EDFs is expressed as holding for nuclei for
generality. Thus, both proton and neutron densities will appear
in the expressions, respectively labeled by p and n indices.

B. Discussion on the KIDS functional

The strategy to apply the KIDS EDF to finite nuclei has
been described in Refs. [33–35] and we only provide here
details relevant for the forthcoming discussion. The first step
is to match Eq. (4) into a Skyrme-like EOS provided by a
functional of the type

Ec = E0 + E1 + E2 + E3 + E3′ + E3′′ . (9)

E0 is related to the C
(0)
β term with t0 and x0 given by the

relations

3
8 t0 = C

(0)
1 , 1

4 t0(1 − x0) = C
(0)
0 .

The two terms for i = 1 and i = 3 that correspond, respec-
tively, to the ρ4/3 and ρ2 parts in the EOS (4) are directly
interpreted as distinct density-dependent terms, associated to
E3 and E3′′ in Eq. (9) with α = 1/3 and α′′ = 1, respectively.
In a similar way as for E0, one may easily relate the (t3, x3)
and (t3′′ , x3′′ ) coefficients to the values of C

(1)
β and C

(3)
β .

The term for i = 2 in the EOS offers more flexibility
because of its ρ5/3 density dependence. It could indeed be in-
terpreted either as a contribution from (E1 + E2), or as a third
density-dependent term E3′ with α′ = 2/3. In Refs. [33,34],
an extra parameter W was introduced to share the i = 2 term
between these two contributions: W denotes the fraction in the
i = 2 term coming from (E1 + E2) whereas (1 − W ) denotes
the E3′ contribution. Assuming further for simplicity that x1 =
x2 = 0, the coefficients t1, t2, t3′ , and x3′ can be expressed as a
function of C

(2)
0 , C

(2)
1 , and W . Similar strategies are followed

for the two other functionals considered in the present work.
Note that, except for the pairing strength, we use for the
KIDS functional the values of parameters inferred by fitting
properties of closed-shell nuclei in Refs. [33,34] including the
spin-orbit contribution.

C. Extension of the YGLO functional

Comparing the YGLO EOS given by Eq. (1) with standard
Skyrme EOSs, one can establish a correspondence between
some terms of the underlying functionals, and accordingly
define the expression of its central part. Thus, the Fβ term
may be written as a density-dependent contribution E3 with

α = 0.7 provided that

t3 = 16F1, t3(1 − x3) = 24F0. (10)

The Dβ term demands more care in the sense that a 5/3 power
of ρ may originate from a velocity-dependent term (E1,2),
from a density-dependent one (E3′ with α′ = 2/3), or from any
combination of both. Consequently, the identification leads
to two equations for six unknown parameters (ti , xi for i =
1, 2, 3′). To remove this ambiguity, we follow Refs. [33,34]
and introduce a new coefficient W that governs the proportion
D

(12)
β of Dβ coming from a velocity-dependent term so that

D
(12)
β = WDβ, D

(3′ )
β = (1 − W )Dβ, (11)

with D
(3′ )
β the part corresponding to a density-dependent term.

As highlighted by Eq. (11), W weights the contribution related
to the effective mass without modifying the EOS. It allows us
to fully determine the coefficients of the density-dependent
contribution E3′ ,

t ′3 = 16(1 − W )D1, t ′3(1 − x ′
3) = 24(1 − W )D0. (12)

Regarding the E1,2 part, we now have four parameters and
two equations. At this stage, several strategies may be
adopted. First, we tried to follow the same prescription as in
Refs. [33,34] and imposed x1 = x2 = 0. However, we found
that the numerical solutions of the HFB equations become
unstable for |W | > 0.2. On the other side, for |W | < 0.2, the
quality of the obtained fit is not acceptable. The reason why
such an approach fails for the YGLO functional whereas it
works well in the KIDS case may be explained by comparing
the resulting t1,2 values: Contrarily to the KIDS functional
(and to usual Skyrme EDFs), the t1 and t2 parameters have
the same sign for any value of W in the YGLO case.

An alternative strategy consists in retaining only s-wave
terms, that is t2 = x2 = 0, as in the case of the ELYO EDF,
which yields

t1 = 80

9
W

(
3π2

2

)−2/3

D1,

t1(1 − x1) = 40

3
W (3π2)−2/3D0. (13)

Finally, we end up with an YGLO functional written as

Ec = (2Y1[ρ] − Y0[ρ])ρ2 − 2(Y1[ρ] − Y0[ρ])
(
ρ2

n + ρ2
p

)
+ E1 + E3 + E3′ , (14)

with parameters given by Eqs. (10), (12), and (13). This
strategy is applied in the following.

D. Extension of the ELYO functional

We now consider the ELYO functional and follow a similar
approach. In this case, the form of the central part is easier
to interpret since it is defined as a pure s-wave Skyrme-like
functional with parameters given by Eq. (5) and α = 1/3.
For finite systems such as neutron drops, the scattering length
becomes a functional as[ρ(�r )] of the total density. The EDF
may thus be written as a Skyrme one with xi parameters
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depending on ρ(�r ), or may equivalently be recast as

Ec = ESk
c − [

X0as[ρ] + X3ρ
αa2

s [ρ]
][1

2
ρ2 −

∑
q=n,p

ρ2
q

]

−X1Bs[ρ]

[
1

2
ρτ + 3

8
( �∇ρ)2 − 1

4
�J 2

−
∑

q=n,p

(
ρqτq + 3

4
( �∇ρq )2

)]
, (15)

with

X0 = 2πh̄2

m
,

X3 = 12h̄2

35m
(11 − 2 ln 2)(3π2)1/3,

X1 = πh̄2

2m
,

and where as[ρ] is taken from Eq. (6) [the number density
is replaced by the local part ρ(�r ) of the one-body density
matrix]. ESk

c stands for a usual (s-wave) Skyrme EDF with pa-
rameters t0,1,3 from the fit on SNM properties of Ref. [27] and
x0,1,3 = 1. For compactness, we have introduced the notation

Bs[ρ] ≡ [
rsa

2
s [ρ] + 0.19πa3

s [ρ]
]
. (16)

One observes that for neutron drops as for PNM the EDF
does not depend on the phenomenological parameters ti as
they only enter in ESk

c that cancels out in that case. The value
of the effective range rs also depends on the density and,
by extension, on the position �r: rs = 2.75 fm wherever the
density is small enough so that the scattering length is equal
to −18.9 fm; rs = −4.5 fm for higher densities where as

becomes a functional of ρ(�r ).
Equation (15) relies on the hypothesis that the terms of

the Lee-Yang expansion match one-by-one with those of the
Skyrme EOS. More precisely, it is assumed that each of the
k4
F (ρ4/3) and k5

F (ρ5/3) powers respectively identifies to a
density-dependent E3 and to a velocity-dependent E1 contribu-
tion. Nevertheless, it is possible to split the ρ5/3 term into E1

plus an additional density-dependent term E3′ corresponding
to α′ = 2/3 (by resorting once again to a new parameter W ).
Actually, this step has turned out to be necessary in practice
to get a satisfactory fit. Without this splitting, a reasonable fit
could be obtained only if the value of rs or � were strongly
modified, thus entailing a severe degradation in the PNM
EOS. Due to the introduction of the parameter W , the second
line in Eq. (5) is replaced by

t1(1 − x1) = W
2πh̄2

m
Bs[0],

t3′ (1 − x3′ ) = (1 − W )
36πh̄2

10m
(3π2)2/3Bs[0]. (17)

This leads to

Ec = ESk
c − [

X0as[ρ] + X3ρ
αa2

s [ρ] + (1 − W )X3′ρα′
Bs[ρ]

]
×

[
1

2
ρ2 −

∑
q=n,p

ρ2
q

]

TABLE I. Splitting parameter, spin-orbit coupling constant (in
MeV fm5), and pairing strength (in MeV fm3) ensuing from the
fit described in Sec. III A. For the KIDS EDF, Vso results from an
adjustment on the binding energies of 48Ca and 208Pb [64]. Also
shown are values corresponding to some Skyrme functionals for
comparison.

YGLO KIDS ELYO Sly5 SkM* UNEDF0

W −0.084 0.110 0.396 − − −
Vso 138.2 110.0 55.0 125.0 130.0 91.3
Vpp −275.1 −183.9 −152.5 −213.1 −233.9 −170.4

−WX1Bs[ρ]

[
1

2
ρτ + 3

8
( �∇ρ)2 − 1

4
�J 2

−
∑

q=n,p

(
ρqτq + 3

4
( �∇ρq )2

)]
, (18)

where

X3′ = 3πh̄2

5m
(3π2)2/3. (19)

ESk
c now includes a second density-dependent term E3′ with

x3′ = 1.
The new density-dependent term E3′ does not affect the

EOS for PNM as, by construction, it recombines with E1 so
that the original condition Eq. (5) to match the Lee-Yang
expansion is recovered for any value of W . On the other hand,
the undetermined parameter t3′ enters in the SNM EOS. By
analogy to the YGLO and KIDS cases, we therefore impose
the SNM EOS to also remain unchanged by the introduction
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FIG. 3. Maximal density at the Thomas-Fermi approximation
as a function of the neutron number for the two trap frequencies
h̄ω = 5 MeV (bottom solid line) and 10 MeV (top solid line). We
also show for the two cases, systematically, the maximal densities
obtained for the different considered functionals. Note that the EDF
results are always above the Thomas-Fermi value due to the attractive
self-consistent mean field.
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FIG. 4. Energies of neutron drops as a function of N obtained for
(a) h̄ω = 5 and (b) 10 MeV with various EDFs compared to ab initio
results.

of this new term, which gives

t1 = Wt0
1 ,

t3′ = (1 − W )
9

5

(
3π2

2

)2/3

t0
1 , (20)

where t0
1 denotes the value of t1 resulting from the fit of

SNM EOS obtained for W = 1 in Ref. [27]. The values of the
other parameters, t0 and t3, are taken to be those of the initial
version of the ELYO EDF. This dispenses a supplementary
adjustment, but is possible only because of the pure s-wave
character (t2 = 0) of the functional.

IV. RESULTS AND DISCUSSIONS

The above-described fitting procedure for the three func-
tionals yields the splitting coefficient W , the spin-orbit cou-
pling constant Vso, and the pairing strength Vpp, reported in
Table I together with those corresponding to some Skyrme
EDFs.

Table I shows that, whereas the KIDS functional admits
rather standard Vso and Vpp values, the YGLO functional leads
to a slightly higher pairing parameter and the ELYO functional
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FIG. 5. Internal energies U of neutron drops for (a) h̄ω = 5 and
(b) 10 MeV as obtained with various EDFs compared to ab initio
results.

has a lower spin-orbit strength. Nonetheless, these differences
may be consequences of the fact that the parameters of YGLO
and ELYO stem from an adjustment on neutron drops prop-
erties, and not on nuclei. Knowing whether these values are
features of the functionals themselves or consequences of the
fitting procedure would require us to consider nuclei, which is
out of the scope of the present study.

Before describing the obtained results, we estimate the
density range explored with two trap frequencies under con-
sideration. For this, we compute the maximal density ob-
tained for the trapped free Fermi gas (at the Thomas-Fermi
approximation [65]) and we plot it in Fig. 3 as a function
of the neutron number for the two trap frequencies h̄ω = 5
and 10 MeV. Such density values are compared to those
corresponding to the interacting gas of neutrons (described
with the adjusted functionals). Note that the maximal density
for the system of interacting neutrons is always higher due to
the mutual attraction between neutrons (mean field).

For h̄ω = 5 MeV (lower compression), all functionals
globally lead to the same maximal density. However, more
important differences are observed for larger compression,
h̄ω = 10 MeV. These differences can partially be understood
from the corresponding EOSs for PNM (Fig. 1). This is,
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FIG. 6. Density profiles as a function of the distance from the center of the trap obtained from the different functionals for (a) (N =
8, h̄ω = 5 MeV), (b) (N = 8, h̄ω = 10 MeV), (c) (N = 14, h̄ω = 10 MeV), (d) (N = 20, h̄ω = 10 MeV), (e) (N = 32, h̄ω = 10 MeV), and
(f) (N = 40, h̄ω = 10 MeV). The ab initio results are extracted from Ref. [37] (purple circles and green squares), and Ref. [62] (pink triangles).

for instance, the case for the ELYO functional that devi-
ates significantly from other EOSs at densities higher than
0.1 fm−3: The corresponding maximum density becomes
much more important in this density region where, corre-
spondingly, the ELYO PNM EOS predicts a much more bound
system.

A. Energetic properties and densities

We now compare the results for various quantities pre-
dicted from the KIDS, YGLO, and ELYO EDFs (using the
parameters of Table I) to those obtained with commonly used
Skyrme EDFs and to available ab initio calculations. Figure 4
displays the evolution of the scaled energies E/h̄ωN1/3 as
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FIG. 7. Hartree-Fock potentials from the different functionals for (a) (N = 8, h̄ω = 5 MeV), (b) (N = 8, h̄ω = 10 MeV), (c) (N =
20, h̄ω = 10 MeV), (d) (N = 32, h̄ω = 10 MeV), (e) (N = 40, h̄ω = 10 MeV), and (f) (N = 50, h̄ω = 10 MeV). RHFB results based on
the Bonn A interaction (pink triangles) are from Ref. [62]. Note that for (e) and (f), the ELYO functional do not lead to converged results and
therefore, it is not shown.

a function of the neutron number N for h̄ω = 5 [Fig. 4(a)]
and 10 [Fig. 4(b)] MeV. For h̄ω = 10 MeV, the YGLO and
ELYO functionals provide a rather good reproduction of the
ab initio reference points for N < 20. This is not surprising
since both have been explicitly adjusted to reproduce this
region of particle number. For the KIDS case, where only
the pairing strength was adjusted, and for the Sly5 case,
where no adjustment was done, results are also consistent

with the ab initio ones. Note that the KIDS functional gives
slightly higher energies as N increases. Unexpectedly, the
SkM* and UNEDF0 parametrizations, which provide a rather
similar description of PNM and SMN EOSs (Fig. 1), exhibit
marked discrepancies with respect to one another but also
with respect to other functionals and to the ab initio reference
curve. One underbinds and the other one overbinds system-
atically the droplets of neutrons. For the ELYO functional,
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while satisfactory energies are obtained up to N = 22, the
treatment of heavier systems cannot be carried out owing to
numerical instabilities in the solution of the HFB equations.
This behavior turns out to be consistent with the ELYO EOS
for neutron matter. Indeed, evaluating the number of neutrons
per unit volume with the calculated radii, we find that the
range 6 � N � 20 corresponds to densities between 0.07 and
0.16 fm−3 where the three EFT-inspired EDFs provide similar
energies per particle. The limit N = 22, from which instabili-
ties arise, corresponds to ρ > 0.2 fm−3 where the ELYO EOS
strongly departs from the others. This is consistent with Fig. 3
where we show the maximal densities ρmax associated to the
functionals: The abrupt jump in the value of ρmax for ELYO
from 0.174 fm−3 at N = 20 to 0.295 fm−3 (not shown in the
figure) at N = 22 may be viewed as a warning sign of the
instabilities beyond N = 22.

For the weaker trapping potential, Fig. 4(a), large differ-
ences between different EDFs are observed for both small
and large neutron numbers. This is particularly evident for
the YGLO, Sly5, KIDS, and ELYO cases that were almost
superposed for N < 14 in Fig. 4(b). The KIDS and YGLO
results are still rather close to one another and not far from
the set of ab initio results shown for h̄ω = 5 MeV. In this
case, the Sly5 and ELYO EDFs overestimate the energy for
small particle numbers. As N increases, this feature persists
for ELYO whereas the discrepancy with ab initio results
diminishes for the Sly5 case. The SkM* EDF, as for the higher
trapping frequency, always leads to underbound drops. We
observe that, for h̄ω = 5 MeV, ELYO results are obtained for
the whole window of neutron numbers. It turns out that, for
h̄ω = 5 MeV, the range 8 � N � 50 is equivalent to 0.03 �
ρ � 0.1 fm−1. In this density window the ELYO EOS for
PNM is not strongly different from the other EOSs, and still
provides reasonable results. In this density region, the ELYO
PNM EOS is located at higher energies compared to YGLO
and KIDS. The same behavior is observed for the droplet
energies (Fig. 4).

Figure 5 presents the evolution of the internal energy

U = E −
∫

d3�rEω(�r ), (21)

that is the total energy minus the contribution of the external
trap, with the number of neutrons for the two trap frequencies
5 and 10 MeV. We note that the comparison with respect
to ab initio calculations may lead in this case to different
conclusions for each of the functional, compared to what is
found in Fig. 4. The difference between the energy E and
the internal energy U is essentially coming from the density
profile involved in Eω(�r ) [see Eq. (7)]. Such a change in
the trend of the results for the internal energy, compared to
the total energy, must thus be produced by different density
profiles obtained for each functional. Figure 6 displays the
obtained density profiles. We remark that density profiles
deduced from ab initio calculations might have significant
discrepancies from one another, which makes any comparison
only qualitative.
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FIG. 8. Mean pairing gaps of neutron drops for (a) h̄ω = 5 and
(b) 10 MeV obtained with the EDFs considered in this work.

B. Mean fields and pairing gaps

One of the advantages of the EDF theory compared, for
instance, to ab initio many-body methods is that it gives
direct access to quasiparticle properties such as the one-body
self-consistent mean field or the pairing gap. These quantities
are, respectively, reported in Figs. 7 and 8 for the two fre-
quencies of the trap and for various particle numbers. Results
obtained using the relativistic Brueckner-HF calculations with
the Bonn A interaction are also shown for comparison when
available [61,62].

Focusing first on the mean field, we observe a very large
dispersion of the results depending on the functional, even for
cases that lead to similar PNM EOSs. These differences can
be partially attributed to the different sharing of the energy
between volume and surface terms.

If we now consider the pairing gaps and compare the
three EFT-inspired functionals, we notice that, for the trap
of frequency h̄ω = 5 MeV, � is the largest for the YGLO
EDF and the weakest for the ELYO one, the KIDS case being
intermediate. This reflects the ordering of the corresponding
pairing strengths (Table I). On the other side, for the 10-MeV
trap, such a behavior occurs only for the lightest systems.
Starting from N ∼ 20, YGLO and KIDS provide comparable
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FIG. 9. (a) Isoscalar (SNM) and (b) neutron (PNM) effective
masses as a function of the density obtained with various EDFs
(lines) compared to ab initio values extracted from FP (Ref. [50],
green squares), Drischler et al. (Ref. [52], pink diamonds), Schwenk
et al. (Ref. [66], blue pentagons), and Wambach et al. (Ref. [67],
purple circles). The YGLO and KIDS curves ensue from the optimal
value of W shown in Table I. Note that in (a), the KIDS and ELYO
effective masses are identical.

values for the pairing gaps. As the YGLO pairing strength
is more important, this can be explained only by a larger
energy-level spacing in the YGLO case. Indeed, one may see
in Fig. 7 that, for this trap frequency, passing from N = 8
to N = 20, the depth of the KIDS potential remains more or
less the same (20 MeV) whereas that of the YGLO functional
is strongly enhanced (from 50 to 80 MeV). Unfortunately,
benchmark data are missing for the pairing gaps and we
cannot compare our results with microscopic values.

C. Effective mass

The effective mass for neutron matter is poorly constrained
in the EDF approach (see Fig. 6 of Ref. [57]). Let us mention
a recent work where, for the KIDS case, a procedure to extract
a functional for nuclei from a functional tailored to provide a
given EOS is discussed employing the effective mass [35].

The evolution of the isoscalar (SNM) and the neutron
(PNM) effective masses with the density [Eq. (A7)] for the
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FIG. 10. Energies of neutron drops as a function of N obtained
for h̄ω = 10 MeV with the YGLO, KIDS, and ELYO EDFs. The
areas represent variations of ±25% of the splitting coefficient W with
respect to the optimal values Wopt reported in Table I. The spin-orbit
and pairing couplings are kept fixed. Note that for YGLO and KIDS
the upper bound for the energy is obtained for 1.25Wopt (keeping in
mind that for YGLO Wopt is negative). For the ELYO functional, the
upper bound is obtained for 0.75Wopt.

three functionals discussed here is plotted in Fig. 9 and com-
pared to those from the SkM*, Sly5, UNEDF0 parametriza-
tions. Large dispersions are noticed for the standard Skyrme
EDFs. Also shown are ab initio estimates for neutron matter
from Refs. [50,52,66,67] that seem, globally, to predict values
closer to the bare mass.

In the case of the three EFT-based functionals, the effective
mass is strongly impacted by the value of the W parameter
stemming from the fitting protocol. Indeed, no splitting (W =
0) implies that (m∗/m)s,n are constant and equal to 1 at any
density in the KIDS and YGLO cases.

With the optimal W coefficients of Table I, the YGLO
and KIDS neutron effective masses depart from unity in
opposite directions but both stay qualitatively close to the ab
initio range of values up to ρ = 0.02 fm−3. For the ELYO
functional, the splitting (W ) entails a significant reduction of
(m∗/m)n that becomes smaller that the KIDS value around
the saturation density whereas we observed that it remains
largely above when the splitting is absent (which corresponds
to W = 1 for ELYO).

The effect of the splitting on the SNM effective masses
is quite different. W does almost not affect (m∗/m)s for the
KIDS and ELYO EDFs. In contrast, it modifies the YGLO
isoscalar effective mass so that its curve follows the Sly5 one
and approaches the commonly admitted value of 0.7 around
the saturation density.

Figure 10 illustrates the sensitivity of the droplet energies
with respect to the W parameter. The areas show the evolution
of the energies when W varies by ±25% around its optimal
value, with fixed Vso and Vpp. We observe that the YGLO and
KIDS EDFs behave in a similar way, the rescaled energies
being modified by approximately 2.8%, whereas the ELYO
functional seems to be more impacted as the change in the
results is almost twice larger.
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V. SUMMARY AND CONCLUSION

In this work we applied three recently proposed EDFs
to the description of neutron drops confined by an external
potential. These functionals, although rather different in their
forms, have in common that they are all inspired by EFTs.
While the KIDS EDF proposed in Ref. [26] have already been
employed for atomic nuclei, for the YGLO [25] and the ELYO
[27] functionals, the present study represents the first attempt
to treat finite systems. Guided by the KIDS strategy, a sys-
tematic protocol is implemented to interpret different density
dependences of the functionals either as contributions from
density-dependent effective interaction or as t1-t2 Skyrme-like
terms. Spin-orbit and pairing effects are explicitly accounted
for to provide a realistic description of both closed- and
open-shell neutron drops. Various sets of recent ab initio
calculations computed for several trap frequencies are used
both to fix the extra parameters appearing for finite systems
and to compare the results for values of neutron numbers and
frequencies not included in the fitting procedure.

For both YGLO and KIDS EDFs, a good agreement with
ab initio results was globally achieved even at the trap fre-
quency that was not used to optimize the functionals. The
ELYO EDF provides results that are less easy to converge
and that, in general, may differ from the ab initio values for
systems that were not constrained in the fitting process. It
should, however, be noted that, as already emphasized, the
ELYO functional has much fewer parameters compared to the
two others. Following the same philosophy as in Ref. [27], that
is taking as a guidance the Lee-Yang expansion at low density,
additional flexibility can be reached by explicitly introducing
the p-wave contribution with a potential density dependence
in the p-wave scattering length. Work in this direction is
currently in progress.

We also discussed properties of the functional related to
the mean-field potential, pairing correlations, and effective
masses in neutron systems. We have shown that, despite the
fact that the EFT-based functionals are all adjusted to the same
properties in finite and infinite neutron systems, significant
differences might occur in the prediction of these properties.
We conclude by mentioning that the present work is the first
step toward application to atomic nuclei for the YGLO and
ELYO EDFs including superfluidity effects.
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APPENDIX: SKYRME FUNCTIONAL

The central part of the Skyrme functional may be de-
composed in zero-range, effective-mass, density-dependent,
tensor, and gradient (finite-range) terms as in Ref. [45], or
alternatively as ESk

c = ∑
i=0,3 Ei with

E0 = 1
4 t0

[
(2 + x0)ρ2 − (1 + 2x0)

(
ρ2

n + ρ2
p

)]
, (A1)

E1 = 1
8 t1[(2 + x1)τρ − (1 + 2x1)(τnρn + τpρp )]

+ 3
32 t1{(2 + x1)( �∇ρ)2 − (1 + 2x1)[( �∇ρn)2

+ ( �∇ρp )2]} − 1
16 t1x1 �J 2 + 1

16 t1
( �J 2

n + �J 2
p

)
, (A2)

E2 = 1
8 t2[(2 + x2)τρ + (1 + 2x2)(τnρn + τpρp ),

− 1
32 t2{(2 + x2)( �∇ρ)2 + (1 + 2x2)[( �∇ρn)2

+ ( �∇ρp )2]} − 1
16 t2x2 �J 2 − 1

16 t2
( �J 2

n + �J 2
p

)
, (A3)

E3 = 1
24 t3ρ

α
[
(2 + x3)ρ2 − (1 + 2x3)

(
ρ2

n + ρ2
p

)]
. (A4)

ρ(n,p), τ(n,p), �J(n,p) stand for the total (no index), neutron
(n), and proton (p) matter, kinetic, and spin-current densities
whose expression in spherical coordinates may be found in
Ref. [54]. Historically this functional is generated by a zero-
range effective interaction at leading order, i.e., as a density-
dependent two-body vertex in the particle-hole channel.

The Skyrme EDF gives rise to the following EOSs:

E

A
= Kβ (ρ) + 3

8
t0ρ + 1

16
t3ρ

1+α + 3

80

(
3π2

2

)2/3

�sρ
5/3,

(A5a)

for SNM (β = 1), and

E

A
= Kβ (ρ) + 1

4
t0(1 − x0)ρ + 1

24
t3(1 − x3)ρ1+α

+ 3

40
(3π2)2/3(�s − �v )ρ5/3, (A5b)

for PNM (β = 0), with �s = 3t1 + t2(5 + 4x2) and �v =
t1(2 + x1) + t2(2 + x2). The kinetic part reads

Kβ (ρ) = 3

5

h̄2

2m

(6π2

ν

)2/3
ρ2/3, (A6)

where the degeneracy ν = 2, 4 for β = 0, 1.
Isoscalar and neutron effective masses may be defined from

the τ -dependent part of the functional for, respectively, SNM,
and PNM: (

m∗

m

)−1

s

= 1 + m

8h̄2 �sρ,

(
m∗

m

)−1

n

= 1 + m

4h̄2 (�s − �v )ρ. (A7)
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