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Background: The mass, or binding energy, is the basis property of the atomic nucleus. It determines its stability
and reaction and decay rates. Quantifying the nuclear binding is important for understanding the origin of
elements in the universe. The astrophysical processes responsible for the nucleosynthesis in stars often take
place far from the valley of stability, where experimental masses are not known. In such cases, missing nuclear
information must be provided by theoretical predictions using extreme extrapolations. To take full advantage of
the information contained in mass model residuals, i.e., deviations between experimental and calculated masses,
one can utilize Bayesian machine-learning techniques to improve predictions.
Purpose: To improve the quality of model-based predictions of nuclear properties of rare isotopes far from
stability, we consider the information contained in the residuals in the regions where the experimental informa-
tion exist. As a case in point, we discuss two-neutron separation energies S2n of even-even nuclei. Through this
observable, we assess the predictive power of global mass models towards more unstable neutron-rich nuclei and
provide uncertainty quantification of predictions.
Methods: We consider 10 global models based on nuclear density functional theory with realistic energy density
functionals as well as two more phenomenological mass models. The emulators of S2n residuals and credibility
intervals (Bayesian confidence intervals) defining theoretical error bars are constructed using Bayesian Gaussian
processes and Bayesian neural networks. We consider a large training dataset pertaining to nuclei whose masses
were measured before 2003. For the testing datasets, we considered those exotic nuclei whose masses have been
determined after 2003. By establishing statistical methodology and parameters, we carried out extrapolations
toward the 2n dripline.
Results: While both Gaussian processes and Bayesian neural networks reduce the root-mean-square (rms)
deviation from experiment significantly, GP offers a better and much more stable performance. The increase in
the predictive power of microscopic models aided by the statistical treatment is quite astonishing: The resulting
rms deviations from experiment on the testing dataset are similar to those of more phenomenological models. We
found that Bayesian neural networks results are prone to instabilities caused by the large number of parameters in
this method. Moreover, since the classical sigmoid activation function used in this approach has linear tails that do
not vanish, it is poorly suited for a bounded extrapolation. The empirical coverage probability curves we obtain
match very well the reference values, in a slightly conservative way in most cases, which is highly desirable to
ensure honesty of uncertainty quantification. The estimated credibility intervals on predictions make it possible
to evaluate predictive power of individual models and also make quantified predictions using groups of models.
Conclusions: The proposed robust statistical approach to extrapolation of nuclear model results can be useful
for assessing the impact of current and future experiments in the context of model developments. The new
Bayesian capability to evaluate residuals is also expected to impact research in the domains where experiments
are currently impossible, for instance, in simulations of the astrophysical r process.
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I. INTRODUCTION

The knowledge of nuclear binding energy is of fundamen-
tal importance for basic science and applications. Nuclear
masses define the extent and details of the nuclear landscape,
determine nuclear stability and decay channels, as well as
decay and reaction rates. Precision measurements of nuclear
masses and moments are needed for tests of fundamental
symmetries of nature. In many cases, however, mass measure-
ments are not practically possible and the missing information

must be provided by theoretical models of nuclear structure.
A good example is in the astrophysical r process that involve
neutron-rich, short-lived nuclei that cannot be accessed exper-
imentally in the foreseeable future.

Theoretically, there has been noticeable progress in global
modeling of nuclear masses and other nuclear properties.
A microscopic approach that is well suited to providing
quantified predictions throughout the nuclear chart is nuclear
density functional theory (DFT) [1]. An effective interaction
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in DFT is given by the energy density functional (EDF),
whose coupling constants are adjusted to measured observ-
ables [1–9]. This global approach can be used to assess the
uncertainties on calculated observables, both statistical and
systematic [10,11]. Such a capability is essential, especially
in the context of making wide-ranging extrapolations into the
regions where experiments are impossible.

A basic test of any EDF parametrization is its ability
to reproduce measured binding energies and other nuclear
properties across the nuclear chart. Typically, the commonly
used EDFs yield overall root-mean-square (rms) deviations
between theoretical and experimental masses in the range
from 1 to 5 MeV [5,7]. Currently, the best overall agreement
with experimental masses (rms deviation of 0.56 MeV) is
obtained with the HFB-31 model of Ref. [4], which is rooted
in the Skyrme EDF. However, this excellent result has been
obtained at a price of several phenomenological corrections
adjusted to the data.

In the context of many structural and astrophysical appli-
cations, the challenge is to carry out reliable model-based
extrapolations into the regions where experimental data are
not available. Recently, a critical assessment of the predictive
power of various mass models was performed in Ref. [12].
They did not find a correlation between a model’s calibration
(measured in terms of a rms mass deviation) and its abil-
ity to predict new masses. Indeed, if a model is merely a
many-parameter formula fitted to experimental data, i.e., it
does not have a sound microscopic foundation, it cannot be
expected to provide sound predictions when it comes to major
extrapolations outside the known regions.

In this paper, we investigate the predictive power of cur-
rent global nuclear models with respect to two-neutron (2n)
separation energies S2n(Z,N ) of even-even nuclei. The neu-
tron separation energy is a basic structural observable that
determines the position of the neutron dripline, r-process
trajectory, and—in general—is a strong indicator of nuclear
shell effects and correlations. Theoretically, S2n(Z,N ) is an
observable that is safer to predict than the binding energy.
Indeed, in most cases, deviations between computed and
experimental values of S2n(Z,N ) are significantly reduced as
compared to mass residuals [13]. This better prediction (lower
residuals) in separation energies is to be expected as many
systematic model uncertainties in the binding energy cancel
out in binding energy differences. Here and throughout, we
use the term “residual” to denote the difference between an
experimental value and a model prediction, as can be seen
in definition Eq. (1) below. We limit our study to even-even
nuclei as we want to avoid additional complications and un-
certainties related to the choice and treatment of quasi-particle
configurations in odd-A and odd-odd systems [14–16].

When the experimental two-neutron separation energies
S

exp
2n (Z,N ) are known, they can be related to the model

predictions S th
2n(Z,N, ϑ ) via

S
exp
2n (Z,N ) = S th

2n(Z,N, ϑ ) + δ(Z,N ), (1)

where ϑ is the vector representing all model parameters
and δ(Z,N ) is the separation-energy residual we were just
discussing. The problem at hand is to calibrate the model
(i.e., estimate ϑ), calculate the separation energies inside

and outside the range of experimental data, and estimate the
uncertainty on predictions.

The residual δ(Z,N ) contains a systematic component due
to missing aspects in the modeling (simplifications, incorrect
assumptions, incomplete physics, etc.) and the statistical com-
ponent stemming from experimental errors and uncertainties
on model parameters ϑ resulting from the model optimization
process. In the following, we shall disregard the experimental
errors on separation energies as those are usually well below
theoretical uncertainties.

In many current applications, the statistical uncertainty has
been estimated by means of classical linear regression tech-
niques [10,17–21] or Bayesian inference methods [11,22],
the latter typically sharing the same spirit as classical tech-
niques from a modeling standpoint. We will have more to
say in Sec. IV about how the Bayesian context distinguishes
itself. Systematic errors, seen in the distribution of residuals
as trends, or patterns, are extremely difficult to estimate as
the exact model is not available. The systematic uncertainty
on separation energies is often estimated by an analysis of
intermodel dependencies. In the context of nuclear masses,
this has been done by comparing predictions of different DFT
frameworks and different EDF parametrizations [2,6,8,9].

One can improve a theory’s predictive power by comparing
model predictions to existing data. Here, a powerful strategy
is to estimate residuals by developing an emulator for δ(Z,N )
using a training set of known masses. An emulator δem(Z,N )
can, for instance, be constructed by employing Bayesian
approaches, such as Gaussian processes, neural networks, and
frequency-domain bootstrap [23–32]. The unknown separa-
tion energies can then be estimated from Eq. (1) by combing
theoretical predictions and estimated residuals:

Sest
2n (Z,N ) = S th

2n(Z,N, ϑ ) + δem(Z,N ). (2)

It is worth noting that by developing reliable emulators
δem(Z,N ), which take into account correlations between
masses of different nuclei, one can significantly refine mass
predictions and estimate uncertainties on predicted values
[28,31,32]. Moreover, since the surface of residuals δ(Z,N )
contains important insights about model deficiencies, by
studying the patterns of δem(Z,N ) one can make progress in
developing higher-fidelity models.

The paper is organized as follows. Section II lists the
mass models and experimental datasets used in our tests. The
statistical methodology adopted in our work is outlined in
Sec. III. The statistical Gaussian process and Bayesian neural
network frameworks employed to construct δem(Z,N ) are de-
scribed in Sec. IV. The results are presented in Sec. V, which
also contains the analysis of advantages and disadvantages
of different statistical strategies in the context of previous
work. In particular, Sec. V C studies the statistically corrected
predictions of the models beyond the range of available data
and discusses their reliability. In Sec. V D we discuss some
numerical implementation challenges related to the calibra-
tion of neural networks. Finally, Sec. VI presents conclusions
and perspectives for future studies.
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II. NUCLEAR MODELS

In the context of meaningful extrapolations in the neutron
excess N − Z and/or mass A, any underlying theoretical
mass model we choose to use should meet several criteria.
First, since such a model is meant to be used in the regions
of the nuclear landscape far from the regions of known
masses, it should be based on controlled many-body for-
malism employing quantified input (interaction, energy func-
tional). Second, the theoretical framework should be capable
of reproducing basic nuclear properties impacting nuclear
masses (such as shell structure and deformations). Finally, the
model should be globally applicable throughout the nuclear
chart. For these reasons, we eliminate from our considera-
tions phenomenological multiparameter mass formulas, such
as Refs. [33,34], which are directly fitted to experimental
data.

The models used and evaluated in this study can be divided
into three groups. The first group contains global mass models
FRDM-2012 [35] and HFB-24 [3], which are commonly
used in astrophysical nucleosynthesis network simulations.
The FRDM is a representative of well-fitted microscopic-
macroscopic mass models. The model HFB-24 is rooted in a
self-consistent mean-field approach with several phenomeno-
logical corrections added. For both models, the rms deviation
from experimental masses is around 0.6 MeV. As explained
in the Introduction, this is about as low as one can expect
without running into having to make uncomfortably many
phenomenological corrections.

The second group contains six microscopic Skyrme-DFT
models based on realistic energy density functionals SkM∗

[36], SkP [37], SLy4 [38], SV-min [39], UNEDF0 [40],
and UNEDF1 [13]. For these models, the rms mass deviation
typically ranges from 1.5 MeV (UNEDF0) to ∼5 MeV (SLy4)
[13].

The third group contains four microscopic covariant-
DFT models based on realistic relativistic energy density
functionals NL3∗ [41], DD-ME2 [42], DD-PC1 [43], DD-
MEδ [44]. Here, the rms mass deviation varies between 2
and 3 MeV [7]. The predictions of the second and third
group of models can be found in the theoretical database
MassExplorer [45].

The solutions of DFT equations corresponding to localized
densities exist only for the neutron chemical potential λn < 0
(or S2n > 0). For λn > 0, the nucleus is formally unbound
and the standard DFT solution is not meaningful [46,47].
The 2n dripline, S2n = 0, is formally reached for λn = 0
[2]. Consequently, the DFT predictions discussed here are
terminated when λn becomes positive.

To assess the predictive power of nuclear mass models,
for the training dataset used in Sec. V A, we take 537 values
of S

exp
2n (Z,N ) from the AME2003 mass evaluation [48,49].

As discussed in Ref. [12], nuclear mass models based on
the mean-field approach perform generally better in heavier
nuclei. Consequently, to test the performance of our statistical
models in heavier nuclei, we also consider the training dataset
AME2003-H obtained by removing the data on lighter nuclei
below Z < 20 from the original AME2003 dataset [27–29].
The resulting emulators δem(Z,N ) are then used to predict

JYFLTRAP 2017
AME 2016-2003
AME 2003
S2n datasets

FIG. 1. The experimental S2n(Z, N ) datasets for even-even nu-
clei used in our study: AME2003 [48,49] (light dots, 537 points),
additional data that appeared in the AME2016 evaluation [50,51]
(dark dots, 55 points), and JYFLTRAP [52] (stars, 4 points).

55 new data points that appeared in the AME2016 mass eval-
uation [50,51], thereby allowing us to test these predictions
as explained in Sec. V A. This joint dataset is referred to as
AME2016-AME2003 in the following. In Sec. V B we also
employed the AME2016-H training dataset (Z < 20 data re-
moved from AME2016) to test model predictions for 4 points
that have been measured very recently at the JYFLTRAP
Penning trap [52].

The ranges of experimental data used in this study
are shown in Fig. 1. It is to be noted that the mass
models employed in this work were optimized to sub-
sets of the masses listed in the training set AME2003.
The only exception is HFB-24, which has also used ad-
ditional AME2016-AME2003 data listed in the evaluation
AME2012 [53].

Before moving on to our predictive methodology and
results, we describe a visual inspection of the data. The
S2n(Z,N ) residuals Eq. (1) for the global mass models UN-
EDF1, SLy4, DD-ME2, DD-PC1, FRDM-2012, and HFB-24
are shown in Fig. 2. Long-range patterns are clearly visible
atop the fluctuating background, which can be interpreted as
statistical noise. To better recognize these systematic trends,
we smoothed out the residuals with a Gaussian folding func-
tion in (Z,N ); see Fig. 3. The substantial deviations between
experiment and theory around neutron magic numbers [17,40]
are noticeable. Those are most likely related to an inferior
description of the ground-state collective correlation energies
[54–56]. The magnitude and sign of systematic trends in
δem(Z,N ) is model-dependent. While the more phenomeno-
logical models FRDM-2012 and HFB-24, primarily fitted to
the large mass dataset AME2003, provide a very good repro-
duction of experimental values, some long-range deviations
are still present. The models SLy4, DD-ME2, and DD-PC1
exhibit the largest deviations around the neutron magic gaps,
usually attributed to their low effective masses [40,57]. The
UNEDF1 model exhibits fairly smooth systematic trends,
with the largest deviations around N = 126.
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FIG. 2. Residuals of S2n(Z, N ) for the six global mass models with respect to the testing dataset AME2003. The rms values of δ(Z, N ) in
MeV are marked: for AME2003 (upper number) and AME2003-H (lower number).

III. STATISTICAL METHODOLOGY

A. Bayesian approach

A Bayesian methodology can be understood as a statistical
solution to a simple ill-posed inverse problem, when the
problem is based on a set of probability models. In this frame-
work, a model is given that relates observations to unknown
parameters and variables and contains a term representing
the statistical errors. The model is typically set up as an
explanation of the observations from the unknown parameters
and variables, and the question is to invert the model, i.e., to
predict the unknowns from the observations. Since inverting
this equation is an ill-posed problem (too much data, usually
far too much, to determine a unique solution), one must first
admit that the equation contains a noise term, defined in
probabilistic terms (using random variables), in which case

one calls it a likelihood equation. To provide a systematical
solution that is consistent with the notion of conditional proba-
bility, the Bayesian framework resorts to external information,
or beliefs, about the unknowns: these are probability models,
known as the priors, for each of the unknown parameters
and for any unknown variables to be predicted. The output
of the Bayesian analysis is a set of probability densities
or distributions, known as the posteriors. In this sense, the
Bayesian approach provides statistical estimators of all pa-
rameters and variables to be predicted. More precisely, each
posterior is a full description of the uncertainty surrounding
each unknown, and in principle, surrounding all the unknowns
jointly (simultaneously) as a group, each posterior mean value
being interpreted as an estimator. Just like in most predic-
tion activities, the predictive ability of Bayesian approach,
based on training data, lies in the flexibility to first estimate
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FIG. 3. Similar as in Fig. 2 but for S2n(Z, N ) residuals smoothed with the Gaussian folding function to emphasize long-range systematic
trends.
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parameters by comparing predicted variables to known obser-
vations, and then use those estimates to make other predictions
in domains where no training data are available. It is important
to note that the Bayesian inversion we just described takes on
a particularly simple form, which makes it computationally
attractive.

We perform a fully Bayesian analysis of the residuals
δ(Z,N ) with two different classes of statistical models: Gaus-
sian processes (GP) and Bayesian neural networks (BNN).
By “fully Bayesian,” we mean that we investigate the actual
posterior distributions of all predicted quantities and all statis-
tical model parameters. We do not attempt to incorporate any
frequentist analysis within the Bayesian framework, contrary
to what is occasionally done, in particular for GP (see, e.g.,
Ref. [58]). In this fashion, the full probabilistic interpretation
of the Bayesian output is legitimately preserved. Each of the
two classes of statistical models has its own strength: GP has
the ability to take advantage of short-range correlations, and
BNN is expected to capture long-range trends.

Whether GP or BNN, the statistical model relates the
particle numbers (Z,N ) to a corresponding observed residual
δ(Z,N ) in the region where data are available to train pre-
dictions. Let us fix these ideas by introducing some generic
notation. We will denote each statistical model class by a
function f of the particle numbers (Z,N ), depending on
parameters θ , which are unknown and must be estimated.
Thus, denoting xi := (Z,N ) and yi := δ(Z,N ) for a nucleus
label i, our Bayesian model is of the form

yi = f (xi, θ ) + σεi, (3)

where f is either GP or BNN with parameters θ , and the
error is modeled as a random variable εi , which is added
to the relation. In general, f can either be a deterministic
function or a random variable itself. In our GP application
described in Sec. IV A, f will be a random variable. For the
BNN, f is nonrandom. We assume that the εi are independent
standard Gaussian variables (mean zero and unit variance),
and σ is a noise scale parameter. The relation Eq. (3) is
called the likelihood equation, because it relates the data yi

with unknown parameters θ and σ . We denote the probability
density of y in the likelihood model by p(y|θ, σ ), assuming
fixed θ and σ . In regions of xi where the values of yi are
unknown, we can use Eq. (3) to predict them. We must also
assume prior distributions on the unknown parameters, e.g., a
joint probability density π (θ, σ ).

Bayes’ theorem states that the posterior density of (θ, σ )
given the data for y, under the prior and likelihood models, is
proportional to the product of the likelihood density of y given
(θ, σ ) and the prior density of (θ, σ ):

p(θ, σ |y) ∝ p(y|θ, σ )π (θ, σ ). (4)

We can also compute predictions y∗ in the regions of x where
the corresponding y is not observed. This simply requires
computing the conditional density of y∗ given y, θ, σ , where y
is in known regions, and integrating over the posterior density
of the unknown parameters from Eq. (4):

p(y∗|y) =
∫

p(y∗|y, θ, σ )p(θ, σ |y) dθdσ. (5)

Typically, and certainly in our case, the conditional probability
p(y∗|y, θ, σ ) is given explicitly from a direct examination of
the likelihood model Eq. (3). When an assumption is made in
Eq. (3) by which the components of Eq. (3) are independent
of each other for each xi = (Z,N ), then p(y∗|y, θ, σ ) does
not depend explicitly on y. In the GP case, even though the
additive errors terms εi are independent, the components of
f (x, θ ) are not, because the (Z,N ) landscape is viewed as a
spatial index where nearby nuclei must be highly correlated,
as we will see in the GP stochastic specification for f . How-
ever, nonexplicit dependence of p(y∗|y, θ, σ ) on y does hold
for the BNN specification under independence of the εi’s, as
we will also see. However, since the prediction’s distribution
Eq. (5) integrates out the stochasticity in the parameters’ joint
posterior density, the final prediction p(y∗|y) must depend on
y, and all is thus in good heuristic order.

As mentioned earlier, Eqs. (4) and (5) for parameters and
predictions are full probabilistic descriptions. This means that
one can compute their mean values, their credibility intervals,
and any other statistics, or any probabilities of interest. As
alluded to in the abstract, a credibility interval is the Bayesian
counterpart of a confidence interval for classical frequentist
statistics; it is an interval in which a parameter or variable
has a specified posterior probability of lying. For instance, for
each parameter, or each predicted value y∗, one can compute
an interval around its Bayesian posterior mean value in which
it has a 95% posterior probability of lying. Such an object,
which is akin to a classical confidence interval, is called
a two-sided 95%-credibility interval. This credibility level
can be replaced by 68%, or by a multiple of y∗’s standard
deviation, or any other level of interest, or one-sided versions.
The same can be done for every parameter. For instance, if one
wonders whether a linear regression or noise scale parameter
θ1 is significantly determined at credibility level 95%, one
only needs to check that its one-sided 95% credibility interval
excludes the value 0. For the sake of conciseness, we do not
illustrate these types of analyses in this paper, though some
are implicitly contained in our Bayesian output. Henceforth,
we will use the acronym CI for “credibility interval.” A reader
may think of CI as meaning “confidence interval” without
running the risk of a major physical misinterpretation.

The prior distribution π (θ, σ ) on the model parameters
needs to be thoughtfully designed beforehand according to the
physicists’ interpretation and intuition of the model, and any
external data, unrelated to yi as much as possible, which might
inform the choice of π . This can be a nontrivial exercise.
When external data are used to inform π , this results in
a hierarchical model. In the present paper, the absence of
such data constrains us to remain in a simple framework
where there is only one level of relationship between data.
However, if one were to push the Bayesian framework further
into the design of nuclear models themselves, then each
model designed with phenomenological information could be
considered part of a hierarchical Bayesian prior. We do not
explore this avenue, as it is beyond this paper’s scope. Never-
theless, our BNN model detailed in Eq. (8) is hierarchical in
the usual sense, since we are considering the neural network
weight themselves under their own posterior distributions,
which depend on some (hyper)parameters. Details are given
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below on how to choose π for each model class in our simple
frameworks.

The main technical challenge in implementing the above
basic Bayesian strategy is to compute posteriors. We rely on
a set of Monte Carlo techniques, in which samples from the
posterior distributions are obtained by using 100 000 itera-
tions of an ergodic Markov chain produced by the Metropolis-
Hastings algorithm, an extension of the Gibbs sampler [59].
Details of the choices, including numerical challenges which
occur in the BNN case, are discussed in Sec. V D. Of partic-
ular, importance in the implementation is the choice of what
to sample first. In our case, since the Bayesian posterior in
Eq. (4) is used to make predictions in Eq. (5), we sample θ, σ
from p(θ, σ |y) and then we sample y∗ from p(y∗|y).

B. Predictions and uncertainties

In the Bayesian methodology, residual corrections and
associated uncertainties can be inferred directly from the
posterior samples. In particular, the average value, over all
Monte Carlo samples, of a specific predicted y∗ provides the
correction term that must be added to S th

2n(Z,N, ϑ ) to obtain
a prediction for the two-neutron separation energy at (Z,N ).
It is (approximately) equal to the Bayesian posterior mean
of interest. Similarly the sample standard deviation, over all
Monte Carlo samples, of that same y∗ gives the one-sigma
uncertainty size on the residuals and the corresponding S2n

values. This sample standard deviation should be interpreted
as what is often referred to as an “error bar.”

Let us be notationally precise. Let m be the total number
of Monte Carlo samples in our numerical scheme. We denote
by y∗

1 (Z,N ), . . . , y∗
m(Z,N ) the m posterior Monte Carlo

samples obtained for y∗(Z,N ). Then our prediction for the
residual, for the corrected mass, and for the associated one-σ
uncertainty level (error bar), are, respectively, given by

δem(Z,N ) = 1

m

m∑
j=1

y∗
j (Z,N ),

Sem
2n (Z,N ) = S th

2n(Z,N ) + δem(Z,N ),

σ em(Z,N ) =
√√√√ 1

m

m∑
j=1

[y∗
j (Z,N ) − δem(Z,N )]2.

Beyond predictive power, the advantage of our emulator
lies in its ability to quantify uncertainty. In this sense, the
ability to compute σ em(Z,N ) belies the far greater power
to compute any other metric for quantifying uncertainty in
emulating/predicting Sem

2n (Z,N ). As mentioned, one can con-
struct a 95% CI for S2n(Z,N ) by finding an interval [for
example, centered around the posterior mean Sem

2n (Z,N )],
which contains 95% the corresponding proportion of all the
sampled values y∗

j (Z,N ). When the posterior distribution of
y∗(Z,N ) is highly symmetric, this is almost exactly the same
as defining the left- and right-endpoints of the 95%-CI for
y∗(Z,N ). When the posterior distribution of y∗(Z,N ) is very
close to normal, one can use the value of σ em(Z,N ) as a
shortcut to make the following approximate claims:

(1) If y∗(Z,N ) is approximately normally distributed,
then a two-sided 95%-CI for S2n(Z,N ) is approxi-
mately Sem

2n (Z,N ) ± 1.96 σ em(Z,N );
(2) If y∗(Z,N ) is approximately normally distributed,

then a two-sided 68%-CI for S2n(Z,N ) is approxi-
mately Sem

2n (Z,N ) ± σ em(Z,N ).

Generally speaking, though it is not common practice given
the prevalence of the above two shortcuts, it is safer to define
a 100(1 − α)%-CI for S2n(Z,N ) as an interval containing
(1 − α)m consecutive samples among the m ordered sampled
values S th

2n(Z,N ) + y∗
j (Z,N ). This avoids miscalculations

and misrepresentations due to assuming that the posterior law
of y∗(Z,N ) is approximately normal. In our case, we used
the shortcut, having checked beforehand that the posterior
distributions are approximately normal.

It is to be noted that the quality of a model cannot be
assessed solely by comparing calculated expectation values
against known data. The full prediction also needs to report
its own internal uncertainty quantification (UQ). That UQ is
captured by statistics such as σ em(Z,N ), or CIs as described
above. If a 95%-CI for S2n(Z,N ) contains the experimental
value S

exp
2n (Z,N ), that can be taken as a good sign. In the

following, we explain how this thought can be made more sys-
tematic by looking at the systematic predictions of S2n(Z,N ).

C. Objective and evaluation

The above discussion has hinted at how to evaluate a
statistical model’s predictive performance. From the nuclear
physics perspective, the predictive power of a model toward
more unstable nuclei is a key criterion to assess its quality.
Accordingly, we can use, as a performance criterion, the im-
provement on rms error on testing datasets outside the training
domain [29]. This is a different strategy than testing samples
of interior points randomly taken out of the training sam-
ple, which has been done in previous papers [27,28,30–32].
In search of universality, we model the residuals globally on
the large domain of even-even nuclei. This criterion, while
appropriate, is similar, in spirit, to the goal of looking for
posterior means, which are as close to experimental values
as possible. But as indicated above, this cannot be the entire
story, because it tends to ignore a methodology’s own internal
UQ.

Thus, beyond improvements on model predictions, a real
understanding of the residuals requires an honest assessment
of a model’s ability to accurately estimate its own uncertainty.
Since the Bayesian output can answer any quantitative ques-
tion about uncertainty, we can answer this question of honesty
in UQ in various ways [60,61]. The simplest and perhaps
most intuitively satisfying way to measure UQ honesty is the
following. We compute each model’s so-called empirical cov-
erage probability for a given level 100 ∗ (1 − α)%, e.g., 68%
or 80% or 95%, defined as the proportion of the testing data
which actually falls inside CIs with that same 100(1 − α)%
credibility level. If the UQ is honest, that proportion should
be close to the nominal value 100(1 − α)%. If the proportion
is much lower than the nominal value (e.g., 75% instead of
the nominal 95%), this means the UQ is dishonest, because its
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CIs are far too narrow: they should have been wide enough
so that approximately 95% of the testing data should fall
inside the 95%-CI. The morally charged label of “dishonest”
is appropriate: using overly narrow CIs implies false claims
about a model’s high precision, in a community where every
model is ultimately judged by its precision. If the proportion
is much higher than the nominal value (e.g., 99% instead of
95%), then the UQ is perhaps also dishonest in the sense of
being excessively self-critical: the prediction is not claiming
to be more precise than it really is, but this situation is wasteful
because the CIs are wider than they need to be. After all, false
modesty is not necessarily a virtue.

IV. STATISTICAL MODELS

A. Gaussian process model

Gaussian processes have been heavily adopted in recent
years in physics and other natural sciences to model the local
structure of complex systems such as computer models [58].
In our context, a GP is a Gaussian field, i.e., a Gaussian
functional on the two-dimensional nuclear domain, which is
characterized by its mean function and covariance function
(see Ref. [62] for an exhaustive presentation of GP). GP are
designed to capture the spatial structure of the residuals where
we can assume that neighboring nuclei should have similar
properties. Since the nuclear domain is finite and discrete,
a GP model is a finite-dimensional Gaussian vector indexed
by particle numbers (Z,N ), which distribution is thus given
solely by its mean and covariance matrix. We take the mean
function to be 0, and to model the “spatial” dependence of
nearby nuclei in the nuclear landscape, we use an exponential
quadratic covariance kernel,

kη,ρ (x, x ′) := η2 exp

[
− (Z − Z′)2

2ρ2
Z

− (N − N ′)2

2ρ2
N

]
, (6)

where x = (Z,N ), and the parameters θ ≡ {η, ρZ, ρN } have
a natural interpretation: η defines the scale, i.e., the strength
of dependence among neighboring nuclei, and ρZ and ρN

are characteristic correlation ranges in the proton and neutron
direction, respectively. Note that k is a bona fide covariance
matrix because, up to a linear transformation of its variables,
it is the classical Gaussian kernel (also known as radial basis
function or square exponential kernel): the latter has that
property because it can be written as the tensor product of two
copies of the function exp (−‖x‖2/2) multiplied by a sum of
products of monomials which are symmetric in (x, x ′). Other
classical families of kernels include exponential (Laplacian)
kernels and Matérn kernels. While all three families have
comparable performance on short range, Matérn kernels in-
volve Bessel functions resulting in longer computations and
Laplacian kernels have unneeded heavier tails. Consequently,
using the notation GP for a GP as a Gaussian vector, we define
the function f in the model Eq. (3), as the following random
vector with parameters θ and component index x = (Z,N ):

f (x, θ ) ∼ GP (0, kη,ρ ), (7)

which means that the law of the Gaussian vector f (x, θ ) has
mean 0 and covariance matrix kη,ρ . We emphasize that the

correlation kernel kη,ρ is the key component of the Gaussian
process f (x, θ ); it is calibrated on the values kη,ρ (xi, xj ) and
used to predict y∗ according to the Gaussian conditional dis-
tribution of y∗ given y, η, ρ which can be expressed explicitly
with kη,ρ [62]. Hence, in the GP case the noise parameter
σ in Eq. (3) represents the pure experimental uncertainty,
which is negligible with respect to nuclear model uncertainties
involved, so that it is natural to fix it to the average scale of the
experimental uncertainty (0.0235 MeV). In the case of BNN,
as we will see next, since the model does not have another
source of randomness the term σεi is necessary to account
for the model uncertainty. For GP, model uncertainty is taken
into account in the GP term. Moreover, it may not be possible
to extricate the experimental error from the uncertainty of the
model if both were included in GP’s specification, since we
use only one experimental datum per nucleus.

B. Bayesian neural network

An artificial neural network (ANN) is a nonlinear function
f mapping the data and parameter variables (x, θ ) into a
hierarchy of one or more layers of linear combinations of
so-called hidden neurons. In this paper, because of the rel-
atively limited amount of data (and the prohibitive expense
associated with the immediate acquisition of new data), a
major consideration is statistical parsimony as a principle
to enhance robustness. Therefore, we limit the number of
parameters that need to be estimated by considering only
one hidden layer. Our function f : (x, θ ) �→ f (x, θ ) with one
hidden layer containing H = 30 hidden neurons [62,63] has
the following specification:

f (x, θ ) := a +
H∑

j=1

bjφ

(
cj +

∑
i

djixi

)
, (8)

where φ is a nonlinear activation function (a function whose
shape allows a neuron j to transition abruptly from a low
inactivated value to a high activated value). The parameters
are the linear regression weights θ ≡ {a, bj , cj , dij }, which
are both internal to each neuron j ’s activation and based
on data x and external to allow the neurons to interact as
a network. A Bayesian neural network (BNN) is simply an
ANN with additive noise, considered as an explanation for
the response data y, in which the objective is to compute the
posterior distribution of all model parameters (and unobserved
variables y, as a Bayesian prediction). In other words, as we
explained in Sec. IV, a BNN is the Bayesian analysis of the
model Eq. (3) where f is defined by Eq. (8).

Recall from Sec. IV that one fundamental difference be-
tween GP and BNN is that in GP the specification Eq. (3)
contains a stochastic f , whereas for BNN f is deterministic.
Furthermore, we assume that the noise ε in Eq. (3) for BNN is
a normal vector with independent and identically distributed
components, with zero mean and unit variances. We presume,
with no further comments beyond invoking the principle of
parsimony, that there is no information gain in BNN in making
more complex assumptions about the noise structure, except
to say that such assumptions would take us beyond the spirit
and scope of basic ANN.

034318-7



NEUFCOURT, CAO, NAZAREWICZ, AND VIENS PHYSICAL REVIEW C 98, 034318 (2018)

Therefore, since the components of ε are independent with
unit variance, the likelihood function is

p(y|θ, σ ) ∝ exp

[
−

∑
i

(yi − f (xi, θ ))2

2σ 2

]
, (9)

where σ is the noise scale in Eq. (3). In particular, any two
components of y are independent of each other, given (θ, σ ).
The symbol y in the formula above can be interpreted as
the concatenation of what ends up being the training data
y and the predictions y∗. Therefore, the training data y and
the predictions y∗ are stochastically independent given (θ, σ ).
Hence, we have p(y∗|y, θ, σ ) = p(y∗|θ, σ ) for BNN as dis-
cussed in Sec. III A.

As previously noted in Refs. [27,32,64], the accuracy of
BNN is much enhanced when the prior weights are given ac-
cording to a hyperprior distribution in a Bayesian hierarchical
setting (that hierarchy is not to be confused with what would
result from using several hidden layers in the underlying
ANN). Accordingly, we take independent � prior distributions
with unit parameters (hence mean 1) on the weight variances
γk , centered Gaussian prior distributions with variance γk on
the weights, and another independent � prior distribution for
σ with mean 1.

The default BNN typically assumes a sigmoid activation
function φ(z) = tanh(z). While the choice of the activation
function has in general a minor impact on a BNN’s perfor-
mance, the hyperbolic tangent has linear tails which cannot
vanish simultaneously, raising potential issues in the case of
a bounded extrapolation. This is particularly true when one is
modeling the residuals globally on the large nuclear domain,
in which case it may be more appropriate to choose a more
local activation function, e.g., a Gaussian kernel function
which builds the prediction locally with small bumps that can
capture local trends, similar to what occurs in a GP.

The number of parameters in a BNN is key to the model’s
performance. With about 500 data points, taking H = 30
neurons leads to much better performance than higher (or
lower) H . As mentioned earlier, increasing the number of
layers beyond L = 1 decreases performance. This is almost
certainly due to the small amount of data which, as we
explained, is a non-negotiable aspect of this type of nuclear
theory UQ study. The number of parameters for an ANN
containing L layers with H hidden neurons in each layer is
given by (1 + |x|)H + [H (H + 1)]L−1 + (H + 1)|y|, where
|x| and |y| are the respective dimensions of the network
data input and outputs. With |x| = 2 (or 4 in the refinement
described in Sec. IV C) and |y| = 1, this results in 121 (or
181) parameters; adding one layer would add 120 parameters
at once. There exists an unwritten rule of thumb in statistics,
by which the ratio of data to parameters needed to have a
hope of estimating parameters in a statistically significant way
in linear regressions (e.g., with 95% confidence/credibility
on most parameters), should be bounded below by 10 in a
classical frequentist setting, and should be bounded below
by 3 in a Bayesian setting when there is no expectation of
showing that the output is insensitive to the priors. With about
500 datapoints, this explains why one cannot use more than
one BNN layer in our study, and why a frequentist ANN

study is impossible. It is also worth noting that the number
of parameters in our GP model is much lower than for BNN,
which immediately provides GP an informal UQ advantage
over BNN in our study.

C. Refinements

As we will see in Sec. V, while the basic GP brings
a significantly improved predictive power to nuclear mass
models, the basic BNN performs poorly in terms of noise
reduction when it comes to the extrapolation problem. Still,
several applications have been successful in reducing rms de-
viations on masses [27–29,32,64]. A major factor explaining
this difference is that Refs. [27,28,32,64] do not measure the
prediction error on extrapolations but rather on a traditional
cross-validation subset.

Moreover, these papers (as well as Ref. [29]) systemati-
cally disregard light nuclei in both training and testing sets,
resulting in a less global approach: Refs. [27–29,64] limit the
domain to the isotopic chains above 40Ca, while Ref. [32] con-
siders only the nuclei with Z and N above 8 and experimental
errors lower than 100 keV. To provide comparable results in
our framework, we have implemented this data reduction on
both our GP and BNN models, with corrections based on the
reduced domain of nuclei below calcium which we denote by
GP(H) and BNN(H).

Additionally, Ref. [32] has improved the performance of
BNN by enriching the input with information on the nucleus’
proximity to magic gaps. Indeed, as seen in Fig. 3, the largest
deviations between experiment and theory appear around
neutron magic numbers. Consequently, following Ref. [32],
we increase the input dimension, from two dimensions (Z,N )
to four dimensions by introducing the nonlinear transfor-
mation x̃i ≡ (dN (xi ), p(xi )), where dZ (x) and dN (x) denote
the distance of x to the closest magic proton and neutron
number, respectively. The quantity p(x) = dZ (x)dN (x)

dZ (x)+dN (x) is the
promiscuity factor, which is an indicator of collectivity in
open-shell nuclei [65]. The resulting variant calculations are
respectively denoted as GP(T) and BNN(T) in the following.
As we will see, those two refinements are determining for
BNN and bring a minor improvement to GP.

In Fig. 4 we show the posterior distributions of the GP
parameters in the case of the DD-PC1 model. It is seen that all
three parameters are well determined with relatively narrow
bell-shaped densities. The general scale of the statistical fluc-
tuations is given by η at 0.87 MeV. The parameters ρZ and ρN

give the range of the correlation effects along the Z and N di-
rections, respectively, with precisely 68% concentrated within
the neighborhood of size 2ρ and 95% within that of size 4ρ.
Here we can assert that about 90% of the correlation effects
are located in the region Z ± 4, N ± 2. We recall that the σ
parameter in Eq. (3) scaling the experimental errors was set to
0.0235 MeV, which is the average of the error bars reported.

V. RESULTS

A. Training set, AME2003; testing set, AME2016

To test the predictive power of theoretical models and per-
formance of statistical models, we first carried out calculations
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FIG. 4. Posterior distributions of the GP parameters, with the
posterior mean and standard deviation listed.

involving the training datasets AME2003 and AME2003-H
and the testing dataset AME2016-AME2003. The results are
presented in Figs. 5 and 6 and Table I. It is to be noted
that AME2016 contains data on remeasured masses since
the AME2003 compilation. In some cases, the differences
between old and new data can be significant (up to 30% differ-
ence), especially for light nuclei. Given the overall consensus
that the AME2016 values are more accurate, the points in
question, namely, 10He, 24O, 34Mg, and 52Ca, are removed
from the AME2003 training dataset. Of course, this correction

is applied only to the emulator trained on AME2003, solely
for the purpose of providing meaningful evaluations, and all
other training sets incorporate the most recent measurement
available to-date.

Figures 5 and 6 show the residuals of six representative
nuclear mass models as a function of the neutron number
before and after statistical corrections with GP(T + H ) and
BNN(T + H ), respectively. In both GP and BNN, one ob-
serves that nearly every white circle, corresponding to a
prediction error of our emulator for a given nucleus, is closer
to the data than its corresponding black dot, representing
a global mass model prediction error without GP or BNN.
This indicates that both GP and BNN corrections improve the
predictions systematically. Additionally, several local trends
of the residuals are visibly attenuated, and the distributions of
the corrected residuals are closer to having zero means and
to being independent Gaussian. We observe that the improve-
ment in performance for our statistical correction is strongest
for the relativistic DFT models (DD-ME2 and DD-PC1) and
weakest for the more phenomenological models FRDM-2012
and HFB-24. This is not surprising, as we expect the residuals
of more microscopic models to exhibit appreciable structure,
whereas there is little hope to improve much the phenomeno-
logical models which are fitted closely to the data.

Table I lists the rms values of residuals obtained in various
mass models using four different variants, and the two GP
and BNN statistical approaches, for emulators δem(Z,N ).
Both GP and BNN reduce the rms residuals of S2n notice-
ably, with GP having a significantly better performance. Both
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FIG. 5. Residuals of S2n(Z, N ) for the six global mass models with respect to the testing dataset (AME2016-AME2003): δ(Z, N ) (dots)
and the GP emulator δGP(Z, N ) (circles).
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GP and BNN perform best on the relativistic DFT models
(around 50% rms reduction), second on the Skyrme-DFT
models (around 30% rms reduction), and then on the more
phenomenological models FRDM-2012 and HFB-24, which
are already very well optimized to nuclear masses, as we
noted (around 10% rms reduction); this is consistent with the
corresponding levels of structure seen in Fig. 3. The increase
in the predictive power of DFT-based models aided by the sta-
tistical treatment of residuals is significant: the rms deviation
from experiment in the T + H variant shows that the carefully
optimized Skyrme-DFT models, such as UNEDF0, UNEDF1,
and SV-min, provide results of a similar quality than more
phenomenological models. Overall, for the testing dataset
AME2016-2003, the rms deviation from experimental S2n val-
ues is 400–500 keV in the GP(T + H ) variant for all theoreti-
cal models employed in this study, which suggests that our sta-
tistical methods capture most of the residual structure. At this
point, however, we shall re-emphasize the importance of car-
rying out the full UQ analysis to assess the quality of a model:
The predicted mean value is certainly not the whole story.

Figure 7 shows what is known as empirical coverage
probability (ECP), which is the simple and intuitive metric
for assessing the quality of a statistical model’s quantification
of uncertainty (see Sec. III C and Refs. [60,61]). In Fig. 7,
for every model, the reference curve shows the fraction of
predictions which should theoretically fall in a CI centered
around the posterior mean prediction, for any given interval
width (measured in posterior standard deviations under nor-
mal distribution). In that figure, every one of the other four

curves shows the actual fraction of the residuals of the testing
data that belong to each such CI for BNN and GP, respectively,
with and without the T + H variant. A prediction point above
the reference curve represents a posterior CI, which is too
wide because it covers too many points. Thus, it can be
considered as a prediction which is too conservative (or too
pessimistic). As we mentioned before, while not necessarily
dishonest, this could be considered potentially wasteful. A
point below the reference curve represents a CI that is too
narrow, that is too liberal (or too optimistic). This should be
considered dishonest, since it is claiming a level of assurance
that is higher than it should be. Values for the empirical
proportions, which are close to the nominal values of the
reference curve are desirable. In fact, to guard against the risk
of giving predictions that are slightly too optimistic, one is
better off hoping for ECPs that are slightly conservative. At
the level of discussing uncertainty on the uncertainty, aiming
for slightly conservative CIs increases the chances that one’s
predictions are sufficiently honest and not very wasteful.

This objective is, in fact, quite what we observe in Fig. 7.
Regardless of the nuclear physics model or statistical method
considered, the distribution of the testing data matches closely
the CIs predicted. The predicted CIs are slightly conservative
for most models—the empirical curve is slightly above the
reference curve—with the exception of HFB-24. Indeed, since
HFB-24 matches closely the training data due to its fairly
phenomenological nature, the statistical uncertainty estimated
is very low and does not represent accurately the uncertainty
on points which have not been used in the fit. Overall, the
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TABLE I. Root mean square values of δ(Z, N ), δBNN(Z, N ),
and δGP(Z,N ) (in MeV) for various nuclear models with respect
to the testing dataset consisting of the AME2016-AME2003 S2n

values. The training AME2003 and AME2003-H datasets were used
to compute the emulators δBNN(Z,N ) and δGP(Z,N ). The two
numbers listed under the model’s name in the first column are
the uncorrected δrms model values with respect to AME2003 and
AME2003-H datasets, respectively. The rms residuals corrected by
a statistical model are shown in the remaining columns. For each
model, GP results δGP

rms are given in the upper row and the BNN
results δBNN

rms are listed in the lower row. The numbers in parentheses
indicate the improvement in percent. The four statistical variants
are listed: Std is the standard treatment with the AME2003 training
dataset; T indicates results involving the nonlinear transformation
x̃i = (dN (xi ), p(xi )); H is based on the reduced dataset AME2003-H
pertaining to heavy nuclei with Z � 20.

Model Std T H T + H

SkM* 0.96(23) 0.96(23) 0.49(52) 0.49(52)
1.25/1.01 0.99(20) 0.81(35) 0.73(28) 0.53(47)
SLy4 0.82(13) 0.82(13) 0.52(35) 0.52(35)
0.95/0.80 0.91(3) 0.82(14) 0.71(11) 0.56(30)
SkP 0.75(11) 0.75(11) 0.38(39) 0.38(39)
0.84/0.62 0.76(9) 0.74(12) 0.59(5) 0.45(27)
SV-min 0.70(10) 0.70(10) 0.32(34) 0.33(34)
0.78/0.49 0.72(8) 1.35(−73) 0.50(−1) 0.43(12)
UNEDF0 0.73(6) 0.73(6) 0.34(37) 0.34(37)
0.78/0.54 0.87(−12) 0.73(7) 0.55(0) 0.46(16)
UNEDF1 0.61(8) 0.61(8) 0.34(30) 0.34(30)
0.66/0.49 0.79(−20) 0.74(−12) 0.53(−10) 0.32(33)
NL3* 0.84(29) 0.84(29) 0.46(47) 0.45(47)
1.19/0.86 1.10(7) 0.90(24) 0.83(4) 0.69(20)
DD-MEδ 0.73(35) 0.74(35) 0.55(42) 0.55(42)
1.13/0.96 1.08(4) 0.91(19) 0.89(7) 0.75(22)
DD-ME2 0.71(32) 0.71(31) 0.63(34) 0.62(34)
1.04/0.95 1.00(4) 1.32(−27) 0.90(5) 0.61(36)
DD-PC1 0.79(28) 0.79(28) 0.46(50) 0.46(50)
1.10/0.91 1.00(9) 1.33(−22) 0.85(7) 0.54(41)
FRDM-2012 0.57(9) 0.57(9) 0.36(25) 0.36(26)
0.63/0.49 0.61(4) 0.72(−15) 0.48(2) 0.45(7)
HFB-24 0.40(−1) 0.40(−1) 0.40(−8) 0.40(−8)
0.40/0.37 0.59(−48) 0.44(−10) 0.37(1) 0.35(6)

shape of the ECP curves clearly validates the honesty of our
approach, and supports using our corrected predictions for
future measurements with Bayesian CIs.

B. Training set AME2016-H, testing set JYFLTRAP data

We now investigate the impact of the extended training
dataset on an extrapolation outcome. To this end, we compare
predictions based on AME2003-H and AME2016-H training
datasets on the recently measured masses at JYFLTRAP.
The results are summarized in Table II. The model rms
residuals δrms follow the trend discussed in Sec. V A. Namely,
the models FRDM-2012 and HFB-24 make predictions
very close to the data (δrms = 0.13 MeV) as well as the
recently developed EDFs UNEDF0, SV-min, and DD-ME δ
(δrms = 0.11–0.16 MeV). Overall, the GP approach reduces
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FIG. 7. Empirical coverage probability for the six models used
in our study as functions of multiples of the standard deviation
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i.e., the probability that new testing data fall into the corresponding
CI according to the domain. That is, at 1 s.d., the reference curve is
0.68 (and 68% of the testing data should fall into the CI); at 2 s.d. it
is 0.95, and so on.

the rms residuals significantly. This is consistent with Fig. 2,
which shows that the local surface of δ(Z,N ) is fairly
smooth in the region of JYFLTRAP data (Z ∼ 62, N ∼ 100).
However, the BNN method is not effective: for SLy4,
SkP, SV-min, UNEDF0, and DD-MEδ one can see a
deterioration of results. This is indicative of a sensitivity
of BNN to long-scale correlations that can result in numerical
instabilities discussed in Sec. V D.

The difference between results based on AME2003-H and
AME2016-H training datasets is insignificant. Overall, we
find that the more recent mass measurements contained in
the AME2016-AME2003 dataset do not impose constraints
that are strong enough to modify predictions in the a smooth
region of the mass surface. A similar conclusion was reached
in Ref. [11] in the context of Bayesian model studies.

C. Extrapolations

As a follow-up to the two previous exercises we now
train the statistical emulators on the full set of available
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TABLE II. Similar as in Table I except for the rms values of
δ(Z, N ), δBNN(Z,N ), and δGP(Z, N ) (in MeV) for various nuclear
models with respect to the testing dataset consisting of the four
JYFLTRAP S2n values. The second column shows the uncorrected
rms value δrms. For each model, the training datasets AME2003-
H (third column) and AME2016-H (fourth column) were used to
compute δGP

rms (upper row) and δBNN
rms (lower row) using the T + H

variant of statistical calculations.

Model δrms 2003-H 2016-H

SkM* 0.91 0.40(56) 0.31(66)
0.24(74) 0.25(72)

SLy4 0.27 0.09(65) 0.09(67)
0.42(−57) 0.28(−4)

SkP 0.19 0.16(14) 0.14(26)
0.35(−85) 0.36(−92)

SV-min 0.14 0.11(18) 0.10(29)
0.17(−20) 0.26(−86)

UNEDF0 0.11 0.11(−3) 0.11(1)
0.33(−199) 0.22(−97)

UNEDF1 0.26 0.17(36) 0.14(48)
0.09(64) 0.13(50)

NL3* 0.32 0.19(39) 0.22(32)
0.17(47) 0.18(43)

DD-MEδ 0.16 0.08(50) 0.09(46)
0.18(−14) 0.28(−4)

DD-ME2 0.30 0.12(58) 0.13(55)
0.28(8) 0.29(2)

DD-PC1 0.28 0.17(41) 0.13(52)
0.25(12) 0.27(5)

FRDM-2012 0.13 0.10(20) 0.09(26)
0.05(60) 0.05(58)

HFB-24 0.13 0.12(2) 0.11(12)
0.07(43) 0.10(25)

data for heavy nuclei, i.e., AME2016-H and JYFLTRAP. The
simulations described in Secs. V A and V B, on the testing
sets, serve as a validation that our methodology is sound
from a UQ perspective and is capable of providing accurate
predictions. Perhaps the most important element of our UQ
is the reliability of our CIs, which was assessed in Sec. V A
by the analysis of ECPs at all credibility levels. Since our
UQ is only slightly conservative, it essentially preserves the
methodology’s full predictive (extrapolation) power.

The question at hand is how far can one extrapolate to pro-
vide reliable predictions. One can adopt several approaches
to answer this question according to the particular problem of
interest, but the general foundation is that we should trust the
obtained Bayesian CIs since they have been validated by our
analysis of the ECPs on points outside the training domain
(see Sec. V A and Fig. 7), with the limitation that the testing
points were relatively close to the training domain.

Figure 8 shows the extrapolative predictions of GP and
BNN for the six representative global mass models for the Sn
chain. As discussed in Sec. II, the DFT calculations are termi-
nated when λn becomes positive. This provides a rigid cutoff
on mass model predictions. The Bayesian models estimate
both corrections δem to mass model results as well as error bars

expressed in terms of CIs. Since the GP model is fairly local,
by construction it goes faithfully through experimental points
and the corresponding value δem vanishes shortly outside the
experimental data range. This is not the case for the BNN
approach, which is more sensitive to long-range trends. Still,
GP and BNN results are fairly close, and their CIs overlap
in most cases. The empirical values for 136,138Sn obtained
from extrapolations in Ref. [51] are very well reproduced by
both GP and BNN. The size of CIs is consistent with the
pattern of ECPs in Fig. 7: the largest error bars are obtained
for the relativistic DFT models (DD-ME2 and DD-PC1), and
smallest for the more phenomenological models FRDM-2012
and HFB-24. The error bars increase steadily when going
away from the experimentally known region.

The small CIs predicted for HFB-24 require a comment.
As seen in Fig. 7, HFB-24 is the only model to slightly under-
estimate the uncertainties. In fact, HFB-24 has been fitted to
the AME2012 dataset that matches closely the training dataset
AME2003. This causes our emulator to be blind to the actual
underlying uncertainty of HFB-24 outside its training domain
and results both in an underevaluation of the uncertainties
on AME2016-AME2003 visible in Fig. 7 and the illusion of
smaller CIs on the extrapolations in Fig. 8. In the context of a
discussion about UQ, one would be tempted to reject the use
of HFB-24 in the context of the statistical analysis because
it is not honest enough; to avoid doing so, one would want
to incorporate an additional error term in the statistical model
based on HFB-24, one which takes into account additional
uncertainty when making predictions outside of the training
domain. In general, for highly parameterized models that are
very well fitted to experimental data, the statistical approach
described in this paper is not going to improve much as the
random term in Eq. (3) becomes comparable with the function
f describing systematic patterns of model residuals.

A direct inspection of the CIs in Fig. 8 shows the most con-
servative estimate of the location of the 2n dripline (S2n = 0)
around N = 104, as in BNN with SLy4 and DD-PC1. If one
were to stick to the GP approach, one would place the 2n-
dripline around N = 120. The flatness of the posterior mean
curves for our statistical emulators for large neutron numbers
implies that any quantified determination of the location of
the 2n dripline will be rather highly sensitive to the size of
that uncertainty (e.g., the posterior standard deviation). This
flatness also implies that one should decide whether the one-
sigma intervals are at a sufficiently high level of credibility.
One-sigma error bar implies 68% chance that the true value
of predicted quantity falls within estimated error bars. One
might consider using two-sigma intervals, corresponding to a
CI of roughly 95%. The flatness of the prediction curve would
then significantly decrease the drip line location.

If the objective is to predict the location of 2n dripline for
an isotopic chain, a one-sided CI may be more appropriate.
For fixed Z, the task is to find the largest value N∗such
that the Bayesian posterior probability that the dripline is
below N∗ exceeds 1 − α. The answer to this question would
then be roughly equivalent to finding the value N∗ such that
the endpoint of its one-sided 1.65-sigma CI barely touches
the S2n = 0 line. This procures a predictive advantage over
simply reading measurements off of two-sided CIs, since, by
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FIG. 8. Extrapolations of S2n for the even-even Sn chain calculated with the six global mass models with statistical correction δem and
one-sigma CIs obtained with GP(T + H ) and BNN(T + H ). Experimental (circles) and extrapolated (asterisks) values from AME2016 [51]
are marked.

extending a one-sided interval to the level 1.65-sigma, one
reaches a credibility of 95%, i.e., odds of about 20 to 1 for
being right about a dripline. Figure 9 illustrates this approach
for the dripline of Sn isotopes predicted with DD-PC1 using
the statistical GP(T + H ) and BNN(T + H ) methods. In this
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FIG. 9. Extrapolations of S2n for the even-even Sn chain calcu-
lated with DD-PC1 with statistical GP(T + H ) and BNN(T + H )
approaches. One-sigma and 1.65-sigma CIs are marked.

case, the DD-PC1 model and DD-PC1+GP(T + H ) predict
the 2n dripline at N∗ = 126 for its posterior mean value
(with N∗ = 122 and 118 at the 1-sigma and 1.65-sigma levels,
respectively), while the DD-PC1+BNN(T + H ) model gives
a prediction of N∗ = 118 (N∗ = 102 and 104 at 1-sigma and
1.65-sigma level, respectively). This discussion demonstrates
the naïvety of the absolute declarations, such as: “DD-PC1
predicts the 2n dripline at N = 126.” Note that Figure 9 also
contains the right-hand limit of the 1-sigma and 1.65-sigma
CIs, but this information is not needed to interpret a lower
credibility limit on a dripline. Again, as stated, to be safe,
we recommend using the neutron-number location where the
1.65-sigma CI crosses the zero-S2n level as a lower limit for
the dripline, since the probability of a model predicting the
dripline being at this location or below is at least 95%.

D. Numerical considerations

Despite the apparent strong performance of BNN, it is nec-
essary to provide some caveats based on our experience. Even
when using up to 107 Monte Carlo samples, the results are
not completely stable throughout different simulation runs,
in particular for extreme extrapolations. We illustrate this in
Fig. 10 where we superpose the predictions and confidence
intervals given by the DD-PC1 + BNN(T + H ) model trained
on AME2016+JYFLTRAP dataset for the Sn-chain, with two
different MCMC runs with 100,000 samples (after 10,000-
sample tuning) and 1 000 000 samples (after 100 000-sample
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tuning). Obviously, one would expect the curves to match, but
they can differ here significantly, even with a high number of
iterations.

Strong evidence exists to argue that the numerical insta-
bilities inherent to BNN are related to the large number of
parameters used. Examples of numerical errors on real data
problems, associated with convergence difficulties, can be
found in Chap. 4.4 of Ref. [63]. A systematic investigation
of discrepancies between several BNN runs is difficult to
evaluate for our problem, because it would require exten-
sive computations. However, investigating the convergence of
BNN can be done at a relatively low cost. This leads to the
results shown in Fig. 11.

One can see that after using 10 000 samples for tuning,
the posterior predictions and uncertainties of the GP emulator
are clearly in a stationary regime, but it takes about 100 000
samples for BNN to reach the same level. In general, con-
vergence of MCMC estimators is governed by the central
limit theorem (CLT) according to which the convergence rate
behaves as C√

n
, where the constant C corresponds to the
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FIG. 11. Posterior sample mean and standard deviation of S2n

for several Sn isotopes predicted in DD-PC1. The statistical calcula-
tions were carried out with GP(T + H ) and BNN(T + H ) methods
trained on the AME2016+JYFLTRAP dataset. The results are shown
as a function of the number of MCMC samples. The number of
samples used initially for tuning was 10 000 (panels a and b) and
100 000 (panel c).

largest eigenvalue of the autocovariance matrix of the Markov
chain [66]. For models with many parameters such as BNN,
correlation between samples cannot be avoided with the tra-
ditional algorithms of Metropolis(-Hastings) or Gibbs. Con-
vergence can be improved by so-called ‘variance reduction
techniques’ which aim at decreasing the constant C. A number
of Bayesian nuclear mass studies [27–29,32,64] has relied
on the “flexible Bayesian modeling” software [63], which is
based on a combination of Gibbs and Metropolis algorithms,
which can improve numerical convergence. Other suggestions
in Ref. [63] to improve convergence include changing priors
to non-Gaussian stable distributions or using simulated an-
nealing. Modern approaches favor the use of more advanced
MCMC techniques relying on an energy density known as
Hamiltonian Monte Carlo methods such as NUTS [67,68],
which explore the space more wisely and converge in less
steps, however, at some significant increased cost in terms of
evaluation time. The underlying idea is that convergence of
Markov chains on bounded spaces occurs at the exponential
rate ρn, where 0 < ρ � 1 is the largest eigenvalue of the
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transition matrix of the parameters. This exponential conver-
gence can only be achieved when the proposal distribution
matches the actual distribution, which requires an adequate
exploration of the space [69]. In our simulations, however,
NUTS and Metropolis sampler achieved similar convergence
for comparable computation time although fine tuning could
improve NUTS. Because of the CLT limitation, our best
option to improve the convergence of BNN would be to in-
crease the number of simulations by two orders of magnitude,
which would require unreasonable levels of computational
resources, making the method impractical.

All the numerical issues encountered in BNN are essen-
tially absent in the case of GP, which has a very small
number of parameters (three) in comparison to BNN (over
one hundred). This numerical stability is an additional argu-
ment, beyond parsimony, in favor of GP over BNN. We must
mention that the evaluation of the prediction samples from
the model parameters requires sampling from a multivariate
Gaussian kernel, which can take significantly more time than
in the case of BNN, but far less than the factor of 100 which
would be needed to improve BNN’s stability.

VI. CONCLUSIONS

There is a vast amount of information contained in the
residuals of theoretical models’ predictions. To improve the
fidelity of theoretical predictions, especially in the context
of extrapolations, one can utilize Bayesian machine-learning
techniques such as GP or BNN, which can quantify patterns
of deviations between theory and experiment. Stochastic sim-
ulations based on MCMC sampling provide statistical correc-
tions to average prediction values and offer full uncertainty
quantification on predictions through credibility intervals.

In this study, we investigated patterns of 2n separation
energies of even-even nuclei calculated by several global mass
models. We proceeded in three steps. First, we trained our
statistical models on large learning datasets of experimentally
known S2n values. We then made extrapolative predictions
for the testing datasets consisting of more recently mea-
sured separation energies, as a way to validate the statistical
method’s predictive performance. Having thus established and
validated a statistical methodology, including a determination
of its parameters, we then carried out predictions for unknown
data.

We see that although both GP or BNN reduce the rms
deviation from experiment significantly, GP has a better and
more stable performance (see Tables I and II). Both GP and
BNN perform best on the relativistic DFT models, second
on the Skyrme-DFT models, and then on the more phe-
nomenological models FRDM-2012 and HFB-24, which are
very well optimized to nuclear masses; this is consistent with
the corresponding levels of structure that one could expect.
The increase in the predictive power of DFT-based models
aided by the statistical treatment is quite astonishing: the
resulting rms deviation from experiment in the T + H variant
(last column of Table I) shows that the carefully optimized
Skyrme-DFT models, such as UNEDF0, UNEDF1, and SV-
min, provide results of a similar quality on the testing dataset
as the more phenomenological models. Overall, for the testing

dataset AME2016-2003, the rms deviation from experimental
S2n values is in the 400–500 keV range in the GP(T + H )
variant for the all theoretical models employed in this study.

We realized that, as the classical sigmoid activation func-
tion used in BNN has linear tails that do not vanish, it is poorly
suited for a bounded extrapolation. This perhaps explains the
better performance of GP, which builds the prediction locally
with small bumps that can capture local trends. Indeed, our
results indicate that the S2n residuals have an appreciable
local structure around magic gaps, but no global structure.
This is encouraging as it means that the models used are
not missing any significant physics applicable on the whole
nuclear domain. As a broader perspective, our results support
using local Bayesian statistical models in combination with
a well thought-out effect range, to reproduce the residuals
trends, and to take advantage of models and other forms of
physical intuition as part of building a Bayesian prior. At the
same time, BNN should not be rejected as a poor extrapolation
tool at all ranges. We emphasize that the statistical corrections
and quantified uncertainties obtained by GP on extrapolations
far from the range of the training data are negligible in
practice, which is by design of the GP specification. It is
also true that BNN extrapolations are possible beyond the
range of influence of GP. However, in the absence of any
supporting experimental data to test the performance of BNN
far from the stability range, it is not possible to know whether
the actual BNN corrections are of value in these long-range
extrapolations. We contend that the main interest in Bayesian
methods when applied to distant extrapolations lies in the UQ
that their credibility intervals provide. As soon as a few data
points in these distant ranges will become available, it will be
possible to test BNN’s extrapolation performance using UQ
as a framework for honest performance metrics.

Our Bayesian methodology is very robust in the sense of
this type of performance framework. To this point, we showed
how the ECP curves we obtain match the reference values very
well, in a slightly conservative way in most cases, which is
highly desirable to ensure UQ honesty without being wasteful
(cf. discussion around Fig. 7).

The statistical approach to extrapolation of nuclear model
results discussed in this paper can be very useful for assessing
the impact of current and future experiments in the context
of model developments. In the particular case studied in this
work, the impact of the new data for unstable nuclei on the
predictive power of theoretical models turned out to be minor.
This is probably due the fact that the mass surface in the
region of JYFLTRAP data is fairly smooth. This conclusion
should not be generalized; rather, because the methodology
provide a sound UQ, for instance, one should expect that any
experiment planned near the boundary of a mass surface with
limited smoothness should provide a significant advantage
to extrapolations beyond that boundary. Other scenarios can
also be imagined with similar positive impact of extrapolation
from a small number of new data points near a boundary
region. Such a scenario can be tested ahead of time, using
synthetic data, with our methodology providing a full quan-
tification of uncertainty based on the synthetic scenario, to
help experimenters decide if the experiment’s cost is worth
the risk.
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We also think that the new GP capability to evaluate
residuals is expected to impact research in the domains where
experiments are currently impossible, e.g., in studies of astro-
physical nucleosynthesis processes. Figure 12 illustrates this
point nicely. It shows extrapolations of the S2n values for the
even-even Sn isotopes for four global mass models aided by
the statistical GP(T + H ) approach. It is gratifying to see that
all four models displayed provide internally consistent results;
i.e., they agree with each other within the estimated CIs.

The example shown in Fig. 12 illustrates the limited value
of assessing physics models solely based on their ability
to fit experimental data. Clearly, mean values tell only part
of the story. While HFB-24 and FRDM-2012 provide the
superior reproduction of measured masses, their ability to
extrapolate into the r-process region of neutron-rich nuclei
is similar to that of DFT models based on well-optimized
energy density functionals. Going further, we can strengthen
our statements and decrease the sizes of uncertainty regions
by combining the predictions’ CIs provided by GP and BNN
for one mass model, and even of several mass models with
Bayesian corrections (see Fig. 12). For a naïve look at
this idea, one may consider the intersection of the various
CIs.

When it comes to astrophysical applications, such as simu-
lations of nucleosynthesis and models of the composition and
structure of the neutron star crust, the methodology presented
in this work can be directly applied to each observable of

interest, such as one-neutron separation energies and Q values
for β decay, α decay, and fission. The strategy, which we
are going to adopt, is to provide Bayesian corrections and
covariances for theoretical mass tables. Such information will
allow the statistical determination of all mass differences,
including precise statements about estimation precision, via
a full quantification of their uncertainties.

There are other ways of further reducing theoretical un-
certainty. For instance, it may be possible to decrease the
residuals locally by fine-tuning model parameters to selected
regional data. In this respect, measurements of masses of
more exotic nuclei at rare isotope facilities will greatly add
to the dataset that can be used in such analyses. Another
way is to combine the predictions of several statistically
corrected nuclear models, such as these shown in Fig. 12.
Two Bayesian approaches can be used [70,71] in this context:
model selection (the problem of using the data to select one
model from a list of candidate models) and model averaging
(estimating some quantity under each model and then averag-
ing the estimates according to how likely each model is). In
particular, an extrapolation based on a given model can run
a significant misspecification risk, and this risk is typically
never taken into account. Under Bayesian model selection and
averaging, this risk can be quantified and taken into account,
always resulting in a more honest UQ, and sometimes in
more accurate extrapolation. These developments are left for
a future study.

Finally, let us note that the information contained in the
residuals shown, e.g., in Figs. 2 and 3, provides crucial
guidance for the further developments of nuclear mass mod-
els. While statistical methods, which couple current nuclear
models with available experimental data to maximize the
use of existing information, can help providing more reliable
predictions, they cannot be a substitute for the systematic de-
velopment of high-fidelity theoretical models of the nucleus.
The hope is that such models, guided by statistical methods,
will allow us uncover nuclear structure features that may
appear only far from stability.
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