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Statistical theory of deformation distributions in nuclear spectra
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The dependence of the nuclear level density on intrinsic deformation is an important input to dynamical
nuclear processes such as fission. The auxiliary-field Monte Carlo (AFMC) method is a powerful method for
computing state densities. However, the statistical distribution of intrinsic shapes is not readily accessible due to
the formulation of the AFMC method in a spherical configuration-interaction shell-model approach. Instead, the
theory of deformation has largely relied on a mean-field approximation which breaks rotational symmetry. We
show here how the distributions of the intrinsic quadrupole deformation parameters can be calculated within the
AFMC method and present results for a chain of even-mass samarium nuclei (148Sm, 150Sm, 152Sm, 154Sm) which
includes spherical, transitional, and strongly deformed isotopes. The method relies on a Landau-like expansion of
the Helmholtz free energy in invariant polynomials of the quadrupole tensor. We find that an expansion to fourth
order provides an excellent description of the AFMC results.
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I. INTRODUCTION

Nuclear level densities are an essential input to the Hauser-
Feshbach theory [1] of statistical nuclear reactions. In partic-
ular, models of fission require knowledge of the level density
as a function of nuclear deformation.

The auxiliary-field Monte Carlo (AFMC) method, also
known in nuclear physics as the shell-model Monte Carlo
(SMMC) method [2–6], is a powerful technique for micro-
scopic calculations of the nuclear density of states within the
configuration-interaction (CI) shell-model approach [7,8]. The
method has been applied to nuclei as heavy as the lanthanides
[9,10].

Deformation is usually introduced in a mean-field approxi-
mation that breaks rotational invariance. It is thus a challenge to
calculate deformation-dependent statistical properties in the CI
shell-model framework, which preserves rotational invariance,
without invoking a mean-field approximation.

In Refs. [11,12] the distribution of the axial quadrupole
operator Q̂20 = ∑

i [2ẑ2
i − (x̂2

i + ŷ2
i )] in the laboratory frame

was calculated using the AFMC method and was shown to
exhibit model-independent signatures of deformation. The
use of quadrupole invariants [13,14], which in turn can be
related to laboratory-frame moments of Q̂20 (up to fifth order
in deformation), allowed the extraction of effective intrinsic
deformation parameters β, γ . Quadrupole invariants have been
used in the context of the CI shell model for nuclei near
shell closure (see Refs. [15,16] and references cited therein).
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Here we introduce a novel method to calculate the complete
intrinsic-frame quadrupole distribution using a Landau-like
expansion of its logarithm. This enables us to compute the
nuclear state density1 as a function of excitation energy Ex

and intrinsic deformation β, γ . We present our method in the
context of the AFMC approach to the CI shell model. However,
this method can in principle be applied in the context of other
CI shell-model approaches. CI-type calculations have been
carried out in heavy deformed nuclei within the symplectic
model [19] and a symplectic no-core shell-model approach
was recently developed to carry out large-scale calculations in
medium-mass nuclei [20,21].

We demonstrate our approach for an isotopic chain of
even-mass samarium nuclei, 148,150,152,154Sm. Signatures of the
crossover from spherical to deformed nuclei in this isotopic
chain have been observed in AFMC calculations [10,12].

This article is organized as follows. In Sec. II, we briefly
review the AFMC method and its application to calculate the
distribution P (q20) of the axial quadrupole operator Q̂20 in
the laboratory frame. In Sec. III, we introduce a novel method
to determine the quadrupole tensor distribution as a function
of temperature in the intrinsic frame. In Sec. IV, we use
the saddle-point approximation to convert this temperature-
dependent intrinsic frame distribution to density of states
ρ(Ex, β, γ ) as a function of the excitation energy Ex and
intrinsic deformation parameters β, γ . Finally, in Sec. V
we summarize our method in a more general context. The

1The term “level density” is sometimes used as a synonym for
“density of states” or “state density,”and more often as synonym
for “spin-dependent level density” [17]. The latter can be calculated
in AFMC through the use of spin projection methods [18]. The
calculations reported here are only for the state density.
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AFMC data files and the scripts used to generate our results
are included in the Supplemental Material depository of this
article [22].

II. QUADRUPOLE PROJECTION IN THE LABORATORY
FRAME

A. The AFMC method

We briefly review the AFMC method, emphasizing the
elements that are essential for our current application. For a
recent review of the AFMC approach in nuclei, see Ref. [6].

A nucleus at finite temperature T and Hamiltonian Ĥ is
described by the Gibbs ensemble exp(−Ĥ /T ), which can
also be viewed as a propagator in imaginary time β = 1/T .2

The AFMC method is based on the Hubbard-Stratonovich
(HS) transformation [23], in which the propagator exp(−βĤ )
is decomposed into a superposition of one-body propagators
Ûσ that describe non-interacting nucleons in external time-
dependent auxiliary fields σ ,

e−βĤ =
∫

D[σ ]GσÛσ , (1)

where Gσ is a Gaussian weight.
Using Eq. (1), the thermal expectation value of an observ-

able Ô is given by

〈Ô〉 = Tr(Ôe−βĤ )

Tr e−βĤ
=

∫ D[σ ] Gσ Tr(ÔÛσ )∫ D[σ ] Gσ Tr Ûσ

. (2)

In the AFMC method, the expectation value in Eq. (2) is
evaluated by Monte Carlo sampling of the auxiliary fields
σ according to the positive-definite weight function Wσ =
Gσ |Tr(Ûσ )|. We define the W -weighted average of a quantity
Xσ by

〈Xσ 〉W ≡
∫

D[σ ]WσXσ�σ∫
D[σ ]Wσ�σ

, (3)

where �σ ≡ Tr Ûσ /|Tr Ûσ | is the Monte Carlo sign function.
The thermal expectation in Eq. (2) can then be written as

〈Ô〉 =
〈

Tr(ÔÛσ )

Tr Ûσ

〉
W

. (4)

Denoting the sampled auxiliary-field configurations by σk , the
expectation value in Eq. (4) is estimated by

〈Ô〉 ≈
∑

k 〈Ô〉σk
�σk∑

k �σk

, (5)

where 〈Ô〉σ = Tr(ÔÛσ )/ Tr Ûσ .
An essential feature of the AFMC method is that the many-

particle traces Tr can be reduced to expressions involving only
matrix algebra in the single-particle space. For example, the
grand-canonical trace of the many-particle propagator Ûσ in
Fock space is given by

Tr Ûσ = det(1 + Uσ ), (6)

2Here we adopt natural units kB = 1 and use the circumflex to denote
operators in the many-particle Fock space.

where Uσ is the matrix representation of Ûσ in the single-
particle space.

Since nuclei are finite-size systems, it is important to
evaluate the traces in Eq. (4) in the canonical ensemble, i.e.,
at fixed particle number. We use discrete Fourier transforms to
project on fixed numbers of protons and neutrons [8,24].

B. Q̂20 projection

The mass quadrupole tensor operator is defined by

Q̂2μ =
√

16π

5

∫
d3rρ̂(r)r2Y2μ(θ, ϕ), (7)

where ρ̂(r) = ∑
i δ(ri − r) is the total single-particle density

(including both protons and neutrons) at point r.
The laboratory-frame probability distribution for measuring

the eigenvalue q20 of the axial quadrupole operator Q̂20 =∑
i[2ẑ2

i − (x̂2
i + ŷ2

i )] is defined by

P (q20) = 1

Z
Tr[δ(Q̂20 − q20)e−βĤ ], (8)

where Z = Tr e−βĤ is the partition function. Expanding in a
basis of many-particle eigenstates,

P (q20) = 1

Z

∑
n

δ(q20 − qn)
∑
m

〈qn|em〉2e−βem, (9)

where qn and |qn〉 are the eigenvalues and eigenstates of
the operator Q̂20, and em and |em〉 are the eigenvalues and
eigenstates of the Hamiltonian Ĥ . Since Q̂20 does not commute
with the Hamiltonian, 〈qn|em〉 �= δn,m.

In the AFMC approach, we calculate Eq. (8) from

P (q20) = 1

〈�σ 〉W

〈
Tr[δ(Q̂20 − q20)Ûσ ]

Tr Ûσ

�σ

〉
W

, (10)

where the δ function is represented by a Fourier trans-
form. In practice, we divide the range q20 ∈ [−qmax, qmax] to
2M + 1 equal intervals and evaluate the quadrupole-projected
trace using a discretized Fourier decomposition

Tr[δ(Q̂20 − q20)Ûσ ] ≈ 1

2qmax

M∑
k=−M

e−iϕkq20 Tr(eiϕkQ̂20Ûσ ),

(11)

where ϕk = πk/qmax. To aid the otherwise slow thermalization
and decorrelation of the moments 〈Q̂n

20〉with the pure Metropo-
lis sampling, we augment the generated field configurations by
rotating them through a certain set of angles [11,12].
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III. QUADRUPOLE DISTRIBUTIONS IN THE
INTRINSIC FRAME

A. Intrinsic variables

For given values of the quadrupole tensor q2μ in the labora-
tory frame,3 we define dimensionless quadrupole deformation
parameters α2μ from the liquid drop model

q2μ = 3√
5π

r2
0 A5/3α2μ, (12)

where r0 = 1.2 fm and A is the mass number of the nucleus. For
each set α2μ we can define an intrinsic frame whose orientation
is specified by the Euler angles � and in which the quadrupole
deformation parameters α̃2μ are

α̃21 = α̃2 −1 = 0, α̃22 = α̃2 −2 = real. (13)

The intrinsic quadrupole deformation variables α̃2μ are
parametrized by the usual coordinates (β, γ ) defined by4

α̃20 = β cos γ, α̃22 = α̃2,−2 = 1√
2
β sin γ. (14)

The transformation from the laboratory-frame α2μ to the
intrinsic variables β, γ , and � is characterized by the metric∏

μ

dα2μ = 1

2
β4| sin(3γ )| dβ dγ d�. (15)

B. Distribution of the quadrupole deformation in the
intrinsic frame

We denote the distribution of the quadrupole deformation
tensor in the laboratory frame at temperature T by P (T , α2μ).
This distribution is invariant under rotations and therefore de-
pends only on the intrinsic variables β and γ , i.e., P (T , α2μ) =
P (T , β, γ ).

Using the metric (15), and integrating over the spatial angles
�, the probability distribution in the intrinsic variables β and
γ is given by

4π2β4|sin(3γ )|P (T , β, γ ). (16)

Quadrupole invariants can be constructed by taking products
of the second-rank tensor α2μ that couple to total angular mo-
mentum zero. Up to fourth order, these invariants are given by

α · α = β2, (17a)

[α × α]2 · α = −
√

2

7
β3 cos(3γ ) , (17b)

(α · α)2 = β4 . (17c)

3The quadrupole operators commute in coordinate space but not
in the truncated CI shell-model space. However, the effect of their
non-commutation is small and will be ignored in the following.

4Following established conventions, we denote both the inverse
temperature and the axial deformation parameter by the same symbol
β. The intended meaning should be clear from the context at each
occurrence throughout this article.

We note that there are other ways to construct a
fourth-order quadrupole invariant, e.g., [α × α]2 · [α × α]2

and [α × α]4 · [α × α]4, but they are all proportional to β4.

1. Landau-like expansion

Since the distribution P (T , α2μ) is invariant under rotations,
its logarithm can be expanded in quadrupole invariants. In
the spirit of Landau theory of shape transitions [25,26], we
carry out this expansion to fourth order using the invariants in
Eqs. (17).5 This leads to the following probability distribution:

P (T , β, γ ) = N (T )e−a(T )β2−b(T )β3 cos(3γ )−c(T )β4
, (18)

where a, b, and c are temperature-dependent parameters andN
is a normalization constant. The expectation value of a function
f (β, γ ) that depends on the intrinsic deformation parameters
β and γ is given by

〈f (β, γ )〉L ≡ 4π2
∫

dβ dγ β4|sin(3γ )|f (β, γ )P (T , β, γ ),

(19)

where we used the metric (15) and the subscript L denotes an
expectation value with respect to distribution (18) obtained in
a Landau-like expansion. In calculating the expectation values
of the three quadrupole invariants in Eqs. (17), the integration
over γ can be done analytically; see Eqs. (A3) and (A4) in
Appendix A. The normalization constant N in Eq. (18) is
determined as a function of a, b, and c from the normalization
condition 〈1〉L = 1.

The expansion parameters a, b, and c in Eq. (18) are
determined from the expectation values of the three quadrupole
invariants. The latter can be calculated in the AFMC method
using their relations to moments of the axial quadrupole
operator Q̂20 in the laboratory frame

〈
Q̂n

20

〉 =
∫

dq20 qn
20P (q20) (20)

as follows [11,12]:

〈Q̂ · Q̂〉 = 5
〈
Q̂2

20

〉
, (21a)

〈[Q̂ × Q̂]2 · Q̂〉 = −5

√
7

2

〈
Q̂3

20

〉
, (21b)

and

〈(Q̂ · Q̂)2〉 = 35

3

〈
Q̂4

20

〉
. (21c)

Matching the quadrupole invariants computed using the
distribution (18) with the invariants determined from the
AFMC calculation using Eqs. (21), we obtain a set of nonlinear

5In the Landau theory developed in Refs. [25,26], the Helmholtz
free energy F (T , β, γ ) was expanded in the invariants to fourth
order and the quadrupole shape fluctuations were described by the
distribution ∝ exp[−F (T , β, γ )/T ]. Thus ln P (T , β, γ ) corresponds
to −F (T , β, γ )/T up to an additive constant.
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equations for a, b, and c:

χ2〈β2〉L = 5
〈
Q̂2

20

〉
, (22a)

χ3〈β3 cos(3γ )〉L = 35

2

〈
Q̂3

20

〉
, (22b)

χ4〈β4〉L = 35

3

〈
Q̂4

20

〉
, (22c)

where χ = 3√
5π

r2
0 A5/3 [see Eq. (12)].

2. Validation of the Landau-like expansion

In deriving the distribution (18), we expanded the logarithm
of P (T , β, γ ) in the quadrupole invariants to fourth order.
In principle, higher-order invariants also contribute to this
expansion. To test the validity of the fourth-order expansion,
we can rewrite the distribution (18) in terms of the laboratory-
frame deformation variables α2μ,

P (T , α2μ) = N (T )e−a(T )α·α+b(T )
√

7
2 [α×α]2·α−c(T )(α·α)2

,

(23)

where we have used Eqs. (17). We can then integrate over
the four variables α2μ with μ �= 0 to determine the marginal
distribution P (T , α20) and thus the distribution P (q20) of the
axial quadrupole q20 in the laboratory frame. This distribution
can be compared directly with the AFMC distribution P (q20).

In Fig. 1 we compare the distribution P (q20) calculated
from the marginal distribution of Eq. (23) (solid line) with the
corresponding AFMC distribution (open circles) for 154Sm.
At the resolution seen in the figure, the agreement is perfect.
We conclude that the fourth-order Landau-like expansion is
sufficient at all temperatures.

C. Applications to samarium isotopes

We demonstrate our method for computing the intrinsic
shape distribution P (T , β, γ ) for the family of even-mass
samarium isotopes 148−154Sm, which are known to exhibit a
crossover from spherical to deformed shapes [10,27,28].

Our single-particle shell-model space includes the orbitals
0g7/2, 1d5/2, 1d3/2, 2s1/2, 0h11/2, and 1f7/2 for protons, and
the orbitals 0h11/2, 0h9/2, 1f7/2, 1f5/2, 2p3/2, 2p1/2, 0i13/2,
and 1g9/2 for neutrons. The single-particle energies and wave
functions were obtained from a Woods-Saxon potential plus a
spin-orbit interaction using the parameters of Ref. [17]. The
interaction is a multipole-multipole interaction obtained by
expanding a separable surface-peaked interaction up to the
hexadecapole term, plus a monopole pairing interaction using
the coupling parameters given in Ref. [10].

We estimate the statistical errors in our AFMC results using
the block jackknife method (the method is described briefly in
Appendix B). At each temperature T , we use an imaginary-
time slice of �β = 1/64 MeV−1 and 5120 Monte Carlo
samples, consisting of 128 independent Monte Carlo walkers
(on different CPUs), each composed of 40 samples taken after
thermalization. We chose a sufficiently large number of decor-
relation sweeps for the samples to be generally decorrelated.
However, we observed that, for the more deformed isotopes,

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

(c) T = 0.07 MeV

P
(q

20
)

(1
0-3

fm
-2

)

q20 (103 fm2)

0

0.5

1

1.5
(b) T = 1.1 MeV

P
(q

20
)

(1
0-3

fm
-2

)

0

0.5

1

1.5
(a) T = 4.0 MeV

P
(q

20
)

(1
0-3

fm
-2

)

FIG. 1. The laboratory-frame axial quadrupole distribution
P (q20 ) for 154Sm at three distinct temperatures: (a) a high temperature,
T = 4 MeV; (b) an intermediate temperature, T = 1.1 MeV, near
the shape transition; and (c) a low temperature, T = 0.07 MeV.
Solid lines are the marginal distributions P (q20) obtained from the
Landau-like expansion of the intrinsic shape distribution [Eq. (18)],
with parameters a, b, and c determined from the AFMC moments
of q20. Open circles are the direct AFMC calculation of P (q20) using
Eqs. (10) and (11). For clarity, only every fifth AFMC point is included
in the plot. The uncertainties in the AFMC results are smaller than
the size of the symbols.

decorrelation of the moments 〈Q̂n
20〉 was difficult to achieve.

To obtain the correct uncertainty estimates, we chose in our
jackknife method each independent 40-sample walker as a
block over which we averaged all observables used in the next
steps of the analysis.

1. Moments of Q̂20 and the expansion parameters a, b, and c

The second, third and fourth moments of Q̂20 evaluated
from the AFMC distribution P (q20) are shown in Fig. 2 as
a function of temperature. In these results, we scaled Q̂20 by
a factor of 2 to account for core polarization effects. At any
given temperature T , the moments increase with the number
of neutrons.

We determined the parameters a, b, and c by numerically
solving Eqs. (22) to match the quadrupole invariants computed
using the distribution (18) with the AFMC moments 〈Q̂n

20〉
calculated from P (q20) for n = 2, 3, 4. Figure 3 shows the

034317-4



STATISTICAL THEORY OF DEFORMATION … PHYSICAL REVIEW C 98, 034317 (2018)

0

4

8

12

16

0 1 2 3 4

(c)

Q
4 20

(1
010

fm
8 )

T (MeV)

0

2

4

6

(b)

Q
3 20

(1
07

fm
6 )

0

1

2

3
(a)

Q
2 20

(1
05

fm
4 )

148Sm
150Sm
152Sm
154Sm

FIG. 2. The (a) second, (b) third, and (c) fourth moments of
Q̂20, evaluated from the AFMC distributions P (q20) as a function
of temperature T for the even-mass samarium isotopes 148−154Sm.
The error bars are included but are typically smaller than the size of
the symbols.

expansion coefficients a, b, and c as a function of temperature
for the four even-mass samarium isotopes 148−154Sm.

2. Intrinsic quadrupole shape distributions at fixed temperature

In Fig. 4 we show log10 P (T , β, γ ) in the β-γ plane for
the four even-mass samarium isotopes 148−154Sm at a low
temperature, T = 0.07 MeV, an intermediate temperature,
T = 0.8 MeV, and a high temperature, T = 4 MeV. The max-
ima of these distributions mimic the shape transitions that are
usually observed in a mean-field approximation but within the
CI shell-model approach that takes into account correlations in
full. The signature of a thermal shape transition from prolate
to spherical as the temperature increases is clearly seen in
152,154Sm, which are dominated by a prolate deformation in
their ground state. In contrast, no thermal shape transition
is observed in the spherical nucleus 148Sm. The transitional
nucleus 150Sm undergoes a thermal shape transition, although

0
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c
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02 )

148Sm
150Sm
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154Sm

FIG. 3. The expansion parameters (a) a, (b) b, and (c) c versus
temperature T for the even-mass samarium isotopes 148−154Sm,
as determined from the moments in Fig. 2 by solving Eqs. (22)
(symbols). The solid lines describe the smoothing spline interpolation
(see text).

it is not as distinctive as for the heavier samarium isotopes.
We also observe a quantum shape transition of the ground
state (described here by the low-temperature distributions at
T = 0.07 MeV) from a spherical shape to a prolate shape as
we increase the number of neutrons between 148Sm and 154Sm.

In Fig. 5 we show on a logarithmic scale the distributions
P (T , β, γ = 0) as a function of the axial deformation β
(negative values of β describe axial deformations with γ =
π/3) for 148−154Sm at the same temperatures as in Fig. 4.
Following the maxima of these distributions, we again observe
that 148Sm is spherical at all temperatures while 152,154Sm
exhibit a clear shape transition from a prolate to a spherical
shape as the temperature increases. The transitional nucleus
150Sm also undergoes a thermal shape transition but the shape
distribution at the intermediate temperature is rather flat for a
wide range of β values, reflecting coexistence of shapes.
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FIG. 4. Distributions P (T , β, γ ) (shown in a logarithmic scale) in the β-γ plane for the even-mass samarium isotopes at different
temperatures: (a)–(d) a high temperature, T = 4 MeV; (e)–(h) an intermediate temperature, T = 0.8 MeV; and (i)–(l) a low temperature,
T = 0.07 MeV. A thermal shape transition from prolate to spherical shape is evident for all but the spherical nucleus 148Sm as the temperature
increases. A quantum shape transition from a spherical to a prolate shape is also observed near the ground state (T = 0.07 MeV) as the neutron
number increases.

The topography of the distribution P (T , β, γ ) of Eq. (18)
is completely determined by the dimensionless parameter
τ = ac/b2 [25,26].6 In Fig. 6 we show τ as a function of
temperature T for the four even-mass samarium isotopes

6The stationary points of distribution (18) are axial with γ = 0 (β >

0) or γ = π/3 (β < 0) and hence can be characterized (up to an
overall scale) by a single parameter τ .

148−154Sm. In the Landau theory of quadrupole shape tran-
sitions the spherical and prolate maxima of P (T , β, γ ) coexist
as local maxima within the interval τ = [0, 9/32] (shown
as the “mixed” region in the figure) with a first-order shape
transition between the spherical and prolate shapes occurring
at τ = 1/4. According to our AFMC calculations, these shape
transitions in 150Sm, 152Sm, and 154Sm occur, respectively, at
temperatures of T = 0.81 MeV, T = 1.03 MeV, and T = 1.29
MeV. The corresponding transition temperatures according to
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FIG. 5. The distribution P (T , β, γ = 0) (shown on a logarithmic scale) as a function of the axial deformation parameter β for the even-mass
samarium isotopes (a) 148Sm, (b) 150Sm, (c) 152Sm, and (d) 154Sm. The solid, dashed, and dotted lines correspond, respectively, to temperatures
of T = 0.07 MeV, T = 0.8 MeV, and T = 4 MeV.
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FIG. 6. The parameter τ = ac/b2 as a function of temperature T

for the even-mass samarium isotopes 148−154Sm. The values computed
from the spline interpolation of a, b, and c are described by the solid
lines. τ < 0 describes deformed shapes while τ > 9/32 describes
spherical shapes. The interval 0 < τ < 9/32 is a mixed regime with
a first-order shape transition at τ = 1/4.

the Hartree-Fock-Bogoliubov calculations of Ref. [12] are T =
0.74 MeV, T = 0.94 MeV, and T = 1.10 MeV, respectively.
It is interesting to note that 148Sm almost undergoes a shape
transition as the temperature decreases to just below 0.5 MeV.
However, as the temperature continues to decrease, τ increases
again since the pairing interaction, which dominates at low
temperatures in 148Sm, favors a spherical shape.

To facilitate the presentation of our results, we divide
the (β, γ ) plane into three distinct regions, which represent
spherical, prolate, and oblate shapes as in Fig. 7 with β0 = 0.15
separating the spherical and deformed regions. The probability
of each of the three regions is determined by integrating the
probability density P (T , β, γ ) with the corresponding metric
over each of the regions:

Pshape(T ) = 4π2
∫

shape
dβ dγ β4|sin(3γ )|P (T , β, γ ). (24)

0

γ

0.05 0.15 0.25

β

0

γ

0.05 0.15 0.25

β

π/3

π/6

prolate

oblate

spherical

FIG. 7. Partition of the (β, γ ) plane into spherical, prolate, and
oblate regions.

Here “shape” refers to any of the three regions—spherical,
prolate, or oblate—as defined in Fig. 7. The sum of these three
shape probabilities is equal to 1.

The integrals over the intrinsic deformation coordinates
β, γ were approximated using the compound trapezoidal rule
on a 20 × 20 mesh extending up to βmax = 0.3. An exception
to this were the integrals in 〈βm cosn(3γ )〉L, for which the
integration over γ is done analytically [see Eqs. (A3) and (A4)
in Appendix A]. This number of mesh points and the cutoff
βmax were determined by requiring convergence of the integrals
for the samarium isotopes; other nuclei may require a larger
number of mesh points and/or a larger cutoff βmax.

In Fig. 8 we show the spherical (open circles), prolate (solid
circles), and oblate (pluses) shape probabilities as a function
of temperature T for the four samarium isotopes 148−154Sm. In
the isotopes that are deformed in their ground state (150−154Sm)
we observe a competition between the prolate and spherical
shapes. Prolate shapes dominate at low temperatures and spher-
ical shapes at higher temperatures. The prolate and spherical
shape probabilities cross at a temperature that is higher for
the heavier isotopes which are more strongly deformed in
their ground state. In 148Sm, the spherical region dominates
at all temperatures but its probability has a minimum at a
temperature of T ∼ 0.4 MeV that is close to the temperature
where the parameter τ has a minimum (see Fig. 6). The
contribution from oblate shapes is small for all four isotopes.
In the most deformed isotope, 154Sm, it slightly exceeds the
spherical probability at low temperatures.

IV. STATE DENSITIES VERSUS INTRINSIC
DEFORMATION

In this section we discuss the calculation of the state density
as a function of intrinsic deformation parameters β and γ
and excitation energy Ex from the intrinsic shape distribution
P (T , β, γ ).

A. Saddle-point approximation

The state density ρ(E, β, γ ) at energy E and given intrinsic
deformation parameters β and γ is given by the inverse
Laplace transform of the shape-dependent partition function
Z(T , β, γ ):

ρ(E, β, γ ) = 1

2πi

∫ i∞

−i∞
d(1/T ) eE/T Z(T , β, γ ). (25)

We calculate the shape-dependent partition function from the
distribution P (T , β, γ ) using the relation

P (T , β, γ ) = Z(T , β, γ )

Z(T )
, (26)

where Z(T ) is the total partition function calculated from the
thermal energy E(T ) as in Ref. [7].

To determine the average state density at a given deforma-
tion, we evaluate the integral in Eq. (25) using the saddle-point
approximation

ρ(E, β, γ ) ≈ eS(T ,β,γ )√
2πT 2C(T , β, γ )

. (27)
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temperature T for the even-mass samarium isotopes (a) 148Sm, (b) 150Sm, (c) 152Sm, and (d) 154Sm.

Here

S(T , β, γ ) = ln Z(T , β, γ ) + E/T (28)

and

C(T , β, γ ) = T
∂S(T , β, γ )

∂T
(29)

are, respectively, the entropy and heat capacity at the corre-
sponding deformation parameters β and γ . The temperature
T in Eqs. (28) and (29) is determined as a function of energy
E and deformation parameters β and γ from the saddle-point
condition

E(T , β, γ ) ≡ T 2 ∂ ln Z(T , β, γ )

∂T
= E. (30)

Substituting T = T (E, β, γ ) in Eqs. (28) and (29), we de-
termine the state density in Eq. (27) as a function of E, β,
and γ . The corresponding excitation energy is calculated from
Ex = E − E0, where E0 is the ground-state energy.

The shape-dependent partition functionZ(T , β, γ ) depends
on the expansion coefficients a, b, and c through Eqs. (26) and
(18). Consequently, the shape-dependent entropy in Eq. (28)
depends on the first derivatives da/dT , db/dT , and dc/dT ,
while the heat capacity in Eq. (29) depends on both the first
derivatives and the second derivatives d2a/dT 2, d2b/dT 2, and
d2c/dT 2. The explicit expressions are given in Appendix A.

In analogy with Eq. (24), we can define state densities that
correspond to each of the three deformation regions in Fig. 7
by integrating the deformation-dependent state density over
the corresponding regions:

ρshape(E) = 4π2
∫

shape
dβ dγ β4| sin(3γ )|ρ(E, β, γ ). (31)

B. Application to samarium isotopes

1. Spline fits for a, b, and c and their temperature derivatives

The coefficients a, b, and c which characterize the prob-
ability distribution (18) and which are determined from the
AFMC moments of q20 in the laboratory frame have statistical
errors that are significantly amplified when taking the first
derivatives and especially their second derivatives with respect
to temperature. These derivatives are required in the calculation

of the shape-dependent energy, entropy, and heat capacity in
Eqs. (30), (28), and (29). To reduce the uncertainties in the
derivatives of a, b, and c, we fit a cubic smoothing spline
for each of the coefficients, and use this spline both for
interpolation between the sampled temperature values and for
the derivatives.

The least-squares spline fit is made for each of the coef-
ficients a, b, and c as a function of 1/T . The number of
knot points for the spline is chosen so that the reduced χ2

of the fit for each coefficient is between 1 and 1.5. In our
computations, this translated to 7 (150Sm), 10 (148,152Sm), or 11
(154Sm) spline segments. The knot points are placed so that the
points extracted from the moments are partitioned between the
spline intervals as evenly as possible. We set natural boundary
conditions for the spline; i.e., the second derivative is required
to vanish at both ends. The cubic spline fits are shown by the
solid lines in Fig. 3.

In Fig. 9, we show the derivatives da/dT , db/dT , and
dc/dT as a function of 1/T obtained from the fitted splines
(dashed lines with shaded bands describing the statistical error)
and compared to the derivatives calculated by direct numerical
differentiation (open circles with statistical errors).

2. Shape-dependent state densities

Using Eq. (26), the shape-dependent energy E(T , β, γ ) in
the saddle-point condition in Eq. (30), and the shape-dependent
entropy S(T , β, γ ) and heat capacity C(T , β, γ ) in Eqs. (28)
and (29), can be written as

E(T , β, γ ) = E(T ) + T 2 ∂

∂T
ln P (T , β, γ ), (32)

S(T , β, γ ) = S(T ) + ln P (T , β, γ ) + T
∂

∂T
ln P (T , β, γ ),

(33)

and

C(T , β, γ ) = C(T ) + 2T
∂

∂T
ln P (T , β, γ )

+ T 2 ∂2

∂T 2
ln P (T , β, γ ). (34)
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Here E(T ) is the total thermal energy calculated in the
AFMC approach from 〈Ĥ 〉, S(T ) = ln Z(T ) + E(T )/T is the
canonical entropy, and C(T ) is the canonical heat capacity
C(T ) = dE/dT . To reduce the AFMC uncertainty of C(T ),
we employed the method introduced in Ref. [29], in which
the same auxiliary-field configurations are used at inverse
temperatures β ± δβ to compute the numerical derivative of
the total energy (taking into account correlated errors).

Figure 10 shows the total state densities ρ(Ex ) as a function
of excitation energy Ex for the four samarium isotopes,
calculated directly from the thermal energy E(T ) as in Ref. [7].

Figure 11 presents the main result of this work, showing
(for the four even-mass samarium isotopes 148−154Sm) the
ratios ρshape(Ex )/ρ(Ex ) of the shape-dependent state densities
ρshape(Ex ) in Eq. (31) to the total state density ρ(Ex ) versus
excitation energy Ex for each of the three deformation regions
of Fig. 7 (i.e., spherical, prolate, and oblate). In the isotopes that
are deformed in their ground state, 150,152,154Sm, the prolate
state density dominates at low excitation energies but the
spherical state density exceeds it above a certain excitation
energy that becomes higher for the heavier isotopes.7 In the
well-deformed nuclei 152,154Sm the probability of the prolate

7We note that the exact excitation energy for which the crossing of
the spherical and prolate densities occurs depends on the value of β0

used to differentiate between the spherical and deformed regions in
Fig. 7.

shape is close to 1 up to excitations of Ex ∼ 5 MeV, while in the
transitional nucleus 150Sm it is only ∼0.8 up to Ex ∼ 3 MeV.
In the spherical nucleus 148Sm, the spherical state density
dominates at all excitation energies although the prolate shape
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FIG. 10. The total state densities ρ(Ex ) computed directly from
the thermal energy E(T ) for the even-mass samarium isotopes
148−154Sm.
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region makes a significant contribution. The contribution of
the oblate shape is relatively small in all four isotopes.

While the excitation energy dependence of
ρshape(Ex )/ρ(Ex ) in Fig. 11 exhibits an overall similarity to the
temperature dependence of the shape probabilities Pshape(T )
in Fig. 8, there are also noticeable differences. In particular for
148Sm and 150Sm, the dependence of ρshape(Ex )/ρ(Ex ) on Ex

at low excitations is considerably weaker than the dependence
of Pshape(T ) on T at low temperatures. We note that, in
converting shape probabilities P (T , β, γ ) to shape-dependent
level densities ρ(E, β, γ ), we have to use the saddle-point
condition (30), and thus the temperature T which corresponds
to a given excitation energy Ex depends on the deformation
(β, γ ). Also for this reason, the statistical errors in Fig. 11 are
correlated between nearby excitation energies. The statistical
errors in Fig. 8 are uncorrelated at different temperatures,
since the Monte Carlo calculations at different temperatures
are independent.

3. Sum rule

Integrating the shape-projected state density over all shapes
β and γ in the intrinsic frame should yield the total state density
and can thus be compared with the total state density ρ(Ex ) of
Fig. 10. Alternatively, the sum of the three shape probabilities
(spherical, prolate, and oblate regions in Fig. 7) should satisfy
the sum rule

∑
shapes

ρshape(Ex )/ρ(Ex ) = 1. (35)

These sums are shown for the four samarium isotopes by the
solid lines in Fig. 11 with error bars indicated by the shaded
gray bands. We find that the sum rule (35) is satisfied within
the error bars in all four isotopes. We note that since the saddle-
point approximation is used separately for each deformation
parameter β and γ , the sum rule is not expected to be satisfied
exactly and provides a nontrivial test of the accuracy of our
method.

V. CONCLUSION

We present a method for computing the nuclear state density
as a function of the intrinsic quadrupole deformation and
excitation energy that preserves the rotational invariance of the
Hamiltonian. Specifically, the AFMC method is applied in the
framework of the CI shell model to compute the distribution of
the axial mass quadrupole in the laboratory frame [defined by
Eq. (8)], which is then used to extract the intrinsic properties.

In broader terms, this article describes a method to calculate
energy-dependent statistical properties of a finite-size many-
particle system that undergoes a symmetry-breaking phase
transition in the thermodynamic limit. This phase transition
is described by order parameters which in the low-temperature
phase break a certain symmetry of the Hamiltonian. The
challenge is to calculate the thermal distribution of the order
parameters within a framework that preserves the exact sym-
metry and without invoking a mean-field approximation. In the
following, we assume that the order parameters are described
by one-body operators that transform according to an irre-
ducible representation of the corresponding symmetry group.
The important ingredients of the method are the following:

(a) Construction of the marginal distribution with respect
to one or more components of the order parameter
by using a projection on the corresponding one-body
operator.

(b) Determination of the expectation values of low-order
polynomial combinations of the order parameters that
are invariant under the symmetry group. This is accom-
plished by relating these invariants to moments of the
marginal distributions constructed in (a).

(c) Expansion of the logarithm of the thermal distribution
of the order parameters (i.e., the Helmholtz free energy)
in the invariants described in (b). Such a Landau-
like expansion is justified by the invariance of this
distribution under transformations of the symmetry
group and is carried out up to the lowest order that
is sufficient to describe the phase transition. The
temperature-dependent parameters that appear in this
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expansion are determined from the expectation values
of the invariants calculated in (b).

In the particular example discussed here, the symmetry
group is the rotation group and the order parameters are the
quadrupolar deformation tensor q2μ = χα2μ in the laboratory
frame. The marginal distribution is that of the axial quadrupole
q20 in the laboratory frame defined by Eq. (8). This marginal
distribution was calculated using Eqs. (10) and (11) as de-
scribed in Refs. [11,12]. We used the AFMC computational
scheme, but for smaller model spaces it could also have been
done by standard matrix configuration-interaction methods.

We found remarkable simplifications in carrying out part
(b) for our application in that the marginal distribution P (q20)
of a single component of the quadrupolar tensor was sufficient
to determine the expectation values of the three lowest-order
invariants [see Eqs. (21)]. It is also notable that these three
invariants turn out to be sufficient to construct a Landau-like
expansion of ln P (T , α2μ) [see Eq. (23)] that describes the
actual marginal distribution P (q20) to a very good accuracy
(see Fig. 1).

The example we studied here, the samarium isotope chain,
is a paradigm for the shape transition between spherical and
deformed nuclei. As is known experimentally and supported
by many studies using mean-field approximations, the lighter
isotopes are spherical in their ground state and the heavier
isotopes become progressively more deformed [27,28]. In
addition to confirming this behavior, our method describes

how the deformation becomes progressively weaker at higher
excitation energies. In this respect, we confirm earlier studies
showing that the transition from deformed to spherical shapes
as the excitation energy increases is rather gradual and far from
that characterized by a first-order phase transition predicted by
pure mean-field theory.
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APPENDIX A: LOGARITHMIC DERIVATIVES OF THE
SHAPE-DEPENDENT PROBABILITY P (T, β, γ )

The evaluation of the shape-dependent energy, entropy, and
heat capacity in Eqs. (32)–(34) require the first and second
logarithmic derivatives of the distribution P (T , β, γ ) with
respect to temperature. Here we express these derivatives in
terms of derivatives of the Landau-like expansion coefficients
a, b, and c:

∂

∂T
ln P (T , β, γ ) = ∂a

∂T
(〈β2〉L − β2) + ∂b

∂T
(〈β3 cos(3γ )〉L − β3 cos(3γ )) + ∂c

∂T
(〈β4〉L − β4) (A1)

and

∂2

∂T 2
ln P (T , β, γ ) = ∂2a

∂T 2
(〈β2〉L − β2) + ∂2b

∂T 2
(〈β3 cos(3γ )〉L − β3 cos(3γ )) + ∂2c

∂T 2
(〈β4〉L − β4)

+
(

∂a

∂T

)2(〈β2〉2
L − 〈β4〉L

) +
(

∂b

∂T

)2(〈β3 cos(3γ )〉2
L − 〈β6 cos2(3γ )〉L

) +
(

∂c

∂T

)2(〈β4〉2
L − 〈β8〉L

)
+ 2

∂a

∂T

∂b

∂T
(〈β2〉L〈β3 cos(3γ )〉L − 〈β5 cos(3γ )〉L) + 2

∂a

∂T

∂c

∂T
(〈β2〉L〈β4〉L − 〈β6〉L)

+ 2
∂b

∂T

∂c

∂T
(〈β3 cos(3γ )〉L〈β4〉L − 〈β7 cos(3γ )〉L), (A2)

where the expectation values 〈· · · 〉L are defined as in Eq. (19).
The integration over γ in calculating the expectation values

〈βm cosn(3γ )〉L can be done analytically. This yields the
formula

〈βm cosn(3γ )〉L =
∫ ∞

0 dβ e−aβ2−cβ4
Cnm(β )∫ ∞

0 dβ βe−aβ2−cβ4 sinh(bβ3)
, (A3)

where the functions Cnm(β ) for n = 0, 1, 2 are given by

C0m = βm+1 sinh(bβ3), (A4a)

C1m = 1

b
βm−2 sinh(bβ3) − βm+1 cosh(bβ3), (A4b)

and

C2m = βm+1

[(
1 + 2

b2β6

)
sinh(bβ3)

− 2

bβ3
cosh(bβ3)

]
. (A4c)

The remaining quadratures over the axial deformation
parameter β are calculated numerically.

APPENDIX B: THE JACKKNIFE METHOD

The jackknife technique is a well-known method for vari-
ance and bias estimation in statistics. Here we summarize the
method, referring to Refs. [30–32] for more detail.
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While the original motivation for the jackknife was to
reduce the bias of statistical estimates, the procedure has an
additional major advantage in case of complex computations.
It does not require computing analytical partial derivatives,
in contrast to the traditional error propagation formula based
on Taylor’s expansion. The jackknife method is particularly
useful when the analytic form of the partial derivatives is
intractable.

The jackknife method for estimating the uncertainty is
straightforward. Given a function f (x, y, . . .) and N inde-
pendent and identically distributed samples of its variables
(x, y, . . .), one first leaves out the ith sample (xi, yi, . . .)
of the data (for each i at a time) and computes the
averages

(x (i), y (i), . . .) =
(

1

N − 1

∑
j �=i

xj ,
1

N − 1

∑
j �=i

yj , . . .

)

(B1)

for i = 1, . . . , N . One then computes the function f for each
of these N averages:

f (i) = f (x (i), y (i), . . .). (B2)

Finally, one uses the N values f (i) to estimate the average value

of the function

fJ = 1

N

∑
i

f (i), (B3)

and its standard error

δfJ =
√

N − 1

N

∑
i

(fJ − f (i) )2. (B4)

We note that Eq. (B4) differs from the usual error formula
(which is used for uncorrelated values) by the factor N − 1
because the values f (i), computed from averages of sets
differing from one another only by one sample, are highly
correlated.

The jackknife procedure is consistent with the standard
error formula obtained by using the Taylor expansion for the
function f (see, e.g., in Ref. [30]). If the samples are correlated
but can be divided into equally sized uncorrelated blocks of
samples, the jackknife method can be applied to block averages
of the variables x, y, . . . (this is the case where each block is
generated by a Monte Carlo walk on a different CPU). It is
easy to show that this is equivalent to leaving out consecutive
nonoverlapping blocks of samples (instead of single samples),
also known as a delete-k jackknife.
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