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Shells in a toroidal nucleus in the intermediate-mass region
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Attention is fixed on shells in toroidal nuclei in the intermediate-mass region using a toroidal single-particle
potential. We find toroidal shells in the intermediate-mass region with large single-particle energy gaps at various
nucleon numbers. These toroidal shells are located at different toroidal deformations characterized by the aspect
ratios of the toroidal major radius to the toroidal minor radius, and they provide extra stability at various toroidal
deformations. Relative to a toroidal core, the Bohr–Mottelson spin-aligning particle-hole excitations may be
constructed to occupy the lowest single-particle Routhian energies to lead to toroidal high-spin isomers with
different spins. Furthermore, because a nucleon in a toroidal nucleus possesses a vorticity quantum number,
toroidal vortex nuclei may be constructed by making particle-hole excitations in which nucleons of one type
of vorticity are promoted to populate unoccupied single-particle orbitals of the opposite vorticity. Methods for
producing toroidal high-spin isomers and toroidal vortex nuclei are discussed.
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I. INTRODUCTION

Wheeler suggested that, under appropriate conditions, the
nuclear fluid may assume the shape of a torus [1]. Favorable
conditions include nuclear-shell effects [2,3], large Coulomb
energies [2–4], large nuclear angular momenta [5–8], nu-
clear collision dynamics [9,10], and combinations thereof.
Although the basic ideas on the conditions favorable for
toroidal configurations were presented many decades ago
[2–10], the subject matter has gained renewed interest recently
because powerful theoretical and experimental tools are now
readily available [11–39]. The interest is heightened by recent
experimental evidence for the presence of resonances at high
excitation energies in the 7α disassembly of 28Si, which may
suggest the production of toroidal high-spin isomers predicted
in many theoretical calculations [28]. Should these experi-
mental results be confirmed by further studies, toroidal nuclei
would potentially be interesting objects of study because of
their new form of geometry, new toroidal shells and magic
numbers, new types of yrast high-spin states, new toroidal
nuclei species in different mass regions, new probes of nuclear
energy density functional and nuclear equations of state in a
new density regime, and new possible doorways to energy-
producing mechanisms.

It is instructive to see how nuclear-shell effects and the
alignment of single-particle spins along the symmetry axis
can constrain the nucleus to assume a toroidal shape. We
characterize the toroidal deformation of a toroidal nucleus by
the aspect ratio R/d of the major radius R to the minor radius
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d. For light nuclei, there are large energy gaps in toroidal
single-particle energies in an extended region of toroidal de-
formations. These energy gaps give rise to “toroidal shells” at
“magic” nucleon numbers N = 2(2m + 1), with integers m �
1 [2,3]. The extra stability associated with toroidal shells [40]
leads to toroidal local energy minima for many light nuclei.
Toroidal excited (diabatic) states have been predicted for Ca to
Ge, with mass numbers 40 � A � 70 by using the Strutinsky
shell correction method [2,3], and for 24Mg [14] and 28Si [28]
by using a self-consistent relativistic mean-field theory. Rela-
tive to a toroidal core, spin-aligning Bohr–Mottelson particle-
hole excitations occupying the lowest Routhian single-particle
energies [41] can be constructed to yield a toroidal nucleus
with a spin as a yrast state, by promoting nucleons with
angular momentum aligned opposite to a chosen symmetry
z axis to populate orbitals with angular momentum aligned
along the symmetry z axis [15–20]. A spinning toroidal nu-
cleus possesses an effective “rotational” energy, which tends
to expand the toroid, whereas the energy associated with
the nuclear bulk properties tends to contract the toroid. The
balance between the two energies gives rise to a local toroidal
energy minimum [4]. Self-consistent calculations have been
carried out to locate toroidal high-spin isomers as yrast states
in the light-mass region [15–20,28].

For the heavy and superheavy nuclei there is similarly a
toroidal shell region with negative shell corrections [2,3]. The
toroidal configuration is further favored by large Coulomb
energies. As a consequence, many toroidal nuclei have been
theoretically located in the superheavy region [11–13,25–
27,29]. In situations where the I = 0 state in the toroidal
nucleus 304120 are not stable adiabatically, the spin-aligning
Bohr–Mottelson particle-hole excitations generate yrast high-
spin states to lead to adiabatic local energy minima at various
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spin values [25,26]. The neighboring even-even N = 184
isotone nuclei with Z = 118 and 122, as well as the Z = 120
isotopes with N = 182 and 186, also possess toroidal high-
spin isomers at various spins and toroidal deformations [27].

Along with theoretical predictions [2,3,11–20,25–27,29]
and experimental investigations [28] in the light and heavy-
mass regions, it is natural to ask whether toroidal nuclei
may also be possible in the intermediate-mass region. In
this regard, our knowledge of toroidal nuclei in this mass
region is scanty. We wish to examine here toroidal shells
in the intermediate-mass region with 30 � N (or Z) � 96
where negative shell corrections are present over an ex-
tended region of nucleon numbers and toroidal deforma-
tions [3]. A large number of toroidal shells at various
toroidal deformations are expected. We would like to know
whether there are some regularities in the shell structure,
how frequent toroidal shells occur, what are their nucleon
numbers, and where their corresponding toroidal deforma-
tions are located. Furthermore, Bohr–Mottelson spin-aligning
particle-hole excitations relative to a toroidal core can lead
to high-spin toroidal isomers, and these high-spin isomers as
yrast states have longer lifetimes and a better chance of being
detected [28]. We would like to examine the possibilities
of toroidal high-spin isomers in this mass region by study-
ing the shell structure of single-particle Routhian energies
as a function of the cranking frequency. Such information
will guide our intuition and help our search for toroidal
excited states and toroidal high-spin isomers in future exper-
iments and mean-field calculations in the intermediate-mass
region.

In the present survey over a large extended multidimen-
sional space of nucleon numbers N , toroidal deformations
R/d, and nuclear spins I = Iz, it is convenient to use a
simple harmonic-oscillator toroidal shell model for which
the relevant results can be readily obtained. Furthermore,
the simple toroidal shell model has the desirable property
that many physical properties can be clearly exhibited. In
particular, from the single-particle wave functions for the
two-dimensional harmonic oscillators in the meridian plane,
one finds that a nucleon in a toroidal nucleus possesses a
vorticity quantum number �⊥ associated with a circulating
current around the poloidal angle θ (Fig. 1). We propose the
possibility of toroidal vortex nuclei by making vortex-creating
single-particle particle-hole excitations that promote nucleons
of one type of vorticity from occupied orbitals to populate
unoccupied single-particle orbitals of the opposite vorticity.
The resultant nucleus will have a net nonzero vorticity �⊥ as
shown in Fig. 1. Because vorticity is quantized and cannot be
easily destroyed, the presence of a net vorticity may enhance
the stability of the toroidal vortex nucleus.

It should, however, be noted that the vorticity quantum
number is nonzero only if the principal quantum number n
of the two-dimensional harmonic-oscillator wave function for
the nucleon motion on the meridian plane is greater than or
equal to unity. This excludes the light toroidal nuclei from the
possibility of becoming toroidal vortex nuclei.

Experiments have been performed recently to search for
a toroidal high-spin isomer in 28Si with spin I = Iz = 44
predicted earlier in Ref. [17] by colliding 28Si at 35 MeV/A
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FIG. 1. The cylindrical coordinates (ρ, z, φ) and toroidal coordi-
nates (r⊥, θ, φ) used for the description of a toroidal nucleus with a
major radius R, a minor radius d , and a vorticity �⊥. Here, φ is the
toroidal angle, θ is the poloidal angle, and r⊥ = [(ρ − R)2 + z2]1/2.
Some of the poloidal vortex flow lines are schematically exhibited.

on a fixed 12C target [28]. At the predicted energy region,
a total of three sharp resonances instead of just a single
resonance have been observed and interpreted as possible
toroidal high-spin isomers with spins I = Iz = 28, 36, and
44 in the excited 28Si system. Subsequent relativistic mean-
field calculations provide additional theoretical support for the
presence of these states [21–23]. We would like to understand
in a simple mechanical way how high-spin nuclei can be
produced in the binary products of such reactions. We would
also like to investigate the process of punching of a small
nucleus through a larger nucleus [3] for the generation of
vorticities, if only heuristically.

This paper is organized as follows: In Sec. II, we introduce
the toroidal single-particle potential and evaluate the single-
particle eigenenergies analytically as shown in the appendix.
In Sec. III, we display the single-particle-state energies in the
intermediate-mass region and infer the toroidal shell magic
number N in a region of low single-particle energy densities
as a function of the toroidal deformation R/d. In Sec. IV,
we examine how one can carry out the spin-aligning Bohr–
Mottelson particle-hole excitations to lead to toroidal high-
spin isomers as yrast states in the intermediate-mass region.
The set of nucleon numbers and spin quantum numbers for
the favorable configurations at R/d = 2.9 are presented as
an example. In Sec. V, we make the coordinate transfor-
mation from the Cartesian-like coordinates of (ρ − R, z) to
the polar coordinates (r⊥, θ ) on the meridian plane in order
to exhibit explicitly the vorticity quantum number �⊥. In
Sec. VI, we show how we can construct a vortex nucleus
by vortex-creating single-particle particle-hole excitations. In
Sec. VII, we examine some experimental methods in the
production of toroidal high-spin isomers and toroidal vortex
nuclei. Section VIII concludes the present discussions.

II. TOROIDAL SINGLE-PARTICLE POTENTIAL

The study of the shell structure of a toroidal nucleus
necessitates the use of a toroidal single-particle potential,
which has a shape similar to the toroidal density distribution.
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Accordingly, we assume a single-particle toroidal potential of
the form [3]

V0(ρ, z) = 1
2mω2

⊥(ρ − R)2 + 1
2mω2

⊥z2, (1)

where the z axis is the symmetry axis, ρ = (x2 + y2)1/2 as
shown in Fig. 1. The quantity m is the nucleon rest mass and
ω⊥ is the harmonic-oscillator frequency related to the aspect
ratio R/d by [3]

h̄ω⊥ =
(

3πR/d

2

)1/3

h̄ω0
◦
, (2)

where

h̄ω0
◦ = 41 MeV/A1/3. (3)

The above equation for h̄ω0
◦

needs to be modified. In earlier
Hartree–Fock–Bogoliubov (HFB) calculations [17], the aver-
age toroidal nuclear matter density ρtoroidal is approximately
2/3 of the nuclear matter density ρ0 of the spherical nucleus
with the same mass number. Because the mean-field potential
is proportional approximately to the nuclear matter density,
we need to include an additional factor ρtoroidal/ρ0 in Eq. (3)
to give

h̄ω0
◦ = (41 MeV/A1/3)(ρtoroidal/ρ0). (4)

We have (ρtoroidal/ρ0) ∼ 0.64 for A ∼ 40 [17], and
(ρtoroidal/ρ0) ∼ 1.0 for superheavy nuclei [26], we can
therefore take the average value of (ρtoroidal/ρ0) ∼ 0.82 for
our intermediate-mass region of A ∼ 60–160, where we shall
use A = 110 in Eq. (4) for numerical purposes.

With the inclusion of the spin-orbit interaction, the single-
particle potential is

H = − h̄2

2m
∇2 + V0(ρ, z) − 2κh̄

mω0
◦ s · (∇V0 × p), (5)

where κ is a dimensionless parameter for which Nilsson gave
the value of κ = 0.06 [42]. We choose the spin s to be
diagonal along the symmetry z axis and neglect the small
contribution from the off-diagonal spin-orbit interaction. We
carry out our analytical calculations in the large-major-radius
approximation in which R � d, expand ρ about R in power
of q = ρ − R, and keep terms up to the second order in q/R.
The harmonic-oscillator potential can be solved analytically
as shown in the appendix. We get the single-particle energies
for the single-particle state |nρnz�z�z〉:

ε(nρnz�z�z) =
(

nρ + 1

2

)
h̄ω′

⊥ +
(

nz + 1

2

)
h̄ω⊥

+ h̄2

2m

�2
z − 1

4

R2
+ a0, (6)

where nρ and nz are the quantum numbers for harmonic
oscillations in the ρ and z directions, respectively, �z is the
azimuthal angular-momentum quantum number, �z = �z +
sz = ±|�z|,
ω′2

⊥ = ω2
⊥(1 + a2), (7)

a2 = 1

mω2
⊥

{
h̄2

2m

�2
z − 1

4

R2

6

R2
+ 2κ (h̄ω⊥)2

h̄ω0
◦ szLz

2

R2

}
, (8)

FIG. 2. Single-particle energies for a toroidal nucleus as a func-
tion of the aspect ratio R/d . The states are labeled by quantum
numbers (nρ, nz, |�z|, |�z|), which are displayed only for the lowest
states. The locations of the toroidal shell are shown as bracketed
numbers, (N ), at their corresponding toroidal deformations, R/d .
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q0 = 1

mω2
⊥(1 + a2)

{
h̄2

2m

�2
z − 1

4

R2

2

R
+ 2κ (h̄ω⊥)2

h̄ω0
◦

szLz

R

}
.

(10)

III. TOROIDAL SINGLE-PARTICLE STATES

The single-particle-state energies in Eq. (6) lead to the level
diagram as a function of the toroidal deformation R/d shown
in Fig. 2. A toroidal shell (N,R/d ) is characterized by the
nucleon number N , for which the single-particle states have
an energy gap at the toroidal deformation R/d. We indicate
the location of a toroidal shell (N,R/d ) by a bracketed
number (N ) at its corresponding toroidal deformation R/d in
Fig. 2.

We find that toroidal shells are numerous in number in
light- and intermediate-mass nuclei. As the nucleon number
increases beyond the light-mass region, nucleons populate
states with n = nρ+nz � 1 and the density of single-particle
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TABLE I. Locations of toroidal shells in the intermediate-mass
region.

Toroidal Toroidal shell nucleon numbers
deformation R/d (N )

∼1.8 (30), (42), (46), (50)
∼2.2 (34), (44), (54), (58),(64)
∼2.5 (46), (56), (66), (72)
∼2.9 (48), (58), (68), (78)
∼3.2 (50), (60), (70), (80)
∼3.5 (52), (62), (72), (82), (92)
∼3.8 (54), (64), (74), (84), (94)
∼4.2 (56), (66), (76), (86), (96)

states initially becomes very dense. The density, however, be-
comes sparse as the nucleon number and toroidal deformation
increase. As indicated in Fig. 2, large energy gaps of single-
particle energy levels occur to give rise to toroidal shells for
many nucleon numbers at various toroidal deformations. The
toroidal shells (N,R/d ) in the intermediate-mass region with
30 � N (or Z) � 96 are listed in Table I.

We note that the toroidal shells occur in a rather regular
pattern as a result of the interplay among three different
energies scales, as is evident from Eq. (6). There is first of
all the gross structure energy scale of h̄ω⊥ of order 10 MeV
that increases with R/d. There is the much smaller energy
scale of h̄2/2mR2 of order 1 MeV with single-particle orbiting
energies �2

z h̄
2/2mR2. And, finally, there is the small finer-

structure arising from the spin-orbit interactions. As a result
of the interplay between these three energy scales, we note
the following regular structure:

(1) As a function of increasing toroidal deformation R/d,
there are sequences of toroidal shells occurring at an
interval of �(R/d ) ∼ 0.3 and �N = 2.

(2) For a fixed value of toroidal deformation R/d, there
are sequences of toroidal shells occurring at an in-
terval of �N = 10 arising from nucleons occupying
four (nρ+nz = 1, �z) states and a single (nρ + nz =
0,�′

z) state.

There are toroidal shells with nucleon numbers (30), (42),
(46), and (50) at R/d ∼ 1.8, (34 + 10m) and (58) at R/d ∼
2.2, (46 + 10m) and (72) at R/d ∼ 2.4, (48 + 10m) at
R/d ∼ 2.9, (50 + 10m) at R/d ∼ 3.2, (52 + 10m) at R/d ∼
3.5, (54 + 10m) at R/d ∼ 3.8, and (56 + 10m) at R/d ∼ 4.2.
The integer m in these toroidal shell series starts with m = 0
and terminates with m = 3, or 4, until the n = nρ + nz = 2
single-particle states are reached.

Nuclei with toroidal shells gain extra stability at the asso-
ciated toroidal deformation. Consequently, they present them-
selves as good candidates in the search for excited toroidal
local energy minima in microscopic model calculations, as
carried out in previous Strutinsky shell correction calculations
or in self-consistent mean-field calculations [2,3,14,28].

It is interesting to note that, in the intermediate-mass re-
gion, many toroidal shells of different nucleon numbers occur
at approximately the same toroidal deformation. This feature

facilitates the combinations of different neutron and proton
numbers to maximize the shell effects at the same toroidal
deformation and at the same time minimize the instability
against beta decay. However, because of the Coulomb inter-
action, the proton toroidal shell nucleon number and toroidal
deformations will be slightly modified from those listed in Ta-
ble I. The repulsive single-particle proton potential is greatest
near the region of the greatest nuclear densities and therefore
the single-particle Coulomb potential behaves approximately
as an inverted harmonic oscillator in the meridian plane. To
the lowest order of modification, it will effectively modify
the harmonic-oscillator frequency h̄ω⊥ so that one effectively
speaks of h̄ω⊥(neutron) for the neutron and a slightly modi-
fied h̄ω⊥(proton) for the proton. We expect from Eq. (6) that,
similar to the neutron toroidal shells there will likewise be
proton toroidal shells at various toroidal deformations. Fur-
thermore, because of the regularity of the shell structure and
the frequent occurrences of the toroidal shells in both nucleon
numbers and toroidal deformations, one expects that there will
be many combinations of proton and neutron toroidal shells
occurring at the same toroidal deformation to make them
favorable for the stabilization due to the nuclear-shell effects.
Future microscopic models will provide a better description
of the toroidal nuclei possibilities in the intermediate-mass
region.

IV. TOROIDAL HIGH-SPIN ISOMERS IN
INTERMEDIATE-MASS REGION

In addition to the toroidal shell structure characterized by
the nucleon number N at the toroidal deformation R/d, there
is the spin degree of freedom that is worth exploring for the
intermediate-mass region. Relative to an even-even core of a
toroidal nucleus occupying the lowest toroidal single-particle
states at a given toroidal deformation R/d, toroidal high-spin
isomers with different spins as yrast states may be constructed
with the spin-aligning Bohr–Mottelson particle-hole excita-
tions [41] as carried out in Refs. [15–20,25–27]. The I = 0
toroidal core nucleus may be in a local energy minimum, if
the nucleus has both neutron and proton toroidal shells and
the associated shell correction energy is strong enough to
allow an energy minimum [28]. On the other hand, if the shell
correction is not strong enough to allow an energy minimum
or, if the nucleon numbers at that toroidal deformation
fall into regions of high single-particle state density with
positive shell corrections, then the toroidal nucleus will be
away from a local energy minimum [25–27]. In either case,
high-spin toroidal isomers can nevertheless be constructed
from the I = 0 toroidal core by using the spin-aligning
Bohr–Mottelson particle-hole excitations [41] by promoting
nucleons occupying states with an angular momentum
opposite to a chosen symmetry axis to occupy empty states
with an angular momentum along the symmetry axis.

Using the cranking frequency h̄ω as a Lagrange multiplier,
the particle-hole excitation leading to a particular angular
momentum yrast I = Iz state can be obtained by occupying
the lowest Routhian single-particle orbitals as a function
of h̄ω, as was shown in previous cranked self-consistent
Hartree–Fock calculations [15–20,25–27]. The single-particle
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(a)
(b)

FIG. 3. (a) Single-particle state energy ε for a toroidal nucleus
as a function of the aspect ratio R/d . The states are labeled with
quantum numbers (nρ, nz, |�z|, |�z|). (b) Single-particle Routhian
εRouthian as a function of the cranking frequency h̄ω, at the toroidal
deformation R/d = 2.9. The bracketed numbers are favorable (N, I )
configurations at this deformation.

Routhian εRouthian(nρnz�z�z), under the constraint of the
noncollective aligned angular momentum is related to the
single-particle energy ε(nρnz�z�z) by

εRouthian(nρnz�z�z) = ε(nρnz�z�z) − h̄ω�z. (11)

It is necessary to investigate the shell structure in the space of
N , R/d, and h̄ω. As an example, we show the shell structure
at R/d = 2.9 where many toroidal shells are located. It is of
interest to see how different toroidal shell structure evolve
as a function of the cranking frequency h̄ω. We show in
Fig. 3 the multidimensional nature of the shell structure by
exhibiting the single-particle state energy as a function of
R/d in Fig. 3(a), and the the single-particle Routhian energy
as a function of h̄ω at R/d = 2.9 in Fig. 3(b). We can use
Fig. 3(b) to determine the spin value I = Iz as a function of
N and h̄ω at R/d = 2.9. Specifically, for a given N and h̄ω,
the aligned I = Iz from the N nucleons occupying the lowest
Routhian energy states can be obtained by summing �zi over
all states below the Fermi energy and the summed aligned
angular momentum I is a step-wise function of the Lagrange
multiplier h̄ω [43], with each I spanning a small region of
h̄ω. By such a construction, we obtain selective regions of
low Routhian energy level densities at different (N, I, R/d )
configurations at the top of the Fermi energy and the toroidal
deformation R/d. These (N, I, R/d ) configurations are fa-
vorable candidates in search of toroidal high-spin isomers [17]
in microscopic models. We show the locations of favorable
(N, I ) configurations for R/d = 2.9 in Fig. 3(b).

It is interesting to note in Fig. 3(b) that, at R/d = 2.9
and h̄ω ∼ 0.4 MeV, the shell regions of low Routhian en-
ergy level density occur for (N, I ) = (52, 26), (68,26), and
(74,37) which may allow various (Z, Iproton ) and (N, Ineutron )
combinations to be good candidates for toroidal high-spin
isomers. At h̄ω ∼ 0.6 MeV, the shell regions of low Routhian

density occur for (54,39), (64,44), (72,50), and (74,52). At
h̄ω ∼ 0.8 MeV, the shell regions of low Routhian density
occur for (58,58) and (68,68), and at h̄ω ∼ 1.0 MeV they
occur at (48,59), (68,73), (68,82), and (80,100). Note that
there are many nucleon numbers (such as N = 52, 74, 80,
54, 64, …) in these favorable configurations that are not
toroidal shell numbers associated with extra stability at h̄ω =
0 without cranking at R/d = 2.9. These nucleon numbers
nevertheless may be favorable for high-spin isomers because
of their shell structure as a function of h̄ω under a cranking
motion, as in the analogous case in the superheavy nuclei
region [26]. From this viewpoint, it is not always necessary
to have a toroidal core located at an energy minimum to
make the Bohr–Mottelson spin-aligning single-particle exci-
tations for toroidal high-spin isomers. What is necessary is
the low Routhian energy density under the cranking motion
that provides the favorable condition to stabilize toroidal high-
spin isomers. Favorable (N, I ) configurations occur at other
toroidal deformations R/d as well.

The results in Fig. 3 demonstrate that, just as it is with
light-mass nuclei, toroidal high-spin isomers are also expected
in the intermediate-mass region. The shell structure is, how-
ever, a very complicated function of toroidal deformation and
the cranked frequency. Thus the occurrence of the favorable
combination shell region (N, I, R/d ) for toroidal isomers
can only be treated on a case-by-case basis. The search for
high-spin isomers can proceed as in Refs. [14,17–20,25–27]
by using figures similar to Fig. 3 as a guide.

The spin and the excitation energy of a toroidal high-spin
isomer can be calculated in the self-consistent mean-field
theory. It can also be estimated in the toroidal shell model
as was carried out in Ref. [28]. In such an estimate, upon
promoting a nucleon from an initial orbital (nρ, nz,�z,�z)i
to become a hole state and to occupy an empty final orbital
(nρ, nz,�z,�z)f , one calculated the change in the aligned
angular momentum and the excitation energy for such a
promotion from the quantum numbers and the single-particle
energies of the particle-hole states. The total spin I = Iz and
total excitation energy EI − EI=0 are then the sums from all
particle-hole promotions. The spin of the toroidal nucleus is
given by

Iz =
particle states∑

f

�zf −
hole states∑

i

�zi , (12)

and the total excitation energy is given by

EI − EI=0 =
particle states∑

f

ε(nρnz�z�z)f

−
hole states∑

i

ε(nρnz�z�z)i . (13)

It should, however, be stressed that what has been pre-
sented here with the analytical toroidal single-particle shell
model provides only an intuitive guide on the interesting
nuclei where toroidal high-spin isomers may be searched and
located. Whether these states turn out to be local energy
minima will need to rely on reliable microscopic models
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TABLE II. The equivalence of (nρ, nz ) → (n⊥, �⊥) for the toroidal single-particle states.

nρ + nz (nρnz ) states (n⊥, �⊥) states Number
of states

0 (0, 0) (0,0) 1
1 (0,1) (1,0) (0, +1) (0,−1) 2
2 (0,2), (2,0), (1,1) (0, +2), (0,−2), (1,0) 3
3 (0,3), (3,0), (1,2), (2,1) (0,3), (0,−3), (1,1), (1, −1) 4

such as the nonrelativistic mean-field or relativistic mean-field
calculations as carried out in Refs. [11–29].

V. TOROIDAL NUCLEI WITH VORTICITIES

The geometrical shape of a toroidal nucleus provides a
natural way to describe nuclear vorticities, as shown in Fig. 10
of Ref. [3] and in Fig. 1. The concept of vortex nucleus is
best examined in the limit of a toroidal nucleus with a large
major radius R so that we can neglect d/R, and the difference
between h̄ω⊥ and h̄ω′

⊥ is small and can be neglected. Within
this approximation, we can rewrite Eqs. (A13) and (A7) as[
− h̄2

2m

(
∂2

∂q2
− �2

z − 1
4

R2

)
− h̄2

2m

∂2

∂z2
+ 1

2
mω2

⊥q2 + 1

2
mω2

⊥z2

− 2κh̄

mω0
◦

mω2
⊥

R/d
sz�z − ε(nρnz�z�z)

]
Rnρ

(ρ)Znz
(z) = 0.

(14)

where q = ρ − R. We can transform the two-dimensional
(q, z) coordinates to polar coordinates (r⊥, θ ) where

r⊥ =
√

q2 + z2, θ = tan−1(z/q ), (15)

and θ is the poloidal angle as shown in Fig. 1. We can rewrite
Eq. (14) as[

− h̄2

2m

(
1

r⊥

∂

∂r⊥
r⊥

∂

∂r⊥
− �2

⊥
r2
⊥

)
+ 1

2
mω2

⊥r2
⊥ + h̄2

(
�2

z − 1
4

)
2mR2

− 2κh̄

mω0
◦

mω2
⊥

R/d
sz�z − ε(n⊥�⊥�z�z)

]

n⊥�⊥ (r⊥)ei�⊥θ = 0.

(16)

In Eq. (14), the two-dimensional harmonic-oscillator nu-
cleon wave function Rnρ

(ρ)Znz
(z) in (q, z) coordinates in

the meridian plane with quantum numbers (nρ, nz) has been
transformed into 
nρ�⊥ (r⊥)ei�⊥θ in (r⊥, θ ) coordinates with
quantum numbers (n⊥,�⊥) in the above equation. Note that
the wave function ei�⊥θ describes the state with vorticity
�⊥ associated with a circulating vortex current around the
poloidal angle θ in the meridian plane, as shown in Fig. 1. It
is the poloidal angular momentum along the poloidal angular
direction. If only a single ei�⊥θ state is occupied, we have
a state of vorticity �⊥, but if there is a pair of nucleons
occupying both ±|�⊥| states, then the vorticities of these two
nucleons cancel each other, and we have a state of zero total
vorticity. If by construction when there is a bias in occupying
more positive �⊥ states than negative �⊥ states (or vice

versa), then there will be a net nonzero �⊥ and consequently
a net nonzero total vorticity.

The two-dimensional harmonic-oscillator energy in (nρnz)
and in (n⊥�⊥) are related by

(nz + nρ + 1)h̄ω⊥ = (2n⊥ + |�⊥| + 1)h̄ω⊥. (17)

We have the equivalence between the toroidal states in (nznρ )
and in (n⊥�⊥) in Table II which shows that a nucleon in a
toroidal nucleus residing at states with nz+nρ � 1 possesses
a nonzero vorticity quantum number �⊥. We can relabel the
set of states with quantum numbers (nρnz) to (n⊥�),

|nρnz�z�z〉 → |n⊥�⊥�z�z〉. (18)

Clearly, the �⊥ = ±|�⊥| states are degenerate. Vorticity is a
new degree of freedom not available for light nuclei studied in
Refs. [14–20,28].

The single-particle energy of |n⊥�⊥�z�z〉 is therefore
given from Eq. (16) by

ε(n⊥�⊥�z�z) = (2n⊥ + |�⊥| + 1)h̄ω⊥ + h̄2
(
�2

z − 1/4
)

2mR2

− 2κh̄

mω0
◦

mω2
⊥

R/d
sz�z. (19)

The vorticity of a nucleus or a nucleon is a quantized
quantity and is measured in units of h̄. After the symmetry z
axis has been chosen, as for example as the axis pointing in the
upward direction in Fig. 1, then we can designate the vorticity
to be positive by the right handedness of the poloidal flow
on the right rim of the nucleus, according to the sense of the
poloidal angle θ , as shown in Fig. 1 between the ρ axis and the
radial vector r⊥. Negative vorticity corresponds to the case of
left handedness of the poloidal flow. The handedness property
of the poloidal flows allows one to associate the vorticity
quantum numbers also with equivalent chirality quantum
numbers, with positive and negative vorticities associated with
positive and negative chiralities, respectively. Clearly, if the
toroidal vortex nucleus has a nonzero spin about the symmetry
axis, the toroidal vortex nucleus with opposite vorticities (or
chiralities) are distinguishable physical states.

Vorticity is a good quantum number and it is a conserved
quantity. It would be of interest to study the production the
decay of these nuclei to see if they may show up as exotic
metastable states with a toroidal topology and flow patterns.

VI. HOW TO CONSTRUCT A VORTEX NUCLEUS

We can use Table II to construct a nucleus with a total
vorticity �total

⊥ . The vorticity quantum number of a nucleon
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TABLE III. The configurations of the eight topmost occupied
single-particle states at the top of the Fermi energy for Z = 48 and
R/d = 2.9 in Fig. 2. In this configuration, the total proton vorticity
for this state, �total

⊥proton, and the total spin �total
z are zero.

n⊥ Vorticity �⊥ |�z| �z

0 1 2 3/2
0 −1 2 3/2
0 1 2 −3/2
0 −1 2 −3/2
0 1 2 5/2
0 −1 2 5/2
0 1 2 −5/2
0 −1 2 −5/2

�⊥ can be both positive and negative and the total vorticity
�total

⊥ for an N (or Z) nucleon system is the sum of the
vorticities of its constituent nucleons, �⊥i :

�total
⊥ =

N (or Z)∑
i

�⊥i . (20)

We study a concrete example and focus our attention on
the toroidal nucleus with Z = 48 and N = 58 at R/d = 2.9
whose large single-particle energy gaps in Fig. 2 make it
likely to have an excited toroidal energy minimum stable
against expansion and contraction of the major radius at
that toroidal deformation. We examine first the vorticities
and the energy for protons with Z = 48 in Tables III,
IV, and Fig. 2. By populating the lowest single-particle
states at this possible toroidal energy minimum, the
eight topmost occupied states are (n⊥,�⊥, |�z|,�z) =
(0,±1, 2, (±3/2)) and (0,±1, 2, (±5/2)), each of
which is degenerate with �z = ±|�z|, �z = ±|�z|.
So, we have ε(n⊥,�⊥, |�z|,�z) = ε(0, 1, 2, (+3/2)) =
ε(0, 1, 2, (−3/2)), and ε(n⊥,�⊥, |�z|,�z) = ε(0, 1, 2,
(+5/2)) = ε(0, 1, 2, (−5/2)). Each of these four states,
(n⊥, |�⊥|, |�z|,�z) = {(0, 1, 2, (+3/2)), (0, 1, 2, (−3/2)),
(0, 1, 2, (+5/2)), (0, 1, 2, (−5/2))} are doubly degenerate
with �⊥ = ±|�⊥|. For the configuration in which the eight
topmost occupied states for Z = 48 are given in Table III, the

TABLE IV. The configurations of the eight topmost occupied
states for Z = 48 at R/d = 2.9 in Fig. 2 after the vortex-creating
4p-4h excitations with the promoted particle configurations shown
in bracketed numbers. In this configuration, the total proton vorticity
is �total

⊥proton = 8h̄ and �total
z proton = 0.

n⊥ Vorticity �⊥ |�z| �z

0 1 2 3/2
0 (1) (3) (5/2)
0 1 2 −3/2
0 (1) (3) (−5/2)
0 1 2 5/2
0 (1) (3) (7/2)
0 1 2 −5/2
0 (1) (3) (−7/2)

total vorticity �total
⊥ and the total spin about the z axis �total

z

are zero.
Now suppose we promote all four proton states in Ta-

ble III with �⊥ = −1 from such �⊥ = −1 states to the
next unoccupied level with �⊥ = +1 by particle-hole ex-
citations. According to Fig. 2, the next unoccupied lev-
els are (n⊥,�⊥, |�z|,�z) = (0,�⊥ = +1, |�z| = 3, |�z| =
5/2 & 7/2). We obtain the set of occupied states in Table IV,
with the promoted particle states in bracketed numbers.

The excitation energy of this 4p-4h state with eight units
of vorticity from Tables III and IV in promoting the set of {i}
nucleons from the |n⊥�⊥�z�z〉 states to the |n′

⊥�′
⊥�′

z�
′
z〉

states is
E

proton
�⊥=8 − E

proton
�⊥=0

=
∑
all i

(εn′
⊥�′

⊥�′
z�

′
z
(i) − εn⊥�⊥�z�z

(i))

= [ε(0, 1, 3, 5/2) + ε(0, 1, 3,−5/2)

+ ε(0, 1, 3, 7/2) + ε(0, 1, 3,−7/2)]

− [ε(0, 1, 2, 3/2) + ε(0, 1, 2,−3/2)

+ ε(0, 1, 2, 5/2) + ε(0, 1, 2,−5/2)], (21)

which can be obtained from the eigenvalue equation (19).
Assuming negligible spin-orbit interaction, which is probably
small, we have from the protons with Z = 48 at R/d = 2.9
with a total proton vorticity �total

⊥proton = 8h̄,

E
proton
�⊥=8 − E

proton
�⊥=0 = 4

h̄2
(
�′2

z − �2
z

)
2mR2

= 4
h̄2(32 − 22)

2mR2
= 20h̄2

2mR2
. (22)

We turn now to the vorticities and the energy for neutrons
with N = 58 at R/d = 2.9 in Fig. 2. Procedures similar to
those given above lead to Table V, a total neutron vorticity
�total

⊥proton = 8h̄, and an excitation energy

Eneutron
�⊥=8 − Eneutron

�⊥=0 = 4
h̄2

(
�′2

z − �2
z

)
2mR2

= 4
h̄2(42 − 32)

2mR2
= 28h̄2

2mR2
. (23)

TABLE V. The configurations of the eight topmost states with
different state quantum numbers at the top of the Fermi energy for
N = 58 and R/d = 2.9 in Fig. 2, after the vortex-creating 4p-4h

excitation with the particle configuration shown in bracketed num-
bers. The total vorticity for this N = 58 state is �total

⊥neutron = 8h̄ and
�total

z neutron = 0.

n⊥ Vorticity �⊥ |�z| �z

0 1 3 5/2
0 (1) (4) (7/2)
0 1 3 −5/2
0 (1) (4) (−7/2)
0 1 3 7/2
0 (1) (4) (9/2)
0 1 3 −7/2
0 (1) (4) (−9/2)
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The total excitation energy of (Z,N ) = (48, 58) with a
total vorticity of 16h̄ is

E�⊥=16 − E�⊥=0 = 48h̄2

2mR2
, (24)

which decreases as R/d increases. Here the number 4 on the
right-hand sides of Eqs. (22) and (23) is the number Nph of
particle-hole excitations that promote the negative �⊥ = −1
to the positive �⊥ = +1 states (or vice versa) and can be
changed to get a state with a different vorticity. Thus, the
greater the number of particle-hole promotion Nph, the greater
is the vorticity, and the greater is the effect on lowering the
energy of the system by moving to greater R values. In other
words, there is an energy associated with a given vorticity and,
for a given vorticity, the larger the R, the lower the energy of
the system. The toroidal system likes to expand to a greater
radius R, if the nucleus has a vorticity.

In the above example, we have made a 4p-4h excita-
tion to obtain an excited state of vorticity �⊥(neutron) =
�⊥(proton) = 8h̄. It is possible to make np-nh excitations
with n = 1 to 4 for both neutrons and protons, with the only
modification that the total �z would vary according to the �z

value of the particle-hole configuration. The signature of the
vorticity occurrence is therefore a set of states with vorticity
�⊥ = 2, 4, 6, 8, …, and 16, with about equal energy spacing.

What we have presented is an example of how we can con-
struct a toroidal vortex nuclei with different vorticities for Z =
48 and N = 58 at R/d = 2.9. Other toroidal vortex nucleus
can be similarly constructed for different neutron and proton
numbers at various toroidal deformations. The large number
of toroidal shells as listed in Table I provide a large pool of
neutron and proton combinations for which toroidal vortex
nuclei may be constructed at different toroidal deformations.
Therefore, there can be many different toroidal vortex nu-
clei with different neutron and proton numbers constructed
by making vortex-creating particle-hole single-particle exci-
tations in the intermediate-mass region. The possibility for
nucleons possessing a nonzero vortex quantum number with
n = nρ+nz > 1 in the heavy-mass region implies that toroidal
vortex nuclei are also expected in the heavy-mass region.

VII. POSSIBLE MECHANISMS FOR THE PRODUCTION
OF TOROIDAL HIGH-SPIN ISOMERS
AND TOROIDAL VORTEX ISOMERS

The method of production and detection of toroidal nuclei
depends on their lifetimes which are however difficult to
estimate because they require the knowledge of the potential-
energy surface and the effective-mass parameter in many dif-
ferent degrees of freedom. Many mean-field calculations from
independent groups have been carried out [11–20,25–29].
They indicate stability against small-amplitude oscillations, as
three-dimensional calculations with three-dimensional noises
have been carried out and they yield toroidal high-spin iso-
meric energy minima. However, the stability against large-
amplitude oscillations, as for example against the Plateau–
Rayleigh instability [44–46], is not known. Subject to further
studies to confirm or refute the experimental evidence for
possible population of toroidal high-spin isomers in Ref. [28],

the tentative extraction of the width for toroidal 28Si high-spin
isomer indicates that the widths may be broad for low-spin
states, become narrower than the instrument bin size of 3 to
4 MeV for the I = 28, 36, and 44 states, and they become
broader again for possible higher-spin states. We may expect
that the lifetime depends on the spins and the excitation
energies. For low-spin states, as they lie in highly excited
region of states of similar angular momentum from the co-
existing sphere-like geometry, there may be extensive mixing
that will likely broaden the widths and shorten the lifetimes
of these low-spin states. Longer lifetimes may be reached
by promoting nucleons to populate higher but well-bound
single-particle orbitals to lead to higher-spin toroidal high-
spin isomers as yrast states with hardly any mixing of states
of similar angular momentum from the sphere-like geometry.
However, when the nucleons are promoted to higher-energy
orbitals that may be above or near the nucleon drip line in
higher excitation energies, the widths of these high-spin states
may be broadened again, with shorter lifetimes.

A. Production of light-mass toroidal isomers
by elastic scattering

In recent years, time projection chambers (TPCs) have
been used to study the nuclear spectroscopy of metastable
nuclei [47–51]. The idea is to use a chamber of noble gas
under a high voltage so that the gas itself or an embedded
solid layer serves as the target, and the nuclear trajectories
show up as tracks. The production of a composite nucleus
with a long half-life would show up as a single track with the
mass and charge arising from the fusion of the projectile and
target nuclei. The production of binary products indicates a
two → two reaction from which one can examine the elastic
and inelastic channels and study the excitation function and
angular distribution to search for various metastable states.
Previously, many metastable states formed by colliding vari-
ous projectile nuclei with an active He target have been found
by such a technique [47]. We can search for toroidal high-spin
isomers as resonances or metastable nuclei by bombarding
projectile nucleus on an active-target nucleus such as 20Ne,
36,38,40Ar, or 80,82,83,84,86Kr, or 28Si.

B. Production of a toroidal high-spin isomer
by deep-inelastic scattering

In a deep-inelastic collision between two heavy-ions at
an energy near the Fermi energy, there are reaction products
consisting of highly excited binary systems with large angular
momenta, in regions that may be kinematically separable
[30–39]. This led Cao et al. [28] to suggest the use of such
deep-inelastic collisions for the production of light toroidal
high-spin isomers.

We present below a schematic description how the deep-
inelastic collision mechanism may lead to a toroidal high-
spin isomer, if (E, I ) is appropriately the same as that of
the toroidal high-spin isomer. We envisage that, in a deep-
inelastic scattering in the target rest frame in Fig. 4, the
semiperipheral collision allows the spectator nucleons of the
projectile to stream forward, while the participant projectile
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before deep- 
inelastic collision

target participants suffer
momentum loss, stripping, just after deep- 

inelastic collision

In target rest frame

In  projectile* CM frame after deep-inelastic collision

just after deep- collective and
single particle

inelastic collision
(a) (b) (c)

(d) (e)
(f) (g)

projectile

target

motion if (E,I) is not 
a toroidal 

if (E,I) is

projectile* acquires an excitation energy E
and an angular momentum I

projectile*

high-spin isomer

exchange, or picking-up

high-spin isomer
a toroidal 

FIG. 4. A schematic example of how a toroidal high-spin isomer
of an excited projectile may be produced by a deep-inelastic heavy-
ion scattering between a projectile nucleus and a target nucleus,
showing a cut in the collision plane. We display (a)–(c) in the target
nucleus rest frame, and we show (d)–(g) in the excited projectile
frame. The time sequence proceeds from (a) to (e). How (e) evolves
to (f) or (g) depends on whether the excitation energy E and spin
I = Iz are the same as those of the toroidal high-spin isomers.

nucleons collide with target nucleons and suffer a deceler-
ation, as is depicted in Figs. 4(a)–4(c). As a consequence,
the excited projectile nucleus that emerges after the deep-
inelastic collision is a spinning nucleus in its own center-
of-mass frame. It acquires both a collective cranking motion
and particle-hole excitations at an excitation energy E and
an angular momentum I . Its evolution can be schematically
depicted as in Figs. 4(d)–4(g). When the excitation energy
E and the angular momentum I of the emerging excited
projectile are not those of a toroidal isomer, the excited pro-
jectile nucleus will break up as described in statistical models
[35–39]. On the other hand, when the excitation energy E and
the angular momentum I of the emerging projectile corre-
sponds to that of a toroidal high-spin isomer, the collective
cranking motion and the rearrangement of the single-particle
motion of the nucleons may eventually settle down into the
toroidal shape of the high-spin isomer self-consistently be-
cause of the conservation of energy and angular momentum,
and the many-body final-state interactions.

C. Production of a toroidal vortex nucleus
by punching through a target nucleus

It has been suggested that a toroidal nucleus may be
produced by punching an energetic smaller heavy ion nearly
head on through a larger target nucleus [3]. Scattering and
evaporation takes place within a small cone of the incident
ion. The “remnant” after prompt cascade and evaporation
may have a hole in the middle and consequently have the
geometry of a torus, as depicted in Fig. 5. After the incident
projectile ion has punched through the target nucleus, the
target nucleons in the interaction regions receive a momentum

before collision

target nucleus remnant

projectile nucleus
cascading through 

just after projectile 

punching through

In target rest frame

In  target remnant CM frame after punching through 

just after projectile acquires a vorticity

nucleus punching 

(a) (b) (c)

(d)
(e)

excited target remnant

target remnant

target nucleus through target nucleus 

FIG. 5. A schematic example of how a toroidal vortex isomer of
the excited target remnant may be produced by the punching through
of a smaller projectile on a larger target nucleus in an energetic
nearly-head-on collision, showing a cut in the collision plane. We
display (a)–(c) in the target nucleus rest frame, while we show (d)–(e)
in the excited remnant center-of-mass frame.

kick and have a velocity different from that of the spectator
target nucleons. In the center-of-mass system of the target
remnant nucleus, vorticity will be developed as depicted
in Fig. 5. Indeed, vorticity has been found theoretically in
the hydrodynamical and model calculations in the collision
of high-energy heavy ions [52–55]. Vorticity in heavy-ion
collisions reveal two vortical structures that are common in
many fluid dynamic systems. The vorticity and pairing of
longitudinal vortices with opposite signs are generated in the
transverse plane. The punching through of a large nucleus
to form a toroidal nucleus [3] may therefore be a promising
mechanism for the generating isolated toroidal vortex nuclei.

In addition to using energetic small heavy-ions to punch
through a target nucleus one can also use the collision of an
antineutron or antiproton to punch through the target nucleus
for the production of a toroidal nucleus with a vorticity. We
envisage that, at appropriate collision energies, annihilation
of the antiparticle takes place inside the nucleus, and the
momentum of the incident high-energy antiparticle carries the
produced particle forward in the form of a cone, with the
possibility of creating a hole inside the target nucleus. Among
the remnants from such a collision, some target nucleons
receive a momentum kick from the produced particles and a
toroidal nucleus with vorticity may be created in a way similar
to what is depicted in Fig. 5.

Toroidal galaxies (ring galaxies) have been known for
some time [56–60]. It is generally held that many of these
ring galaxies arise from the collision of two galaxies, and the
catalog of Ref. [59] list 127 observed ring collision galaxies.
The most well-known example is Arp147, which is composed
of newly formed bright stars arising from the collision of
one smaller galaxy through another larger galaxy. When the
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two galaxies collided, they pass though each other and the
gravitational wave from the impact leads to the condensation
of the gas and dust into stars [60]. The observations of the
ultraluminous x-ray sources in the ring galaxy Arp147 in a
ring of beads confirm the conventional wisdom that collisions
of gas-rich galaxies trigger large rates of star formation which,
in turn, generate substantial numbers of x-ray sources, some of
which have luminosities above the Eddington limit for accret-
ing stellar-mass black holes as ultraluminous x-ray sources
[60]. Another example is Arp148 showing a ring with a jet
of a smaller galaxy along the symmetry axis of the ring [57].
The existence of toroidal galaxies is only suggestive that, if
a toroidal vortex nucleus could be formed in the collision
of a light nucleus with a heavy nucleus in a nearly-head-on
collision, then it would exist.

VIII. CONCLUSIONS AND DISCUSSIONS

We study here the nature of the toroidal single-particle
states and their wave functions in the intermediate-mass
region where negative shell corrections are expected. We
find that toroidal shells occur with a regular structure in an
extended region with many toroidal magic numbers at various
toroidal deformations R/d. The enhanced stability associated
with the nuclear shell effects suggests that there may be many
exited toroidal states stable against expansion and contraction
of the toroidal major radius.

Toroidal Routhian energies under the constraint of an an-
gular momentum have been evaluated, and one finds regions
of low Routhian energy density indicating that toroidal high-
spin isomers may also have a common occurrence in the
intermediate-mass region.

A new vorticity degree of freedom opens up for examina-
tion for toroidal nuclei in the intermediate-mass region. There
can be vortex creating particle-hole excitations that will allow
the nucleus to become a toroidal vortex nucleus with a net
vorticity by promoting nucleons from states of vorticity of one
sign to selectively populate unoccupied states with vorticities
of the other sign.

To get more accurate locations of the toroidal shells, a
more general potential such as those with a Wood–Saxon
shape potential will be useful in determining the toroidal
shell nucleon numbers and high-spin isomers. Future mean-
field calculations in the intermediate-mass region will be of
great interest to give reliable quantitative estimates of the
energies of the toroidal isomers. From all indications and
results from the present work, the intermediate-mass region
hold the promise to be a rich region for the exploration of the
toroidal degree of freedom.

There remain many interesting problems that will need to
be considered in the future. The question of the decay of
the toroidal nucleus, the stability against sausage distortions
or the Plateau–Rayleigh instability [44–46], and the effects
of the quantization of the spin on the sausage instability,
will need to be addressed. There are also the questions of
pairing interaction that may be weakened by the cranking
of a pair having opposite tendencies in changing the energy,
and the questions on the effects of self-consistent mean fields
and the signatures for toroidal nuclei. These and many other

unresolved questions make the study of toroidal nucleus a
very interesting area for further investigation.
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APPENDIX: SOLUTION OF THE
SINGLE-PARTICLE HAMILTONIAN

We would like to show how the eigenenergy of the single-
particle state in Eq. (6) can be approximately solved. We split
the spin-orbit interaction of Eq. (5) into two parts:

−2κh̄

mω0
◦ s · (∇V0 × p) = V dia

so + V off
so ,

V dia
so = − κh̄

mω0
◦

(
1 0
0 −1

)
∂V0

∂ρ

h̄∂

iρ∂φ
,

V off
so = − κh̄

mω0
◦

{(
0 e−iφ

eiφ 0

)(
−∂V0

∂z

h̄∂

iρ∂φ

)

+
(

0 −e−iφ

eiφ 0

)(
−∂V0

∂ρ

h̄∂

∂z
+ ∂V0

∂z

h̄∂

∂ρ

)}
.

(A1)

For simplicity, we neglect the small contribution from the
off-diagonal spin-orbit interaction because it gives higher-
order transition matrix elements with a relatively large energy
denominator. We consider therefore the approximate Hamil-
tonian

H0 = − h̄2

2m
∇2 + V0(ρ, z) + V dia

so , (A2)

where

V dia
so = −2κh̄

mω0
◦

(
1

ρ

∂V0

∂ρ

)
szLz = −2κh̄ω2

⊥
ω0
◦

ρ − R

ρ
sz

h̄∂

i∂φ
.

(A3)

We solve for eigenstates |nρnz�z�z〉 of H0,

H0|nρnz�z�z〉 = ε(nρnz�z�z)|nρnz�z�z〉, (A4)

normalized according to∫
dz ρdρ dφ

∣∣R̂nρ
(ρ)Znz

(z)��z
(φ)

∣∣2
χ †

sz
χsz

= 1. (A5)

The two states with �z = �z + sz = ±|�z| have the same en-
ergy. They are degenerate. Writing out the operator explicitly,
we get[

− h̄2

2m

(
1

ρ

∂

∂ρ
ρ

∂

∂ρ
− �2

z

ρ2

)
+ 1

2
mω2

⊥(ρ − R)2 + V dia
so

]

× R̂nρ
(ρ) = ε0

nρ�nz �z
R̂nρ

(ρ), (A6)[
− h̄2

2m

∂2

∂z2
+ 1

2
mω2

⊥z2 − ε0
nz

]
Znz

(z) = 0, (A7)

[
i

∂

∂φ
− �z

]
��z

(φ) = 0. (A8)
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The single-particle eigenvalue is

ε(nρnz�z�z) = ε0
nρ�z�z

+ ε0
nz

, (A9)

so we can transform R̂nρ
(ρ) in Eq. (A6) by

Rnρ
(ρ) = √

ρR̂nρ
(ρ). (A10)

We normalize the single-particle wave function according to∫
dz

∣∣Znz
(z)

∣∣2 =
∫

dρ
∣∣Rnρ

(ρ)
∣∣2 =

∫
dφ

∣∣��z
(φ)

∣∣2

= χ †
sz
χsz

= 1.

We obtain from Eq. (A6)[
− h̄2

2m

∂2

∂ρ2
+ h̄2

2m

�2
z − 1

4

ρ2
+ 1

2
mω2(ρ − R)2 + V dia

so

]
R(ρ)

= ε0
nρ�z�z

R(ρ). (A11)

It is useful to make a change of coordinates:

q = ρ − R. (A12)

We expand ρ about R in powers of q and keep terms up to the
second order in q/R. Equation (A11) becomes

{
− h̄2

2m

∂2

∂q2
+ h̄2

2m

�2 − 1
4

R2

[
1 − 2q

R
+ 3q2

R2

]

+ mω2q2

2
+ V dia

so

}
R(ρ) = ε0

nρ�z�z
R(ρ). (A13)

We can solve the approximate Hamiltonian in q. We have

szLz = J 2
z − �2

z − 1/4

2
= �2

z − �2
z − 1/4

2
. (A14)

We assume the large-radius R approximation with small d/R,
and expand ( 1

ρ
∂V0
∂ρ

) in powers of q up to q2,

(
1

ρ

∂V0

∂ρ

)
= mω2

⊥
(ρ − R)

ρ
= mω2

⊥

(
q

R
− q2

R2

)
. (A15)

We also expand (�2 − 1/4)/ρ2 in power of q up to the second
order of q,

�2
z − 1

4

ρ2
= �2

z − 1
4

R2

[
1 − 2q

R
+ 3q2

R2

]
. (A16)

The eigenvalue equation can be rewritten as{
− h̄2

2m

∂2

∂q2
+ h̄2

2m

�2
z − 1

4

R2
+ 1

2
mω2

⊥q2 + V (1) − ε0
nρ�z�z

}
×R(ρ) = 0, (A17)

where

V (1)(q ) = + h̄2

2m

�2
z − 1

4

R2

(
−2q

R
+ 3q2

R2

)

− 2κ (h̄ω⊥)2

h̄ω0
◦ szLz

(
q

R
− q2

R2

)
.

We cast 1
2mω2q2+V (1)(q ) into a displaced quadratic form:

1
2mω2q2 + V (1)(q ) = 1

2mω′2
⊥(q − q0)2 + a0, (A18)

where

ω′2
⊥ = ω2

⊥(1 + a2), (A19)

and a0, a2, and q0 are given by

a2 = h̄2

2m

�2
z − 1

4

R2

3
1
2mω2

⊥R2
+ 2κ (h̄ω⊥)2

h̄ω0
◦

sz�z

1
2mω2

⊥R2
, (A20)

a0 = −1

2
mω′2

⊥q2
0 , (A21)

q0 = −1

2
a1R

(
ω⊥
ω′

⊥

)2

, (A22)

a1 = − h̄2

2m

�2
z − 1

4

R2

2
1
2mω2

⊥R2

sz�z

1
2mω2

⊥R2
. (A23)

Equation (A17) becomes{
− h̄2

2m

∂2

∂q2
+ h̄2

2m

�2
z − 1

4

R2
+ 1

2
mω′2

⊥(q − q0)2

+ a0 − ε0
nρ�z�z

}
R(ρ) = 0. (A24)

The above eigenenergy solution for the ρ degree of freedom
is

ε0
nρ�z�z

= h̄2

2m

�2
z − 1

4

R2
+

(
nρ + 1

2

)
h̄ω′

⊥ + a0. (A25)

After substituting the above eigenvalue into Eq. (A9), we get
the single-particle energy given by Eq. (6),

ε(nρnz�z�z) =
(

nρ + 1

2

)
h̄ω′

⊥ +
(

nz + 1

2

)
h̄ω⊥

+ h̄2

2m

�2
z − 1

4

R2
+ a0. (A26)
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