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Structure of the low-lying positive-parity states in 154Sm
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The proton-neutron symplectic model with Sp(12,R) dynamical algebra is applied to the simultaneous
description of the microscopic structure of the low-lying states of the lowest ground, β, and γ bands in 154Sm. For
this purpose, the model Hamiltonian is diagonalized in a U(6)-coupled basis, restricted to the state space spanned
by the fully symmetric U(6) irreps. A good description of the energy levels of the three bands under consideration
as well as the intraband B(E2) transition strengths between the states of the ground band is obtained without
the use of an effective charge. The microscopic structure of low-lying collective states in 154Sm shows that
there are no admixtures from the higher shells and hence shows the presence of a very good U(6) dynamical
symmetry. It is also shown that, in contrast to the Sp(6,R) case, the lowest excited bands, e.g., the β and γ

bands, naturally appear together with the ground band within a single Sp(12,R) irreducible representation. The
obtained results is given a simple geometrical multiphonon interpretation, based on the algebraic realization of
the coupled two-rotor picture, which in turn suggests an interpretation of the low-lying excited bands as relative
proton-neutron excitations of the two-component nuclear system, governed by the Qp · Qn interaction.
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I. INTRODUCTION

Experimental spectra in heavy nuclei show the emergence
of simple collective patterns represented primarily by the nu-
clear collective rotation. The microscopic shell-model struc-
ture of these low-lying rotational states is still a challenge
for the microscopic many-particle nuclear theory. This is
particularly so because the model space dimensionalities rule
out the use of standard shell-model theory. As a consequence,
different algebraic models which capitalize on symmetries,
exact or approximate, have been developed to reduce the
model space to manageable size.

The structure of observed collective patterns in the heavy
nuclei is, however, well understood in simple geometrical
terms and is described very successfully within the macro-
scopic nuclear structure physics theories, like the Bohr-
Mottelson (BM) [1] and the interacting boson model (IBM)
[2] ones. For heavy nuclei, the BM collective model has
provided the basic concepts and language in terms of which
the observed low-energy nuclear rotational states are de-
scribed. In this regard, many efforts has been made in attempts
to give the BM model a microscopic foundation. Among
them the algebraic approach plays an important role. The
microscopic evolution of the collective models and their
underlying foundations from the algebraic perspective are
given in many review articles [3–5]. It was also shown
that the Bohr-Mottelson models have expressions as macro-
scopic limits of microscopic models that have precisely de-
fined expressions in many-nucleon quantum mechanics [4].
Along these lines, it has been shown that a microscopic
version of the Bohr-Mottelson collective model augmented
by the vortex spin degrees of freedom and compatible with
the microscopic shell-model nucleon structure of nucleus

is represented by the one-component Sp(6,R)1 symplectic
model [6,7].

The shell-model approach to the many-particle description
of low-energy states of a nucleus starts with a decomposi-
tion of the infinite-dimensional Hilbert space into an energy-
ordered sequence of subspaces of the three-dimensional har-
monic oscillator. This makes it possible to diagonalize the
model Hamiltonian in a truncated space spanned by a selec-
tion of some number of leading subspaces in the decomposi-
tion with decreasing contributions to the structure of observed
nuclear collective states.

The first microscopic, algebraic model of nuclear collec-
tive motion in light nuclei is the Elliott SU(3) model [8],
which showed how states with rotational properties could
emerge within the framework of the nuclear shell model. It
defined a relevant coupling scheme for identifying the collec-
tive dynamics and performing large shell-model calculations.
However, the calculations within the framework of the one-
component Sp(6,R) symplectic model [6,7], which is a nat-
ural multi-major-shell extension of the Elliott SU(3) model,
showed that the standard spherical shell model is not appro-
priate for the description of the rotational states of strongly
deformed heavy nuclei [9,10]. This is so, in particular, be-
cause the conventional shell-model configurations available
are not enough deformed to describe observed quadrupole
collectivity. The calculations showed that the highly deformed
rotational states which lie low in energy have their dominant

1The notation Sp(2n, R) is used for the group of linear canonical
transformations in 2n-dimensional phase space. Some authors denote
the Sp(2n, R) group by Sp(n,R).
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components in much higher spherical harmonic oscillator
shells and have essentially zero overlaps with the standard
shell-model states [9,10].

Another symmetry-based, microscopic shell-model ap-
proach to the structure of strongly deformed heavy nuclei
is provided by the pseudo-SU(3) scheme [11–13], based on
the observation that, because of the spin-orbit interaction, the
single-particle energy levels of the shell model regroup into
pseudo-oscillator shells. As a result, another good SU(3) sym-
metry appears, called pseudo-SU(3) symmetry. Based on the
this symmetry, the Sp(6,R) pseudo-symplectic model and its
contracted version for heavy nuclei have been developed [14]
and applied to the description of the microscopic structure
of the low-lying rotational states of the ground or ground
and γ bands for some heavy well deformed even-even nuclei
from the rare-earth and actinide regions [14,15]. A simple
microscopic picture for these collective states was obtained,
in which several SU(3) multiplets from the first few harmonic
oscillator shells exhaust the structure. The low-lying rotational
states observed in strongly deformed nuclei can therefore be
considered as renormalized SU(3) states due to the coupling
to giant resonance degrees of freedom by involving a ver-
tical mixing of different SU(3) irreducible representations.
The one-component Sp(6,R) symplectic model irreducible
representation is determined by a single SU(3) irreducible
representation, which can be associated with the ground
band (and possibly with a few other K bands, depending
on the value of μ) and hence no other low-lying β bands
appear. In order to include them in the theory, one needs to
consider other symplectic Sp(6,R) irreducible representations
and to perform much more complicated configuration mixed
symplectic model calculations by taking into account the
symplectic symmetry-braking part of the nuclear interaction
[3,16], which involves a horizontal mixing of different SU(3)
irreps within the 0h̄ω valence shell nucleon space.

Recently, the fully microscopic proton-neutron symplectic
model (PNSM) of nuclear collective motion with Sp(12,R)
dynamical algebra was introduced by considering the sym-
plectic geometry and possible collective flows in the two-
component many-particle nuclear system [17]. The more gen-
eral motion group GL(6,R) ⊂ Sp(12,R) of the PNSM, which
allows for the separate treatment of the collective dynamics
of proton and neutron subsystems, as well as the combined
proton-neutron collective excitations, is parametrized by 36
real parameters which are related to the 21 irrotational-flow
collective and 15 intrinsic vortex degrees of freedom. In this
way, one obtains a richer algebraic structure than in the case of
two copies of Sp(6,R) by considering the algebraic structure
Sp(6,R) ⊗ Sp(6,R) [or equivalently, Sp(6,R) ⊗SUT (2)] with
totals of 15 collective and 6 intrinsic vortex spin degrees of
freedom. In this way, from the hydrodynamic perspective,
the PNSM appears as an irrotational-flow collective model of
the two-component nuclear system of Bohr-Mottelson type,
coupled to the intrinsic U(6) vortex degrees of freedom which
are related to the valence shell protons and neutrons. The need
to consider intrinsic degrees of freedom and their coupling
to the irrotational-flow collective dynamics was realized long
time ago (cf. Ref. [3] and references therein). The U(6)
intrinsic degrees of freedom play an important role in the

construction of the microscopic wave functions because they
allow ensuring the full antisymmetry of the total wave func-
tion and are responsible for the appearance of the low-lying
collective states. In this way the extra degrees of freedom
contained in this larger U(6) algebraic structure therefore em-
brace the basic SU(3) rotor as well as the low-lying vibrational
degrees of freedom.

From the shell-model perspective, from another side, the
PNSM appears as a natural multi-major-shell extension of
the generalized proton-neutron SU(3) scheme, which takes
into account the core collective excitations of monopole
and quadrupole, as well as dipole type associated with
the giant resonance vibrational degrees of freedom. This
becomes evident by considering the reduction chain U(6)
⊃ SUp(3) ⊗ SUn(3) ⊃ SU(3) ⊃ SO(3), which defines a
shell-model coupling scheme of the PNSM and through the
subgroup chain SUp(3) ⊗SUn(3) ⊃ SU(3) ⊃ SO(3) relates
the PNSM to the pseudo-SU(3) model [11–13] of nuclear
rotations. The appearance of a U(6) intrinsic structure in
the PNSM, which in turn contains many SU(3) irreducible
representations appropriate for the description of different
rotational bands, turns out to be of significant importance
for the microscopic theory of nuclear collective excitations.
Recall in this regard that the popular IBM [2] has clearly
demonstrated that simple algebraic ways exist to get collective
spectra within a U(6)-based scheme. Then, within the frame-
work of the PNSM, the low-lying states could be described
by a microscopically based U(6) structure along the lines of
the IBM, albeit, in contrast to the latter, renormalized by their
coupling to the giant resonance vibrations. This result could
not be overestimated, recalling also that, as mentioned earlier,
in order to obtain the low-lying excited collective bands (e.g.,
β bands) within the framework of the one-component sym-
plectic model [6] one needs to involve a representation mixing
caused by, e.g., pairing, spin-orbit, and other symplectic-
breaking components of the nuclear interaction (cf. Ref. [18]).
In this way, the intrinsic U(6) structure provides a single
shell-model framework for the simultaneous description of the
low-lying collective bands in strongly deformed nuclei, which
exhibit a simple rotational patterns and shape vibrational ex-
citations (horizontal mixing) over different SU(3) irreps from
the 0h̄ω valence proton-neutron shell-model space. Moreover,
as will be shown further, these low-lying vibrational excita-
tions in the proton-neutron nuclear system, which are related
to the relative proton-neutron configurations, can be given a
simple geometrical multiphonon interpretation.

Finally, ending the short consideration of the evolution of
algebraic microscopic models of nuclear collective motion,
another characteristic of the PNSM should be pointed out.
Sp(12,R) appears as a dynamical group in two other ap-
proaches to nuclear structure. In the first one, the microscopic
Sp(12,R) model, introduced in Refs. [19,20], the compo-
nents of the mass quadrupole tensor are used as collective
variables. Expressing these variables and their derivatives
through the boson creation and annihilation operators, among
the reduction chains considered in [19,20], the three algebraic
structures [U(5), O(6), and SU(3)] of the IBM-1 [2] were
obtained, which are embedded in Sp(12,R) through the group
U(6) ⊂ Sp(12,R) associated with the six quadrupole collective
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degrees of freedom. In the second one, the phenomenological
interacting vector boson model (IVBM) [21] of nuclear col-
lective motion, Sp(12,R) appears as the full dynamical sym-
metry group of the system of two interacting vector bosons,
by means of which the collective excitations of the nuclear
systems are built up. But, although it is mathematically iso-
morphic to that of PNSM, the realization of the Sp(12,R)
algebra of IVBM is very different. The latter, in contrast to
the PNSM, admits only two irreducible representations: the
even (scalar) and odd (one-particle) ones with even and odd
numbers of excitation quanta. In Ref. [22] it is shown that
the representation space of the IVBM is a very particular and
physically unimportant case of the representation space of the
PNSM. The IVBM then corresponds to the two-component
irrotational-flow collective model of Bohr-Mottelson type. In
this way, the microscopic proton-neutron symplectic model
of nuclear collective motions can be considered as a gen-
eralization of both the IVBM and the Sp(6,R) ⊂ Sp(12,R)
model of Rowe and Rosensteel for the case of two-component
many-particle nuclear systems. The PNSM contains also the
extended Sp(6,R) ⊗ Sp(6,R) model as a submodel, since
Sp(6,R) ⊗ Sp(6,R) ⊂ Sp(12,R).

In the present paper, the proton-neutron symplectic model
with Sp(12,R) dynamical algebra is applied to the simulta-
neous description of the microscopic structure of the low-
lying states of the ground, β, and γ bands in 154Sm. For
this purpose, the model Hamiltonian is diagonalized in a
U(6)-coupled basis, restricted to state space spanned by the
fully symmetric U(6) irreps up to 40h̄ω. The results for the
energy levels of the three bands under consideration, as well
as the intraband B(E2) transition strengths between the states
of the ground band obtained without the usage of an effective
charge, are presented. As will become clear later, the results
obtained for the microscopic structure of low-lying collective
states in 154Sm reveal the presence of a very good U(6)
dynamical symmetry, which shows that the observed collec-
tive dynamics is already covered by the symplectic Sp(12,R)
bandhead structure. The results obtained for the lowest three
collective bands in 154Sm extend the previously obtained ones
in the framework of the one-component Sp(6,R) symplectic
model in the description of the rotational states of the ground
band up to L = 6 only within a single axially symmetric
Sp(6,R) irreducible representation, determined by its single
lowest-grade SU(3) irrep (82,0) in the stretched SU(3) [23]
and in the full Sp(6,R) model spaces [9], respectively. In this
regard, the present paper represents a further step towards the
more comprehensive treatment of collective motion in this
nucleus within the microscopic symplectic-based framework.

II. THE PROTON-NEUTRON SYMPLECTIC MODEL

Collective observables of the proton-neutron symplectic
model, which span the Sp(12,R) algebra, are given by the
following one-body operators [17]:

Qij (α, β ) =
m∑

s=1

xis (α)xjs (β ), (1)

Sij (α, β ) =
m∑

s=1

(xis (α)pjs (β ) + pis (α)xjs (β )), (2)

Lij (α, β ) =
m∑

s=1

(xis (α)pjs (β ) − xjs (β )pis (α)), (3)

Tij (α, β ) =
m∑

s=1

pis (α)pjs (β ), (4)

where i, j = 1, 2, 3, α, β = p, n, and s = 1, . . . , m = A − 1.
In Eqs. (1)–(4), xis (α) and pis (α) denote the coordinates and
corresponding momenta of the translationally invariant Jacobi
vectors of the m-quasiparticle two-component nuclear system,
and A is the number of protons and neutrons.

In terms of the harmonic oscillator creation and annihila-
tion operators

b
†
iα,s =

√
mαω

2h̄

(
xis (α) − i

mαω
pis (α)

)
,

biα,s =
√

mαω

2h̄

(
xis (α) + i

mαω
pis (α)

)
, (5)

the many-particle realization of the Sp(12,R) Lie algebra is
given by [22]

Fij (α, β ) =
m∑

s=1

b
†
iα,sb

†
jβ,s , (6)

Gij (α, β ) =
m∑

s=1

biα,sbjβ,s , (7)

Aij (α, β ) = 1

2

m∑
s=1

(b†iα,sbjβ,s + bjβ,sb
†
iα,s ). (8)

An Sp(12,R) unitary irreducible representation is charac-
terized by the U(6) quantum numbers σ = [σ1, . . . , σ6] of its
lowest-weight state |σ 〉; i.e., |σ 〉 satisfies

Gab|σ 〉 = 0

Aab|σ 〉 = 0, a < b,

Aaa|σ 〉 =
(

σa + m

2

)
|σ 〉 (9)

for the indices a ≡ iα and b ≡ jβ taking the values 1, . . . , 6.
If the following notation for the U(6) tensor product oper-
ators P (n)(F ) = [F × · · · × F ](n) is introduced, where n =
[n1, . . . , n6] is a partition with even integer parts, then by a
U(6) coupling of these tensor products to the lowest-weight
state |σ 〉, one constructs the whole basis of states for an
Sp(12,R) irrep:

|�(σnρEη)〉 = [P (n)(F ) × |σ 〉]ρE
η , (10)

where E = [E1, . . . , E6] indicates the U(6) quantum numbers
of the coupled state, η labels a basis of states for the coupled
U(6) irrep E, and ρ is a multiplicity index. In this way one
obtains a basis of Sp(12,R) states that reduces the subgroup
chain Sp(12,R) ⊃ U(6). To fix the basis η one has to consider
further the reduction of the U(6) to the three-dimensional
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rotational group SO(3). Thus, in order to completely clas-
sify the basis states, the following reduction chain is further
used [22]:

Sp(12, R) ⊃
σ nρ

⊃ U(6) ⊃ SUp(3) ⊗ SUn(3)

E γ (λp, μp ) (λn, μn)

⊃ SU(3) ⊃ SO(3) ⊃ SO(2),


 (λ,μ) K L M (11)

which defines a shell-model coupling scheme. The chain
(11) corresponds to the following choice of the index η =
γ (λp, μp )(λn, μn)
(λ,μ)KLM , labeling the basis states
(10) of an Sp(12,R) irrep. Each Sp(12,R) irreducible rep-
resentation is determined by a symplectic bandhead or an
intrinsic U(6) space, which in turn is fixed by the underlying
proton-neutron shell-model structure. So, the theory becomes
completely compatible with the Pauli principle.

III. APPLICATION

The early applications of the one-component Sp(6,R) sym-
plectic model and its contracted version showed that the
dominant contributions to the wave functions are presented by
the so-called stretched SU(3) states. The latter are defined as
the set of SU(3) states (λ0 + 2n,μ0) [3], where (λ0, μ0) is the
leading irreducible representation for the combined proton-
neutron nuclear system and n = 0, 1, 2, 3, . . . . The calcula-
tions within the framework of the stretched approximation is
often called the Sp(2,R) submodel [24–26] of Sp(6,R) be-
cause the set of these basis states can be generated only by the
raising symplectic generators adding oscillator quanta only
along the z-axis, which are the generators of the subgroup
Sp(2,R) ⊂ Sp(6,R). The stretched SU(3) states within the
framework of the one-component Sp(6,R) symplectic model
and its contracted version usually contribute between 80%
and 90% to the ground state band wave functions. For ex-
ample, 90% of the 20Ne ground state comes from the (8,0),
(10,0), and (12,0) stretched states [7]. Similarly, the stretched
states contribute up to 93.7% to the ground state in 238U
using the contracted symplectic model [14]. The same picture
was obtained in the recent applications of the symplectic
Sp(6,R) scheme with algebraic and schematic many-particle
interactions to light and intermediate-mass nuclei [27–29].
Hence, the restriction of the full symplectic basis to the
subset of stretched SU(3) states seems to be a valuable initial
approximation for the symplectic model calculations in the
heavy nuclei. So, the stretched SU(3) approximation is used
as a first step in the application of the present theory and as a
calibration for its further usage.

The first point in the practical application of the theory to
the description of low-lying collective states in strongly
deformed nuclei is the determination of the relevant
irreducible representation of Sp(12,R). Different approaches
might be used to determine the symplectic irrep by fixing the

TABLE I. The U(6) irreps contained in the Sp(12,R) irreducible
representation 〈σ 〉 = 〈72 + 153

2 , 42 + 153
2 , 42 + 153

2 , 42 + 153
2 , 42 +

153
2 , 42 + 153

2 〉 for 154Sm.

· · ·
[34], [33,1], 2[32,2], [31,3], [31,2,1], [30,4], [30,2,2]
[32], [31,1], [30,2]
[30]

shell-model structure of the ground state using the isotropic
or anisotropic harmonic oscillator with or without spin-orbit
interaction. It is also well known that, for heavy mass nuclei
from the rare-earth and actinide regions, spin-orbit interaction
is strong and destroys the oscillator structure. Due to this, the
pseudo-SU(3) scheme [11–13], which effectively takes into
account the spin-orbit part of the nuclear interaction, is used to
determine the relevant irreducible representation of Sp(12,R).
The symplectic bandhead for 154Sm is determined by fixing
the corresponding underlying proton-neutron shell-model
structure SUp(3) ⊗ SUn(3) ⊃ SU(3) embedded in the U(6)
irrep [σ1, . . . , σ6]. Thus, for 154Sm, by compactly filling
pairwise the three-dimensional pseudo-oscillator potential
with six normal parity protons and six normal parity neutrons,
one obtains the SU(3) irreps (12,0) and (18,0) for the parent
proton and neutron subsystem, respectively. Then, the direct
product irrep (12, 0) ⊗ (18, 0) of SUp(3) ⊗ SUn(3) allows
one to fix the lowest-grade U(6) irreducible representation
σ = [72, 42, 42, 42, 42, 42]6 ≡ [30]6, which in turn
determines the 154Sm irreducible representation 〈σ 〉 = 〈72 +
153
2 , 42 + 153

2 , 42 + 153
2 , 42 + 153

2 , 42 + 153
2 , 42 + 153

2 〉 of
Sp(12,R). The latter is given in Table I. As can be seen from it,
the majority of relevant U(6) irreps composing the symplectic
irreducible representation under consideration are not fully
symmetric. Unfortunately, the isoscalar factors which reduce
the U(6) ⊃ SUp(3) ⊗ SUn(3) subgroup chain of (11) for
generic U(6) irreducible representations, required for the cal-
culation of the matrix elements of relevant physical operators,
are not available at present. However, one expects the most
symmetric U(6) irreps E to be dominant in the low-energy
spectra of the heavy deformed even-even nuclei. Hence, in
the present application, only the state space spanned by the
fully symmetric U(6) irreps is considered in what follows.

Equation (11) implies a strong coupling of the proton
and neutron distributions to form a composite distribution
of the combined proton-neutron system with different pos-
sible deformations. The maximum deformation is obtained
by restricting the direct product irrep (λp, μp ) ⊗ (λn, μn) of
SUp(3) ⊗ SUn(3) to the leading irreducible representation
(λp + λn, μp + μn) of SU(3), which for the Hamiltonian with
a quadrupole-quadrupole interaction will lie lowest in energy.
Thus, the leading SU(3) irrep (30,0) with maximal value of
the second-order Casimir operator of SU(3) will correspond
to the ground state. The direct product of proton and neutron
SU(3) subrepresentations allows one further to write down the
remaining SU(3) irreps (with decreasing deformation and, re-
spectively, increasing energy) of the combined proton-neutron
system, contained in symplectic Sp(12,R) bandhead, which
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TABLE II. Symplectic classification of the SU(3) basis states for
154Sm.

2n [E1, . . . , E6] (λp, μp ) (λn, μn) (λ,μ)

· · · · · ·
(30, 0), (28, 1), (26, 2), . . .,

0 [30] (12, 0) (18, 0)
(10, 10), (8, 11), (6, 12)· · · · · ·

· · · · · ·
(32, 0), (30, 1), (28, 2), . . .,

2 [32] (14, 0) (18, 0)
(8, 12), (6, 13), (4, 14)· · · · · ·

· · · · · ·
(34, 0), (32, 1), (30, 2), . . .,

4 [34] (16, 0) (18, 0)
(6, 14), (4, 15), (2, 16)· · · · · ·

...
...

...
...

...

together with the leading one are

(12, 0) ⊗ (18, 0) → (30, 0), (28, 1), (26, 2), (24, 3), . . . ,

(10, 10), (8, 11), (6, 12). (12)

Obviously, this 0h̄ω valence shell state space of the Sp(12,R)
bandhead, spanned by the SU(3) irreducible representations
appearing in (12), corresponds to the different relative con-
figurations of the proton system with respect to the neutron
one. Further, it is well known that each SU(3) irreducible
representation can be associated with one or several rotational
bands (depending on the value of μ). In this regard, for ex-
ample, the IBM [2] has demonstrated that different rotational
bands can be easily described by considering several SU(3)
irreps, contained in a single U(6) irreducible representation.
Thus, the symplectic bandhead structure of PNSM provides
us with a singe microscopic shell-model framework for the
simultaneous description of the lowest collective bands, ob-
served in the spectrum of 154Sm. This is in contrast to the
one-component Sp(6,R) case, whose bandhead is determined
by a single SU(3) irrep, and hence there is no other low-lying
bands, e.g., β bands. Thus, in order to obtain them in that
case, one needs to involve a mixing of different Sp(6,R)
symplectic irreps cased by various symplectic symmetry-
breaking interactions, e.g., the spin-orbit and pairing. In this
way, the relative proton-neutron collective dynamics beyond
the Sp(6,R) is implicitly presented in the extended state space
of the Sp(12,R) bandhead structure.

The symplectic classification of the SU(3) basis states for
154Sm according to the decompositions given by the chain

(11) for the Sp(12,R) irrep 〈σ 〉 = 〈72 + 153
2 , 42 + 153

2 , 42 +
153
2 , 42 + 153

2 , 42 + 153
2 , 42 + 153

2 〉, restricted to the space of
fully symmetric U(6) partitions, is given in Table II. Note that
the SU(3) basis states so obtained, comprising different U(6)
irreps, are precisely those which can be obtained by acting on
the intrinsic base space states (λ,μ) by the SU(3) (2,0) and/or
(0,1) symplectic raising operators (6).

In the present application, the following model Hamilto-
nian is used:

H = Nh̄ω − 1

2
χ [Qp · Qn − (Qp · Qn)T E]

− ξC2[SU (3)] + aL2, (13)

where N = Np + Nn and the operators Qα ≡ Q(α, α) with
α = p, n are given by Eq. (1). A similar Hamiltonian
has been used in the pseudo-SU(3) scheme calculations
within the framework of the contracted symplectic model
[14,15]. The trace-equivalent part (Qp · Qn)T E [30–32] is
subtracted from the collective potential in order to preserve
the mean-field shell structure [14,15,33] under the action of
the proton-neutron quadrupole-quadrupole interaction. The
SU(3) second-order Casimir operator C2[SU(3)] splits ener-
getically different SU(3) multiplets and in this way determines
the bandhead energies of excited bands with respect to the
ground state band. Finally, the last term in (13), which repre-
sents a residual rotor part, allows the experimentally observed
moment of inertia to be reproduced without altering the wave
functions. The Hamiltonian (13) preserves the symplectic
symmetry, thus having Sp(12,R) as its dynamical algebra in
the sense that the physical operators are obtained in terms
of its generators, and the whole spectrum is provided by a
single irreducible representation of it. The full dynamics for it
therefore occurs within a single irreducible representation of
Sp(12,R). More precisely, the Hamiltonian (13) is in the en-
veloping algebra of Sp(6,R) ⊗ Sp(6,R) ⊂ Sp(12,R) subgroup,
so it does not go beyond the considered Sp(12,R) irreducible
space and mixes different SU(3) irreps within and between
major shells (horizontal and vertical mixing).

After obtaining the appropriate symplectic irrep, the model
Hamiltonian (13) is further used to determine the microscopic
structure of the low-lying collective states in 154Sm. For this
purpose, as was mentioned, its diagonalization in the space
of stretched SU(3) states is first performed. In order to do
this, the matrix elements of an U(6) tensor T [p,−q]6 in a
U(6)-coupled basis, for the case of the fully symmetric
U(6) irreps, are obtained using a generalized Wigner-Eckart
theorem:

〈σn′ρ ′E′; (E′
1, 0), (E′

2, 0); (λ′, μ′); K ′L′||T [p,−q]6 lm
[χp]3[χn]3 [χ]3

||σnρE; (E1, 0), (E2, 0); (λ,μ); KL〉

=
∑ 〈

σn′ρ ′E′||||T [p,−q]6 lm
[χp]3[χn]3 [χ]3

||||σnρE
〉 〈[E]

[E1][E2]
[p,−q]
[χp][χn]

∣∣∣[E′]
[E′

1][E′
2]

〉

×

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(E1, 0)

(
λT

p , μT
p

)
(E′

1, 0) 1

(E2, 0)
(
λT

n , μT
n

)
(E′

2, 0) 1

(λ,μ) (λT , μT ) (λ′, μ′) ρf

1 1 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭〈(λ,μ)KL, (λT , μT )kl||(λ′, μ′)K ′L′〉ρf
, (14)
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where the notations [χp]3 ≡ [χp1, χp2, χp3]3, [χn]3 ≡
[χn1, χn2, χn3]3, and [χ ]3 ≡ [χ1, χ2, χ3]3 for the Uα(3)
(α = p, n) and U(3) irreps, respectively, are used. The
standard Elliott notations [8] for the SU(3) quantum
numbers are also used, for example λT

p = χp1 − χp2,
μT

p = χp2 − χp3, and similarly for the others. In (14),

〈σn′ρ ′E′||||T [p,−q]6 lm
[χp]3[χn]3 [χ]3

||||σnρE〉 is the U(6) reduced

matrix element, 〈[E]
[E1][E2]

[p,−q]
[χp][χn]|[E

′]
[E′

1][E′
2]〉 is the isoscalar

factor reducing the U(6) ⊃ SUp(3) ⊗ SUn(3) chain, and {. . .}
and 〈(λ,μ)KL, (λT , μT )kl||(λ′, μ′)K ′L′〉ρf

are the SU(3)
recoupling and coupling coefficients, respectively. The latter
are evaluated numerically using the available code [34], while
the relevant U(6) ⊃ SUp(3) ⊗ SUn(3) isoscalar factors are
given in Ref. [35].

To calculate the matrix elements of the collective potential
υ(Q) = Qp · Qn, a normal-ordered expansion in U(6) unitary
irreducible terms is required. The result is

Qp · Qn = 22

25
(C2[SU (3)] − C2[SUp(3)] − C2[SUn(3)]) − 34

25

[
A2(p, p) × A2(n, n)

][2,−2]6 l=0m=0
[1,−1]3[1,−1]3 [2,−2]3

+
{

1

4

(√
5

6

[
F 2(p, p) × G2(n, n)

][2,−2]6 00
[2]3[2]∗3 [2,−2]3

+
√

5

6

[
F 2(n, n) × G2(p, p)

][2,−2]6 00
[2]∗3[2]3 [2,−2]3

)
+ 1

2

(√
5
[
A2(p, p) × G2(n, n)

][2]∗6 00
[1,−1]3[2]∗3 [2]∗3

+
√

5
[
A2(n, n) × G2(p, p)

][2]∗6 00
[2]∗3[1,−1]3 [2]∗3

)

+ 1

2

(√
5

6

2

3

[
G2(p, p) × G2(n, n)

][4]∗6 00
[2]∗3[2]∗3 [4]∗3

+
√

5

6

√
5

3

[
G2(p, p) × G2(n, n)

][4]∗6 00
[2]∗3[2]∗3 [2]3

+
√

5

3

2

3

[
G2(p, p) × G2(n, n)

][2,2]∗6 00
[2]∗3[2]∗3 [4]∗3

+
√

5

3

√
5

3

[
G2(p, p) × G2(n, n)

][2,2]∗6 00
[2]∗3[2]∗3 [2]3

)
+ H.c.

}
, (15)

where

C2[SU(3)] = Q̃ · Q̃ + 1

2
L2 (16)

is the SU(3) second-order Casimir operator with eigenvalue
〈C2[SU(3)]〉 = 2

3 (λ2 + μ2 + λμ + 3λ + 3μ). The SUp(3)
and SUn(3) second-order Casimir operators are similarly
defined. The quantities Q̃m,α ≡ Q̃m(α, α) = A2m(α, α) (α =
p, n) are the components of SU(3) truncated Elliott’s
quadrupole operators of the proton and neutron subsystem, re-
spectively, and Q̃m = Q̃m(p, p) + Q̃m(n, n). In Eq. (15), the
following notations for the U(6) tensors are also used: [2]6 ≡
[2, 0, 0, 0, 0, 0]6, [2]∗6 ≡ [0, 0, 0, 0, 0,−2]6, [2,−2]6 ≡ [2,
0, 0, 0, 0,−2]6, [1,−1]6 ≡ [1, 0, 0, 0, 0,−1]6, [2, 2]∗6 ≡ [0,
0, 0, 0,−2,−2]6, etc. The same notations are valid for the
U(3) tensor operators. For convenience, instead of SU(3)
labels in Eq. (15), the corresponding U(3) ones are also used to
characterize the tensor properties of different interaction terms
with respect to the chain (11). With such a normal-ordering
expansion, the inclusion of intermediate states external to the
truncated space is avoided. The required matrix elements for
the basic irreducible terms which appear in (15) are given in
Ref. [36].

The results for the low-lying energy levels of the ground, β,
and γ bands, obtained in the space of stretched SU(3) states,
are compared with experiment [37] in Fig. 1. Recall that the
calculations within this space introduce only a vertical mixing,
caused by the coupling to the states from the higher shells.
The major shell separation energy h̄ω is determined by the
standard formula 41A−1/3 MeV. The adopted values for the
model parameters (in MeV), obtained by fitting to the energies
and B(E2) value for the transition from 2+ to 0+ states of
the ground band, are as follows: χ = 0.0032, ξ = 0.0051, and

a = 0.013. From Fig. 1 one sees a good description of the
energy levels.

The reduced intraband E2 electromagnetic transition
strengths between the states of the ground band are also
computed:

B(E2; Li → Lf )

= 2Lf + 1

2Li + 1

(
5

16π

)(
eZ

A − 1

)2

|〈f ||Q(p, p)||i〉|2. (17)

Note that in the definition of the operator Q(p, p) [cf.
Eq. (1)], the summation is over the (A − 1) Jacobi quasiparti-
cles. Thus, in order to obtain the proton charge quadrupole
operator, the Q(p, p) operator is multiplied by the factor

FIG. 1. Comparison of the theoretical [within the space of
stretched SU(3) states] and experimental energy levels for the
ground, β, and γ bands in 154Sm.
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FIG. 2. Calculated [within the space of stretched SU(3) states]
and experimental intraband B(E2) values between the states of the
ground band in 154Sm. No effective charge is used.

Z/(A − 1). The calculated reduced intraband E2 electromag-
netic transition strengths are compared with experiment [37]
in Fig. 2. One sees that the theory slightly overestimates the
experimental data. Notice that no effective charge is used in
the calculation, i.e., e = 1.

In Fig. 3, the squares of the amplitudes (probabilities) of
the SU(3) components (λ + 2n,μ) from each nh̄ω shell are
plotted for the 0+ states of the ground and β bands, and for the
2+ state of the γ band, as a function of n. The starting SU(3)
configurations for the ground and β, γ bands are (30,0) and
(26,0), respectively, on which the quadrupole giant resonance
excitations are built up. From the figure, the structure of
the eigenstates obtained in the diagonalization of the model
Hamiltonian becomes evident. One sees almost a pure SU(3)
structure, exhausted by the SU(3) irreps (30,0) and (26,2) for
the ground and β, γ bands, respectively.

It is interesting to see what happens when the model space
is extended beyond the stretched SU(3) approximation. Thus,
as a next step, the other SU(3) irreps from the Sp(12,R) band-
head and the SU(3) states built on them—which introduce
also a horizontal mixing among different SU(3) multiplets
within the different U(6) irreps in addition to the vertical
(between different major shells) one—are included in the
diagonalization of the model Hamiltonian. [Note that the
Qp · Qn interaction mixes different SU(3) multiplets within
and between different major shells.]

In Fig. 4, the B(E2) transition strength between the first
excited and ground states of the ground band in 154Sm is
shown as a function of the model parameter χ in the range
of physically relevant values. No effective charge is used.
From the figure one sees a reduction of the B(E2) transition
strength with the increase of χ . As can be seen, the experimen-
tally observed value is obtained for χ � 0.0032. The values of
the rest of the model parameters in the Hamiltonian are kept
the same, except the value of the parameter ξ , which is slightly
changed from 0.0051 to 0.0053.

FIG. 3. Calculated [within the space of stretched SU(3) states]
probability distributions for the SU(3) wave function components
(λ + 2n, μ) from each nh̄ω shell for the 0+ states of the ground
and β bands and for the 2+ state of the γ band, as a function of
n. The starting SU(3) configurations for the ground and β, γ bands
are (30,0) and (26,0), respectively.

The results for the energies of the ground, β, and γ bands,
as well as the intraband B(E2) transition strengths between
the states of the ground band for χ = 0.0032, are shown,
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FIG. 4. Calculated B(E2; 2+
1 → 0+

1 ) transition strength in 154Sm
as a function of the model parameter χ . No effective charge is used.

respectively, in Figs. 5 and 6. The energies are practically not
affected by the extension of the model space for the used val-
ues of the model parameters. From Fig. 6 one sees a reduction
of quadrupole collectivity, caused by extending horizontally
the model space, which allows the proper reproduction of the
observed B(E2) values.

The SU(3) probability distributions for the 0+ states of
the ground and β bands, and for the 2+ state of the γ band,
obtained in the calculations in the new space, are shown
in Fig. 7. From these distributions one sees that the SU(3)
dynamical symmetry is slightly broken due to the mixing. In
particular, for the states of ground and β bands one sees a
comparatively simple structure in which a few SU(3) mul-
tiplets contribute. For the 2+ states of the γ band one sees
almost a pure SU(3) structure, determined by the SU(3) irrep
(26,2) which exhausts 99.92%. But what is remarkable from
these results is the fact that all SU(3) states, contributing
to the structure of the collective states under consideration,

FIG. 5. Comparison of the theoretical and experimental energy
levels for the ground, β, and γ bands in 154Sm. The values for the
model parameters are as follows (in MeV): χ = 0.0032, ξ = 0.0053,
and a = 0.013.

FIG. 6. Calculated and experimental intraband B(E2) values
between the states of the ground band in 154Sm. No effective charge
is used. The values for the model parameters are as follows (in MeV):
χ = 0.0032, ξ = 0.0053, and a = 0.013.

belong to a single U(6) irrep, namely that of the symplectic
bandhead. More precisely, the U(6) irrep of the lowest-weight
state exhausts up to 99.925% of the structure for the ground
state, and 99.926% and 99.991% for the 0+ and 2+ states of
the β and γ bands, respectively. The same picture is obtained
for the other collective states.

At this point it should be pointed out that the eigenvectors
of the model Hamiltonian (13), obtained for different values of
the parameter χ (shown in Fig. 4), also belong to a single U(6)
irreducible representation. In other words, the microscopic
structure of the low-lying collective states in 154Sm shows
the presence of a very good U(6) dynamical symmetry. This
explains the success of different U(6)-based models, e.g., the
IBM [2].

As can be seen from Figs. 3 and 7, the Hamiltonian
(13) leads to an almost exact SU(3) symmetry for the wave
functions of the β and γ bands, which have almost similar
SU(3) probability distributions, determined by the predomi-
nant SU(3) irrep (26,2), plus small admixtures from the other
0h̄ω SU(3) irreps for the β band of the order of ∼ 5.4%. From
the similar probability distributions of the β and γ bands it
follows that the two bands will be almost degenerate in energy,
as can be seen from the theoretical values in Figs. 1 and 5.
In experiment, however, these two bands are not degenerate.
This experimental observation can easily be reproduced in
the theory, at the price of one more parameter, by adding for
example the K2 term to the model Hamiltonian which will
split the degeneracy between the β and γ bands.

Concerning the interband E2 transitions, which are not the
subject of the present work, it will be noticed that within the
stretched SU(3) approximation they will be zero for β → g
and γ → g, and nonzero for γ → β since the latter two bands
lie in the same set of stretched SU(3) states (26 + 2n, 2).
The extension of the model space produces a small mixing
of the two sets of SU(3) irreps, corresponding to the ground
and β (γ ) bands, which will result in nonzero interband
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FIG. 7. Calculated SU(3) probability distributions for the wave
functions for the 0+ states of the ground and β bands, and for the
2+ state of the γ band. The values for the model parameters are as
follows (in MeV): χ = 0.0032, ξ = 0.0053, and a = 0.013.

transitions between them. For instance, for 0+
β → 2+

g and
2+

γ → 0+
g transitions one obtains (with no effective charge)

5.22 and 4.08 w.u., which are in reasonable agreement with
the experimental values [37] 12 and 2.13 w.u., respectively.

It should also be pointed out that, in the present approach,
the structure of the low-lying collective states of the ground
band has an SU(3) probability distribution similar to that
obtained in the contracted symplectic model for 160Dy, 168Er,
and 234,236,238U nuclei [15], but in which the role of “vertical”
and “horizontal” mixing is interchanged. This means that, in
the PNSM, the mixing among the SU(3) states within the
symplectic bandhead 0h̄ω subspace is preferable over the
major intershell mixing for the present choice of the collective
potential.

The results obtained with the Qp · Qn interaction show that
it can be replaced by its U(6)-restricted part, Q̃p · Q̃n, acting
only within a single shell. Therefore, using this replacement
and the algebraic realization [38,39] of a coupled two-rotor
picture, in which one rotor represents the proton and another
represents the neutron distribution, for the axial-axial case
considered in this paper, one can associate the U(6)-restricted
part of Hamiltonian (13) with a one-dimensional harmonic
oscillator restoring potential with a frequency ωθ . The cor-
respondence is based on the well-known relation of the SU(3)
symmetry group to the symmetry group of the rigid-rotor,
Rot(3) [40]. The angle θ determines the relative orientation
of the two rotors and each orientation, in turn, implies a
specific SU(3) configuration. According to Littlewood rules,
the geometrical image of two axial coupled rotors is in one-
to-one correspondence to the SUp(3) ⊗ SUn(3) ⊃ SU(3)
reduction (λp, μp = 0) ⊗ (λn, μn = 0) → (λ,μ), which can
be expressed in terms of a single quantum number r:

(λp, 0) ⊗ (λn, 0) =
⊕

r

(λp + λn − 2r, r ). (18)

Then, a discrete orientation angle

θr = sin−1

√
(λp + λn − r )r

λpλn

(19)

can be associated with the joined proton-neutron SU(3) irrep
(λp + λn − 2r, r ), where r = 0, . . . , min(λp, λn) [38]. For
θ = 0 the two axially symmetric ellipsoids overlap maxi-
mally, whereas when θ = π/2 the principal axes are perpen-
dicular to one another and the resulting overlap of the two
distributions is minimal.

Using the correspondence of the invariant operators of
SU(3) and Rot(3) groups, the second-order SU(3) Casimir
operator can be expressed as a function of the angle θ in the
form [39]

C2[SU(3)](θ ) = [(λp + λn + 2)2 + 2(λp + λn + 2) + 4]

− 12(λp + 1)(λn + 1)θ2 − 3. (20)

Then the eigenvalues of the U(6)-restricted part of the model
Hamiltonian (13) can be expressed as

E − Eg.s. = r h̄ωθ − χ

4
Lp · Ln + aL(L + 1) + E′

0, (21)

where h̄ωθ = h̄ω∞[1 + 1−r
λp+λn

] and h̄ω∞ = ( χ
4 + ξ )2

(λp + λn). For fixed initial proton and neutron distributions,
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the constant E′
0 is related to the SUα(3) quantum numbers λα

(α = p, n) and is not important for the calculation of nuclear
spectra since only one SUα(3) irrep for protons and neutrons
is considered. From Eq. (21) it follows that the low-lying
rotational bands in nuclear spectra can be considered as being
built on different multiphonon excitations (which are slightly
mixed by the nondiagonal Lp · Ln term) with a phonon
energy h̄ωθ and phonon spin 1h̄. The quantum number r
therefore can be associated with the number of oscillator
phonons, i.e., r = nθ .

Recall that in the general case of two triaxial coupled
rotors, one needs three angles (θ, φp, φn), corresponding to
the three quantum numbers (r, s, 
) in the decomposition
SUp(3) ⊗ SUn(3) ⊃ SU(3), which specify the relative ori-
entation of the proton and neutron ellipsoids [39].

IV. CONCLUSIONS

In the present paper, the proton-neutron symplectic model
with Sp(12,R) dynamical algebra is applied to the simulta-
neous description of the microscopic structure of the low-
lying states of the ground, β, and γ bands in 154Sm. For
this purpose, the model Hamiltonian, consisting of a spher-
ical harmonic oscillator shell-model part and the full major
shell-mixing proton-neutron quadrupole-quadrupole interac-
tion, plus an SU(3) scalar term which take into account the
bandhead energies and a residual rotational part, is diago-
nalized in a U(6)-coupled basis, restricted to the state space
spanned by the fully symmetric U(6) irreps. Although the
model Hamiltonian used is very schematic, it nevertheless re-
veals the kind of possible proton-neutron collective dynamics
that can be investigated within the framework of the PNSM.

A good description of the energy levels of the three bands
under consideration, as well as the intraband B(E2) transition
strengths between the states of the ground band, is obtained
without the use of an effective charge. The results obtained
reveal a simple structure of the collective states in which only
a few SU(3) multiplets contribute. A remarkable observation,
which follows from the present calculations, is that all the
SU(3) irreducible representations that contribute to the struc-
ture of collective states belong to a single U(6) irreducible
representation, namely that of the symplectic bandhead. This
reveals the presence of a very good U(6) dynamical symmetry
in the low-energy spectrum of 154Sm, at least for the present
choice of the model Hamiltonian. The obtained results are
governed by the full multi-major-shell mixing quadrupole-

quadrupole interaction, Qp · Qn, which favors the horizontal
mixing of different SU(3) multiplets within the 0h̄ω space of
the Sp(12,R) bandhead.

It is also shown that, in contrast to the Sp(6,R) case, the
lowest excited bands, e.g., the β and γ bands, naturally appear
together with the ground band within a single Sp(12,R) irre-
ducible representation. In this regard, the extension of the one-
component Sp(6,R) model to the two-component Sp(12,R)
one already includes at the level of model state space, besides
the basic rotational SU(3), also the low-lying vibrational de-
grees of freedom, represented by the presence of other excited
collective bands in the experimentally observed spectrum. It is
clear that both the rotational and low-lying vibrational degrees
of freedom are contained in this larger intrinsic U(6) structure
of PNSM. Moreover, the PNSM calculations in a space up to
40h̄ω with the full major-shell mixing Qp · Qn interaction for
different values of χ give eigenvectors which belong to the
Hilbert space of the Sp(12,R) bandhead state space only. This
fact shows that the required quadrupole collective dynamics is
already covered by the Sp(12,R) bandhead intrinsic structure.
This is a remarkable observation, which suggests an even
simpler interpretation of the observed experimental data and
possible usage of a U(6)-truncated Hamiltonian in practical
applications. The latter explains the success of the U(6)-based
macroscopic theories of nuclear collective motion, e.g., the
IBM, in describing the observed low-lying collective states in
strongly deformed nuclei.

The results, obtained by extending the model space beyond
that of the stretched SU(3) states, showed a reduction of
the collective nuclear dynamics. In this regard, the Qp · Qn

interaction through its horizontal mixing causes effects similar
to those of the symplectic symmetry-breaking interactions,
e.g., the spin-orbit and pairing, within the framework of the
one-component Sp(6,R) symplectic model or its contracted
version. This effect becomes understandable if one considers
a decomposition of a given Sp(12,R) collective space into
different Sp(6,R) irreducible representations. Then it becomes
clear that the Qp · Qn interaction, which is in the enveloping
algebra of Sp(12,R), will naturally incorporate the effects of
horizontal mixing of different Sp(6,R) multiplets.

Finally, the obtained results is given a simple geometrical
multi-phonon interpretation, based on the algebraic realiza-
tion of the coupled two-rotor picture. This suggests an inter-
pretation of the low-lying excited bands as relative proton-
neutron excitations of the two-component nuclear system,
governed by the Qp · Qn interaction.
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