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Quantitative analysis of tensor effects in the relativistic Hartree-Fock theory
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Tensor force is identified in each meson-nucleon coupling in the relativistic Hartree-Fock theory. It is found
that all the meson-nucleon couplings, except the σ -scalar one, give rise to the tensor force. The effects of
tensor force on various nuclear properties can now be investigated quantitatively, which allows fair and direct
comparisons with the corresponding results in the nonrelativistic framework. The tensor effects on nuclear
binding energies and the evolutions of the Z, N = 8, 20, and 28 magic gaps are studied. The tensor contributions
to the binding energies are shown to be tiny in general. The Z, N = 8 and 20 gaps are sensitive to the tensor
force, but the Z, N = 28 gaps are not.
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I. INTRODUCTION

The tensor force is one of the most important components
of the nucleon-nucleon interaction [1–3]. At early stage of
nuclear physics, the tensor force was recognized to be re-
sponsible for the deuteron binding [4] and electric quadrupole
moment [5]. With the advance of radioactive-ion-beam facil-
ities around the world, much progress has been made in the
study of the structure of exotic nuclei. From the β-stability
valley toward the drip lines, the shell evolution, particularly
the disappearance of the traditional magic numbers and the
emergence of new ones, is of great interest [6–8]. It has been
pointed out by Otsuka et al. [9–12] in the scheme of nuclear
shell model that the tensor force plays a critical role in the
shell evolution in exotic nuclei.

Among the state-of-the-art nuclear methodologies, the nu-
clear density functional theory (DFT) [13–16] is the only
approach that can cover almost the whole nuclear chart, in
particular, the exotic nuclei, now and in the near future. The
first study of the role of tensor force in the shell evolution can
be traced back 40 years ago [17] in the Hartree-Fock (HF)
theory using the Skyrme [18] interaction. However, in that
study, minor improvements or even, in some cases, some dete-
riorations were predicted in the description of single-particle
energies and spin-orbit splittings. Actually, for decades, the
tensor force had been neglected in the Skyrme HF theory.
In the nonrelativistic Gogny HF theory, the tensor force is
also not included in the widely used versions [19,20]. The
same applies to the relativistic framework. In the widely used
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relativistic mean-field (RMF) theory [21–25], the tensor force
is not included because only the Hartree terms are taken into
account. Note that in the scheme of DFT, the tensor effects
refer to those effects of the tensor force acting on the system
wave function as a single Slater determinant. The higher-order
effects of tensor force [26], e.g., the two-particle-two-hole
effect [27–31], are supposed to be implicitly absorbed in the
effective interactions.

Such a situation of the study of tensor force has been
dramatically changed since the experimental data on the shell
evolution of nuclei far from the stability line, such as the
energy differences between the 1h11/2 and 1g7/2 single-proton
states along the Z = 50 isotopes, the energy differences be-
tween the 1i13/2 and 1h9/2 single-neutron states along the
N = 82 isotones [32], and the energy differences between
the 2s1/2 and 1d5/2 single-neutron states along the Z = 20
isotopes [33].

This bloomed a series of works focused on the tensor
effects on the shell evolution in both the nonrelativistic
[11,34–40] and relativistic [41–45] DFT. Readers are referred
to Ref. [3] for a recent review. In particular, the compar-
isons between the relativistic and nonrelativistic frameworks
were carried out in Ref. [46] for the proton 1d spin-orbit
splitting and neutron 2p3/2-1f7/2 gap, and in Ref. [47]
for the Z, N = 8, 20, and 28 magic gaps. Agreements be-
tween the relativistic and nonrelativistic results were found
in a qualitative way. However, quantitative analysis of ten-
sor effects in the relativistic framework was still missing
[46,47].

In the nonrelativistic framework, the tensor force is in-
cluded explicitly and its strengths are fitted basically in two
ways. One is to add the tensor force onto a given existing
effective interaction perturbatively, and adjust only the tensor
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strengths so as to reproduce at best the shell evolution along
the isotopic or isotonic chains [34,36]. Another is to fit the
strengths of the tensor force, e.g., αT and βT in Skyrme
[48], fG in Gogny [11], on an equal footing with the other
components of the effective interaction. In both cases, the
tensor force is isolated from the other components, and thus
its effects can be identified clearly.

In the relativistic framework, first of all, to include the
tensor force, the Fock terms must be taken into account.
This is the relativistic Hartree-Fock (RHF) theory [49]. By
adopting the density-dependent meson-nucleon couplings, the
RHF theory [41,50,51] achieved for the first time the quan-
titative description of the ground-state properties of many
nuclear systems on the same level as RMF. It has been
also shown that the Fock terms play very important roles in
the nucleon effective mass splitting [50], symmetry energies
[52–54], pseudospin and spin symmetries [55–57], halo and
bubble-like structures [58,59], deformation [60], superheavy
elements [61], new magic numbers [62,63], Coulomb effects
and isospin-symmetry breaking [64,65], spin-isospin reso-
nances [66–69], β-decay half-lives [70], and the properties
of neutron stars [71–73]. It is, however, not straightforward
to identify the tensor effects in the RHF theory, because
the tensor force is mixed together with other components,
such as the central and spin-orbit ones. For example, simply
excluding the pion-nucleon coupling, which is known as the
most important carrier of the tensor force, leads to substantial
changes also in the central part of the mean field.

Within the RHF theory, there have been several attempts to
identify the tensor force and evaluate its effects on the shell
evolution. In Refs. [42,43], it is found that the tensor compo-
nents of nuclear interaction arising from the π -pseudo-vector
(π -PV) and ρ-tensor (ρ-T) couplings play an essential role in
the self-consistent description of the relevant shell evolutions.
Moreover, both the π -PV and ρ-T couplings are found to
be essential in triggering the new magicity N = 32 in 52Ca
[62]. It is also recognized that the interaction matrix elements
from the Fock terms and their contributions to the spin-orbit
splittings show characteristic spin dependence, and such a
spin-dependent feature can be extracted almost completely
by the proposed relativistic tensor formalism; see Fig. 2 in
Ref. [74]. In particular, more distinct effects were found in the
isoscalar channels, namely the σ -scalar (σ -S) and ω-vector
(ω-V) couplings, rather than the isovector ones (π -PV and
ρ-T) [74–76], since this spin-dependent feature originates not
only from the tensor force, but also from the exchange parts
of the central force [36]. Nevertheless, with these attempts,
a fair and direct comparison between the relativistic and
nonrelativistic schemes about the tensor force and its effects
remains an open question.

In this work, we will perform the nonrelativistic reduction
for the relativistic two-body interactions in the RHF theory,
and obtain the corresponding nonrelativistic reduced opera-
tors. These operators, which are expanded in a systematic way
in the powers of 1/M , are nothing but the central, spin-orbit,
and tensor forces, etc., in the conventional nonrelativistic
sense. We can then evaluate the tensor effects on various nu-
clear properties in a quantitative way, and eventually compare
with the nonrelativistic results.

This paper is organized as follows. In Sec. II, the RHF
theory is briefly introduced, and the identification of the tensor
forces in RHF is shown with the formalism of nonrelativistic
reduction. More details are in Appendices A–C. The sum rule
of the two-body matrix elements of tensor force is verified,
and the tensor effects on nuclear binding energies and shell
evolutions are studied in Sec. III. Summary and perspectives
are given in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Relativistic Hartree-Fock theory

In the relativistic framework, the nucleon-nucleon interac-
tion is mediated by the exchange of mesons [25]. The starting
point of the RHF theory is the effective Lagrangian density
L . It is constructed with the degrees of freedom associated
with the nucleon field ψ , two isoscalar meson fields σ and
ω, two isovector meson fields π and ρ, and the photon field
A. It is composed of the free parts of the nucleon, meson, and
photon fields as well as the interaction parts between nucleons
and mesons (photons) [41,49,50],

L = L0 + LI , (1)

where

L0 = ψ̄ (iγμ∂μ − M )ψ + 1

2
∂μσ∂μσ − 1

2
m2

σ σ 2

+ 1

2
m2

ωωμωμ − 1

4
�μν�

μν + 1

2
m2

ρ �ρμ · �ρμ

− 1

4
�Rμν · �Rμν + 1

2
∂μ �π · ∂μ �π − 1

4
FμνF

μν, (2a)

LI = −ψ̄

[
gσσ + gωγ μωμ + gργ

μ�τ · �ρμ

− fρ

2M
σμν �τ · ∂ν �ρμ + fπ

mπ

γ5γ
μ�τ · ∂μ �π

+ eγ μ 1 − τ3

2
Aμ

]
ψ, (2b)

with the nucleon mass M , the meson masses m, the meson-
nucleon coupling strengths g and f , the field tensors

�μν ≡ ∂μων − ∂νωμ, (3a)

�Rμν ≡ ∂μ �ρν − ∂ν �ρμ, (3b)

Fμν ≡ ∂μAν − ∂νAμ, (3c)

and σμν = i
2 [γ μ, γ ν]. In this paper, the isovectors are denoted

by arrows and the space vectors are in bold type.
The Hamiltonian can be derived through the Legendre

transformation and further presented with the nucleon degree
of freedom as

H =
∫

d3x ψ̄ (x)[−iγ · ∇ + M]ψ (x)

+ 1

2

∑
φ

∫∫
d3x d4y ψ̄ (x)ψ̄ (y)�φ (x, y)Dφ (x, y)

×ψ (y)ψ (x), (4)

034313-2



QUANTITATIVE ANALYSIS OF TENSOR EFFECTS IN … PHYSICAL REVIEW C 98, 034313 (2018)

where φ denotes the meson-nucleon couplings, i.e., the
Lorentz σ -scalar (σ -S), ω-vector (ω-V), ρ-vector (ρ-V), ρ-
tensor (ρ-T), ρ-vector-tensor (ρ-VT), and π -pseudovector (π -
PV) couplings, as well as the photon-vector (A-V) coupling.
To make no confusion, the capital letter “T” here means the
Lorentz tensor coupling. In contrast, the small letter “t” will
be used later to denote the word “tensor” in the relevant
contexts of tensor force. The interaction vertices �φ (x, y) in
the Hamiltonian Eq. (4) read

�σ -S = −[gσ ]x[gσ ]y, (5a)

�ω-V = +[gωγμ]x[gωγ μ]y, (5b)

�ρ-V = +[gργμ�τ ]x[gργ
μ�τ ]y, (5c)

�ρ-T = +
[

fρ

2M
σμν �τ∂ν

]
x

[
fρ

2M
σμλ�τ∂λ

]
y

, (5d)

�ρ-VT = +
[

fρ

2M
σμν �τ∂μ

]
x

[gργ
ν �τ ]y + (x ↔ y), (5e)

�π-PV = −
[

fπ

mπ

�τγ5γμ∂μ

]
x

[
fπ

mπ

�τγ5γν∂
ν

]
y

, (5f)

�A-V = +
[
eγμ

1 − τ3

2

]
x

[
eγ μ 1 − τ3

2

]
y

. (5g)

The propagators Dφ (x, y) read

Dφ (x, y) = −
∫

d4k

(2π )4
e−ik(x−y) 1

k2 − m2
φ

. (6)

When the retardation effect is neglected [49], the meson
and photon propagators become the standard Yukawa and
Coulomb forms,

Dφ = 1

4π

e−mφ |r1−r2|

|r1 − r2| , DA-V = 1

4π

1

|r1 − r2| , (7)

respectively. Hereafter, we use r1 and r2 to denote the space
coordinates at vertices x and y, and the indices “1” and “2”
are always used to denote the vertices.

The nucleon-field operators ψ (x) and ψ†(x) can be ex-
panded on the set of creation and annihilation operators
defined by a complete set of Dirac spinors {ϕα (x)},

ψ (x) =
∑

α

ϕα (x)e−iεα t cα, (8a)

ψ†(x) =
∑

α

ϕ†
α (x)eiεαt c†α, (8b)

where cα and c†α represent the annihilation and creation op-
erators for the nucleon in state |α〉 with the single-particle
energy εα . The trial Hartree-Fock ground-state wave function
of a nucleus with A particles is constructed as

|�0〉 =
A∏
α

c†α|0〉. (9)

The no-sea approximation [21] indicates that the index α runs
over only the occupied states in the Fermi sea.

The expectation energy of the Hamiltonian Eq. (4) on the
trial ground state, excluding the rest mass, can be derived as

E = 〈�0|H |�0〉 − AM

= EK +
∑

φ

(
ED

φ + EE
φ

)

=
∑

α

∫
d r ϕ̄α (r )(−iγ · ∇ + M )ϕα (r ) − AM

+ 1

2

∑
φ,αβ

{∫∫
d r1 d r2 ϕ̄α (r1)ϕ̄β (r2)�φ (r1, r2)

×Dφ (r1, r2)ϕα (r1)ϕβ (r2)

−
∫∫

d r1 d r2 ϕ̄α (r1)ϕ̄β (r2)�φ (r1, r2)Dφ (r1, r2)

×ϕβ (r1)ϕα (r2)
}
, (10)

where EK denotes the kinetic energy, and ED
φ and EE

φ cor-
respond to the energy contributions from the direct (Hartree)
and exchange (Fock) terms, respectively.

Adopting the spherical symmetry, the single-particle states
are specified by a set of quantum numbers α ≡ (a,mα ) ≡
(τa, na, la, ja,mα ). Note that because of the spherical sym-
metry, here we use a to represent the other quantum numbers
apart from the magnetic one mα . For the isospin, τa = 1/2
corresponds to the neutron state and τa = −1/2 to the proton
state. The Dirac spinors of nucleon are explicitly written as

ϕα (r ) =
(

ξα (r )
ζα (r )

)
= 1

r

(
iGa (r )

Fa (r )σ̂ · r̂

)
Yα (r̂ )χ 1

2
(τa ), (11)

where ξα (r ) and ζα (r ) are the upper and lower components of
the Dirac spinor, and Ga (r ) and Fa (r ) are their radial parts,
respectively. χ 1

2
(τa ) are the isospin spinors, and Yα (r̂ ) are the

tensor spherical harmonics defined through the coupling of the
spherical harmonics and the spin spinors,

Yα (r̂ ) =
∑
us

C
jamα

lau
1
2 s

Ylau(r̂ )χ 1
2
(s), (12)

with r̂ ≡ r/r .
The variational principle,

δ

[
E −

∑
α

εα

∫
d r ϕ†

α (r )ϕα (r )

]
= 0, (13)

leads to the Hartree-Fock equation for the single-particle
states {ϕα (r )}. The Lagrangian multipliers εα ≡ eα + M can
be verified to be the single-particle energies, including the rest
mass of nucleon. The corresponding Hartree-Fock equation
for the radial part of the wave functions reads

εaGa (r ) = −
[

d

dr
− κa

r
− �T (r )

]
Fa (r )

+ [M + �S (r ) + �0(r )]Ga (r ) + Ya (r ), (14a)

εaFa (r ) = +
[

d

dr
+ κa

r
+ �T (r )

]
Ga (r )

− [M + �S (r ) − �0(r )]Fa (r ) + Xa (r ), (14b)
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with κa ≡ (2ja + 1)(la − ja ). �S, �0, and �T are the con-
tributions to the self-energy from the direct terms. X and Y
denote the contributions from the exchange terms. See all the
detailed expressions, e.g., in Refs. [41,50–52]. Note that the
density-dependence in the meson-nucleon coupling strengths
leads to the contributions of the rearrangement terms to the
self-energy.

B. Tensor force in relativistic Hartree-Fock theory

1. Nonrelativistic reduction

To identify various components embraced in the relativistic
meson-exchange picture, such as the central, spin-orbit, and
tensor forces in the nucleon-nucleon interactions in the con-
ventional nonrelativistic sense, we will perform the nonrela-
tivistic reduction for the relativistic two-body interactions.

In the RHF theory, the relativistic meson-exchange two-
body interactions,

V̂φ (r1, r2) = γ0(r1)γ0(r2)�φ (r1, r2)Dφ (r1, r2), (15)

include those provided by the σ, ω, ρ, and π mesons. The
corresponding two-body interaction matrix elements read

Vφ,αβγ δ

= 〈ϕαϕβ |V̂φ|ϕγ ϕδ〉

=
∫∫

d r1 d r2 ϕ†
α (r1)ϕ†

β (r2)V̂φ (r1, r2)ϕγ (r1)ϕδ (r2).

(16)

Hereafter, we will use the indices “αβγ δ” or “abcd” to
denote the single-particle states. The nonrelativistic reduction
of V̂φ (r1, r2) leads to the nonrelativistic two-body interaction
V̂φ (r1, r2) that satisfies [77]

Vφ,αβγ δ = 〈ϕαϕβ |V̂φ�+|ϕγ ϕδ〉 = 〈ξαξβ |V̂φ|ξγ ξδ〉, (17)

where �+ is the projector to the upper components of the
Dirac spinors, i.e., V̂ only acts on the upper components of
the single-particle wave functions. To make a clear distinction,
hereafter we use the math calligraphic font V̂ to present the
nonrelativistic reduced two-body interactions. In principle, V̂
can be expanded in the powers of 1/M .

First, we discuss a specific case that the single-particle
wave functions are the plane waves in the vacuum, i.e., in the
zero-density limit. The corresponding plane waves read

ϕ pa
(r ) = u pa

ei pa ·r , (18)

where

u pa
=

√
M + εa

2εa

(
1

σ · pa

M+εa

)
χ 1

2
(sa )χ 1

2
(τa ), (19)

for the positive-energy states in the Fermi sea. Putting these
expressions in Eq. (16), we obtain

Vφ,abcd = ū pa
(1)ū pb

(2)
1

m2
φ + q2

�φ (1, 2)u pc
(1)u pd

(2),

(20)

TABLE I. Expressions of F0,φ in Eq. (21) for each meson-
nucleon coupling in the zero-density limit. The ratios to the π -PV
coupling are evaluated by ( F0,φ

m2
φ+q2 )/( F0,π-PV

m2
π +q2 ) with q = 0 using the

bare interaction Bonn A [78] and the effective interaction PKA1 [41].

Coupling F0,φ Ratio to π -PV

Bonn Aa PKA1

ω-V
gωgω

4M2
−0.02b −0.02c

π -PV −�τ · �τ fπfπ

m2
π

1 1

ρ-V �τ · �τ gρgρ

4M2
−0.0009 −0.002

ρ-T �τ · �τ fρfρ

4M2
−0.03 −0.02

ρ-VT �τ · �τ fρgρ

2M2
−0.01 −0.01

aThe corresponding form factors are also taken into account.
bThis value is only for the nn or pp channel, whereas 0 for the np

channel.
cSame as b.

where q ≡ pa − pc = pd − pb in the Yukawa propagator is
the momentum transfer. Here the expressions for the vertices
�φ (1, 2) acting on the plane waves are shown in Eqs. (A1) in
Appendix A.

As a result, the nonrelativistic reduced two-body inter-
actions V̂0,φ provided by each meson-nucleon coupling are
expressed up to the 1/M2 order in Eqs. (A13). It is seen that all
the couplings, except the σ -S one, give rise to the tensor force.
This is in agreement with the realistic Bonn nucleon-nucleon
interactions in the one-boson-exchange picture [78]. Explic-
itly, the tensor components of the nonrelativistic reduced two-
body interactions read

V̂ t
0,φ = 1

m2
φ + q2

F0,φS12, (21)

where

S12 ≡ (σ 1 · q )(σ 2 · q ) − 1
3 (σ 1 · σ 2)q2, (22)

and F0,φ in each meson-nucleon coupling are shown in
Table I. See Appendix A for detailed derivations.

To have ideas on the relative strengths of the tensor com-
ponent generated from different couplings, Table I also shows
their ratios to the π -PV coupling, which are evaluated by
( F0,φ

m2
φ+q2 )/( F0,π-PV

m2
π+q2 ) with q = 0, by taking the bare interaction

Bonn A [78] and the effective interaction PKA1 [41] as exam-
ples. It is seen that the largest tensor contribution comes from
the pion exchange, while all other couplings have opposite but
negligible contributions in the zero-density limit.

For general single-particle wave functions, the two-body
interaction matrix elements can be formally expressed as

〈ϕαϕβ |V̂φ|ϕγ ϕδ〉
=

∑
pa pb pc pd

〈
ϕα

∣∣ϕ pa

〉〈
ϕβ

∣∣ϕ pb

〉〈
ϕ pc

∣∣ϕγ

〉〈
ϕ pd

∣∣ϕδ

〉
× 〈

ϕ pa
ϕ pb

∣∣V̂φ

∣∣ϕ pc
ϕ pd

〉
034313-4
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≈
∑

pa pb pc pd∈F

〈
ϕα

∣∣ϕ pa

〉〈
ϕβ

∣∣ϕ pb

〉〈
ϕ pc

∣∣ϕγ

〉〈
ϕ pd

∣∣ϕδ

〉

× 〈
ϕ pa

ϕ pb

∣∣V̂φ

∣∣ϕ pc
ϕ pd

〉
=

∑
pa pb pc pd∈F

〈
ϕα

∣∣ϕ pa

〉〈
ϕβ

∣∣ϕ pb

〉〈
ϕ pc

∣∣ϕγ

〉〈
ϕ pd

∣∣ϕδ

〉

× 〈
ϕ pa

ϕ pb

∣∣V̂0,φ�+
∣∣ϕ pc

ϕ pd

〉
. (23)

Because the nonrelativistic reduction performed for the plane
waves at the last step in Eq. (23) is valid only for the
positive-energy states in the Fermi sea, we have to make
a truncation pa pb pc pd ∈ F before that. Such a truncation
introduces an approximation in the nonrelativistic reduction
for general cases, such as the single-particle wave functions
in finite nuclei.

For finite nuclei, the Hartree-Fock Eq. (14) shows that
the ratio between the upper and lower components can be
evaluated as

F (r ) ∼
d
dr

+ κ
r

ε + M + �S (r ) − �0(r )
G(r )

∼
d
dr

+ κ
r

2[M + �S (r )]
G(r ). (24)

In the central region of nuclei, the nuclear density is around
the saturation density ρsat., and [41]

M + �S ∼ 0.6M. (25)

In comparison, the ratio between the upper and lower compo-
nents of the plane waves in the zero-density limit is around
σ · p/(2M ) as shown in Eq. (19). Therefore, within the
truncation pa pb pc pd ∈ F adopted in Eq. (23), it is not an
optimal choice to perform nonrelativistic reduction for the
single-particle wave functions in finite nuclei by expanding
on the plane waves in the vacuum.

Following the spirit of the local density approximation
(LDA), at each position r with finite density ρ(r ) in nuclei, we
seek for the corresponding properties of homogeneous nuclear
matter with the same density ρ.

In the relativistic framework, the single-particle plane
waves in a homogeneous system generally read

ϕ p∗
a
(r ) = u p∗

a
ei pa ·r , (26)

where

u p∗
a
=

√
M∗ + ε∗

a

2ε∗
a

(
1

σ · p∗
a

M∗+ε∗
a

)
χ 1

2
(sa )χ 1

2
(τa ). (27)

In the RHF theory, the starred quantities are defined as [49]

p∗ ≡ p + p̂�V (p), (28a)

M∗(p) ≡ M + �S (p), (28b)

ε∗(p) ≡ ε(p) − �0(p), (28c)

with the momentum-dependent self-energies. M∗ is the so-
called Dirac mass. As a result, the corresponding tensor com-
ponents of the nonrelativistic reduced two-body interactions

TABLE II. Expressions for Fφ in Eq. (29) for each meson-
nucleon coupling with finite density. The ratio to the π -PV coupling
is evaluated by ( Fφ

m2
φ+q2 )/( Fπ-PV

m2
π +q2 ), with q = 0 and ρ = ρsat. using the

effective interaction PKA1.

Coupling Fφ Ratio to π -PV

ω-V
gω(1)gω(2)

4M∗(1)M∗(2)
−0.74a

π -PV −�τ · �τ fπ (1)fπ (2)

m2
π

1

ρ-V �τ · �τ gρ (1)gρ (2)

4M∗(1)M∗(2)
−0.03

ρ-T �τ · �τ fρ (1)fρ (2)

4M2
−0.25

ρ-VT �τ · �τ fρ (1)gρ (2)

4MM∗(2)
+ (1 ↔ 2) −0.16

aThis value is only for the nn or pp channel, whereas 0 for the np

channel.

become

V̂ t
φ = 1

m2
φ + q2

FφS12. (29)

Table II shows the explicit expressions of Fφ and the ratios to
the π -PV coupling, which are evaluated by ( Fφ

m2
φ+q2 )/( Fπ-PV

m2
π +q2 )

with q = 0 and ρ = ρsat. using the PKA1 effective interaction.
Here the M∗ is evaluated with the Fermi momentum M∗(pF ),
due to its weak momentum dependence. See Appendix B for
detailed derivations and the relevant discussions.

On the one hand, similar to the case of plane waves in the
zero-density limit, the largest tensor contribution comes from
the pion exchange, while all other couplings have opposite
contributions. On the other hand, now these contributions,
except ρ-V, become comparable with the π -PV one. This is
mainly due to the density-dependent behaviors of the cou-
pling strengths as well as the Dirac mass M∗. First, com-
paring with the other meson-nucleon coupling strengths, fπ

quenches more significantly as the nuclear density increases.
Second, factors of M/M∗ and even M2/M∗2 enhance the
tensor components in the VT and V couplings, respectively.
In addition, it is noted that the ratios shown in Table II are
evaluated with q = 0. These values will become larger with
finite momentum transfer, because in typical cases |q| ∼ mπ

but |q| � mω, mρ .
Then, we will use the nonrelativistic reduced two-body

interactions in Eq. (29) to evaluate the contributions of the
tensor component in finite nuclear systems, as we will present
in the following.

2. Evaluation of tensor contribution

Based on the above discussions, the tensor contribution
to the two-body interaction matrix elements Vφ,αβγ δ in each
meson-nucleon coupling, denoted as V t

φ,αβγ δ , can be evaluated
by

V t
φ,αβγ δ = 〈ξαξβ |V̂ t

φ|ξγ ξδ〉. (30)
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In the coordinate representation, V̂ t
φ (r) is expressed as

V̂ t
φ (r) = −Fφ (1, 2)

m2
φe−mφr

4πr

(
1 + 3

mφr
+ 3

m2
φr

2

)
S12(r̂),

(31)

where S12 reads

S12(r̂) ≡ (σ 1 · r̂)(σ 2 · r̂) − 1
3σ 1 · σ 2, (32)

with r ≡ |r1 − r2| and r̂ ≡ (r1 − r2)/|r1 − r2|.
In the RHF theory, only the exchange terms give rise to the

nonvanishing matrix elements of tensor interaction, because
q = 0 in the direct terms. By using the spherical symmetry,
the matrix elements are evaluated by

ja∑
mα=−ja

jb∑
mβ=−jb

V t
φ,αββα

=
∑
mαmβ

〈ξαξβ |V̂ t
φ|ξβξα〉

=
∑
mαmβ

∫∫
d r1 d r2 ξ †

α (r1)ξ †
β (r2)V̂ t

φ (r)ξβ (r1)ξα (r2). (33)

The corresponding spherically averaged matrix elements are
defined as

V t
φ,abba ≡ 1

ĵ 2
a ĵ 2

b

∑
mαmβ

V t
φ,αββα, (34)

where ĵ 2 ≡ 2j + 1 is the degeneracy of the orbital. In prin-
ciple, the above integrals can be carried out directly. Never-
theless, it will be very difficult to decompose analytically the
radial and angular parts of the tensor interaction in Eq. (31). In
practice, we take the advantage of the existing RHF formalism
and subroutines to calculate this integral in an alternative way.
See Appendix C for details.

Before ending this section, let us discuss the properties
of the Dirac mass M∗ appearing in Fφ (1, 2) for the inte-
gral Eq. (33). First of all, as discussed in Appendix B, for a
given nuclear matter density the momentum dependence of
M∗ is rather weak, and thus its value is evaluated with the
Fermi momentum M∗(pF ). Second, according to the spirit of
LDA, at vertices 1 and 2 with densities ρ(r1) and ρ(r2), we
take

M∗(r i ) = M∗(ρ(r i )), i = 1, 2, (35)

i.e., their values in the corresponding homogeneous nuclear
matter with the same densities, respectively. In Fig. 1, the
values of M∗ are shown as a function of matter density ρ with
the solid line for the symmetric nuclear matter. An obvious
density-dependent behavior is seen, and M∗(ρsat. ) = 0.55M
at the saturation density. Third, for a given matter density,
in principle M∗ also depends on the isospin asymmetry β ≡
(ρn − ρp )/ρ and appears the isospin splitting. Nevertheless, at
the central region of nuclei the isospin asymmetry β is small,
in contrast, at the surface region β increases for neutron-rich
nuclei while the density becomes small. By taking the case of
β = 0.2 as an example, M∗

n and M∗
p are shown as a function

FIG. 1. Dirac mass M∗ at the Fermi momentum as a function
of matter density ρ calculated by the RHF theory with the PKA1
effective interaction. The M∗ of the symmetric nuclear matter are
shown with the solid line, while the M∗

n and M∗
p of the asymmetric

matter with β = 0.2 are shown with the dashed and short-dashed
lines, respectively.

of matter density ρ in Fig. 1. It is seen that such an isospin
splitting is generally small. Therefore, we will always adopt
the M∗ values associated with the symmetric nuclear matter
in the following calculations.

III. RESULTS AND DISCUSSION

A. Sum rule of matrix elements

As a benchmark, one of the most important properties of
the tensor force is the following sum rule of the two-body
interaction matrix elements [10],

ĵ 2
a V t

abba + ĵ 2
ã V t

ãbbã = 0, (36)

where b is an arbitrary state, and the spin-up state a with j> =
l + 1/2 and the spin-down state ã with j< = l − 1/2 are a
pair of spin doublets. This sum rule is exactly satisfied on the
condition that the radial wave functions of spin doublets are
identical to each other.

We carry out such a benchmark for the tensor forces
extracted above in the RHF theory. Table III shows the values

TABLE III. Two-body matrix elements V t
abba of the tensor force

in the ω-V coupling in 208Pb. The results are calculated by RHF with
PKA1, and for each spin doublets the radial wave function of the
spin-up state is adopted. All units are in 10−2 MeV.

a b

ν1p1/2 ν1f7/2 ν1h11/2

ν1p3/2 −0.795260 0.525426 0.355980
ν1p1/2 1.590520 −1.050852 −0.711960
Sum 0.000000 0.000000 0.000000
ν2f7/2 −1.131623 0.705647 0.447433
ν2f5/2 1.508830 −0.940863 −0.596577
Sum 0.000000 0.000000 0.000000

034313-6



QUANTITATIVE ANALYSIS OF TENSOR EFFECTS IN … PHYSICAL REVIEW C 98, 034313 (2018)

TABLE IV. Same as Table III, but for the two-body matrix
elements V t

abba of the tensor force from all the couplings.

a b

ν1p1/2 ν1f7/2 ν1h11/2

ν1p3/2 −0.361054 0.389579 0.303729
ν1p1/2 0.722108 −0.779159 −0.607458
Sum 0.000000 0.000000 0.000000
ν2f7/2 −1.034539 0.623290 0.254924
ν2f5/2 1.379386 −0.831054 −0.339899
Sum 0.000000 0.000000 0.000000

of the two-body matrix elements V t
abba of the tensor force

generated by the ω-V coupling and the corresponding sum-
rule values, by taking the several single-neutron states in 208Pb
as examples. First of all, it is seen that the matrix elements are
positive between the j> and j ′

> (j< and j ′
<) states, whereas

they are negative between the j> and j ′
< (j< and j ′

>) states.
This property is opposite to that emphasized in Ref. [10],
because the tensor forces generated by the ω-V and π -PV
couplings have different signs. Note that it is the two-body
matrix elements with a minus sign, −V t

abba , that contribute
to the single-particle and total energies, because they are the
Fock terms. To testify the sum rule, for each spin doublets,
we make the radial wave function of the spin-down j< state
identical to its spin-up j> counterpart. It is confirmed that
the sum rule is fulfilled with more than six digits, for both
the nodal and nonnodal states with low and high angular
momenta.

Individually, this sum rule is satisfied for the two-body
matrix elements of the tensor forces generated by each

meson-nucleon coupling. As a result, the total values of
the tensor matrix elements satisfy the sum rule at the same
accuracy, as shown in Table IV.

B. Tensor effects on binding energy

With the tensor contributions to the matrix elements from
all the meson-nucleon couplings, we can evaluate the tensor
contributions to the total energies of finite nuclei.

Let us first give an overview on the effective interaction
PKA1 by showing the contributions to the total energy from
the kinetic, Hartree, and Fock terms, as well as the center-
of-mass correction in Table V for the nuclei 48Ca and 208Pb.
It is seen that the total energy is mainly determined by the
delicate balance among the kinetic term, the σ -S, and the
ω-V couplings, in particular, their Hartree terms. This is
consistent with the original idea of the Walecka model [21].
Among other Hartree terms, the Coulomb interaction becomes
more important as the proton number increases, and the ρ-V
coupling contributes in neutron-rich nuclei for the proper
isovector properties. In contrast, the ρ-T and ρ-VT couplings
give basically no contribution, and the π -PV coupling does
not contribute at all due to the violation of parity conservation.
For the Fock terms, on the one hand, the biggest contributions
still come from the σ -S and ω-V couplings, but they are in
general smaller than their Hartree counterparts by around a
factor of 5, and have opposite signs. On the other hand, via
the Fock terms, the ρ-V, ρ-T, ρ-VT, and π -PV couplings
give much more important contributions to the total energy
comparing with their Hartree counterparts, in particular, the
ρ-T one.

The tensor contributions to the total energy are embraced
in the Fock terms. The corresponding values are shown in

TABLE V. Contributions to the total energy E from different couplings in 48Ca and 208Pb calculated by RHF with PKA1. EK, ED, EE,
and ECM are the kinetic, Hartree, Fock, and center-of-mass correction energies, respectively. All units are in MeV.

Coupling 48Ca 208Pb

Neutron Proton Total Neutron Proton Total

EK 392.398 220.074 612.471 1596.568 907.899 2504.467
ED σ -S −2940.535 −2253.310 −5193.845 −14320.935 −10022.547 −24343.482

ω-V 2357.686 1805.927 4163.613 11520.882 7962.551 19483.433
ρ-V 15.595 −11.161 4.434 98.419 −65.123 33.296
ρ-T −0.285 0.134 −0.150 −0.308 0.210 −0.099

ρ-VT −0.997 0.714 −0.283 −1.650 1.077 −0.571
π -PV – – – – – –
A-V – 79.354 79.354 – 827.640 827.640
Total −568.536 −378.342 −946.877 −2703.591 −1296.192 −3999.783

EE σ -S 709.344 431.461 1140.805 3503.261 1774.293 5277.554
ω-V −515.922 −306.724 −822.646 −2451.231 −1265.209 −3716.441
ρ-V −59.121 −48.867 −107.987 −266.194 −210.099 −476.293
ρ-T −151.829 −123.868 −275.698 −687.900 −531.942 −1219.843

ρ-VT 23.852 19.370 43.222 122.508 89.155 211.663
π -PV −23.449 −20.397 −43.846 −103.254 −79.752 −183.006
A-V – −7.201 −7.201 – −29.021 −29.021
Total −17.124 −56.226 −73.351 117.190 −252.575 −135.387

ECM −8.617 −6.260
Total energy E −416.373 −1636.961
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TABLE VI. Contributions to the total energy from the tensor
forces in different couplings in 48Ca and 208Pb calculated by RHF
with PKA1. All units are in MeV.

Coupling 48Ca (MeV) 208Pb (MeV)

Neutron Proton Total Neutron Proton Total

Et ω-V −1.148 −0.006 −1.155 −1.769 −1.090 −2.859
ρ-V −0.060 −0.005 −0.065 −0.215 −0.179 −0.394
ρ-T −0.202 −0.012 −0.214 −0.691 −0.553 −1.243

ρ-VT −0.216 −0.016 −0.232 −0.760 −0.620 −1.380
π -PV 1.142 0.037 1.179 3.566 2.941 6.507
Total −0.486 −0.002 −0.488 0.131 0.499 0.629

Table VI. It is noted that in general the tensor forces of all the
couplings give very small contributions to the total energy. In
particular, for the protons in 48Ca which are spin saturated,
the tensor contributions are especially small due to the sum
rule Eq. (36). Such a tiny contribution to the total energy
is one of the most important reasons why the tensor forces
had been neglected for many years in most popular effective
interactions. Even if the tensor forces were included, their
proper strengths were not well in control by fitting to data
such as nuclear masses.

Traditionally, the π -PV and ρ-T couplings are considered
as the main carriers of the tensor force. In the RHF theory with
the effective interaction PKA1, the tensor force in the π -PV
coupling makes nuclei less bound, while the tensor forces in
all the other couplings give opposite contributions and largely
cancel the π -PV one. The present calculations show that
for the completely spin-unsaturated system, e.g., 208Pb, the
π -PV tensor contribution can reach around 0.4% of the total
energy, while the ρ-T coupling contributes less than 0.1%.
Furthermore, it is remarkable that the tensor contribution
from the ρ-VT coupling is indeed comparable with the ρ-T
one, and the tensor contribution from the ω-V coupling is
larger and even comparable with the π -PV one. Among all
the couplings which can give rise to the tensor force, the
contribution from the ρ-V coupling is the smallest, mainly
because of its small coupling strength around the saturation
density. These conclusions can also be understood by the
guidance of Table II.

Note that in the present scheme, the tensor effects on
the total energy correspond to the expectation value of the
tensor force on the system wave function as a Slater deter-
minant. As a result, these effects are in general tiny, while
the higher-order effects of tensor force, e.g., the two-particle-
two-hole effect, are supposed to be implicitly absorbed in
the effective interactions. In contrast, if the tensor effects on
the total energy refer to the expectation value of the bare
tensor force on the fully correlated system wave function, the
corresponding effects are in general profound. For example, it
contributes about −68 MeV in 4He in various ab initio calcu-
lations [26]. The two-particle-two-hole tensor effects are also
studied explicitly in the tensor-optimized shell model [27,28],
the tensor-optimized antisymmetrized molecular dynamics
[29,30], and the high-momentum antisymmetrized molecular
dynamics [31].

C. Tensor effects on shell evolution

Even though there is only a tiny effect of the tensor force
on nuclear binding energy, the tensor force plays a significant
role in the shell evolution [3,10], in particular, the emergence
of new magic numbers far from the nuclear β-stability line
[7,8].

In Ref. [47], the tensor effects on the shell evolution
were investigated by comparing the nonrelativistic Skyrme
and Gogny Hartree-Fock theories as well as the relativistic
Hartree-Fock theory. Particular attention was paid to the
evolution of the magic gaps along the Z, N = 8, 20, and
28 isotopes and isotones. To our knowledge, this is the only
literature so far that carries out such systematic comparisons
of the tensor effects among these three types of the most
successful nuclear DFT. On the nonrelativistic side, the ef-
fective interactions GT2 [11] with tensor and its counterpart
GT2nT without tensor were used for the Gogny calculations,
and the SLy5 without tensor and its counterpart SLy5wT [36]
with tensor were used for the Skyrme calculations. On the
relativistic side, however, the results by PKA1 [41] with tensor
were compared to the results by a very different effective
interaction DD-ME2 [79] without tensor (and even without
the Fock terms). In principle, one should perform similar
calculations as in the Skyrme and Gogny cases, where the
tensor forces are switched on and off without changing the
rest of the interaction. Nevertheless, as mentioned in Ref. [47],
an explicit evaluation of the tensor effects in the relativistic
framework was very difficult at that time. Simply setting fπ =
fρ = 0 would lead to huge changes also in the central part of
the mean field and in most cases the mean-field calculations
would not even converge.

Now, with the newly developed formalism in this work, we
can finally make a quantitative analysis of the tensor effects
on the shell evolution in the relativistic framework. Let us re-
examine the evolution of the magic gaps along the Z, N =
8, 20, and 28 isotopes and isotones.

Following the procedure in Ref. [47], the theoretical gaps
are calculated as the differences of the HF single-particle
energies. The empirical gaps are approximately evaluated via
the nuclear mass as adopted in Review [6]: For the proton gaps
at Zmag., we calculate the single-particle energies of the last
occupied and the first unoccupied orbitals, eb and ea , as

eb(Zmag., N ) = E(Zmag., N ) − E(Zmag. − 1, N ), (37a)

ea (Zmag., N ) = E(Zmag. + 1, N ) − E(Zmag., N ). (37b)

Note that here E are the total energies. The energy of the
magic gap is then evaluated as

Egap(Zmag., N ) = ea − eb. (38)

The same procedure is followed for the evaluation of the
empirical neutron magic gaps Egap(Z,Nmag.). All the exper-
imental masses are taken from AME2016 [80].

In the Appendix of Ref. [6], some warnings were provided
about the use of this approximation to evaluate the empirical
single-particle energies. The separation energies are supposed
to be similar to the single-particle energies only if one
assumes that the proton or neutron magic core remains almost
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unchanged when one nucleon is added to or removed from
it, which will be contaminated by various beyond-mean-field
effects. In particular, for the N = Z nuclei, an extra beyond-
mean-field correlation has been pointed out, which has led to
intensive discussions on the so-called Wigner term in nuclear
mass models. We use a prescription introduced in the Skyrme
Hartree-Fock-Bogoliubov mass model [81],

EW = VW exp

[
−λ

(
N − Z

A

)2
]
, (39)

with VW = −2.327 MeV and λ = 400. The empirical gaps
after taking into account these Wigner corrections will be
shown in the following figures. Once again, we stress that we
consider here the empirical values just as indications to pro-
vide qualitative (and not precise) empirical trends to compare
with the theoretical results. See more relevant discussions in
Ref. [47].

1. Z = 8 isotopes and N = 8 isotones

The proton gap Z = 8 is determined by the difference
of the HF single-particle energies between the proton 1d5/2

and 1p1/2 states, which belong to the spin-up j> state of the
1d spin doublets and the spin-down j< state of the 1p spin
doublets, respectively. Going from 16O to 22O, the spin-up
j ′
> neutron state 1d5/2 is occupied, and thus the proton 1d5/2

(1p1/2) state is pushed upward (downward) by the π -PV
tensor force [10]. As a result, the tensor effect is expected to
enhance the Z = 8 gap.

We calculate the proton gap Z = 8 in 16O and 22O by the
RHF theory with the PKA1 effective interaction, and also
separate the tensor effects generated by each meson-nucleon
coupling through the tensor contributions to the corresponding
single-particle energies. The results are shown in Fig. 2 as
a function of the neutron number N , and the corresponding
empirical values are also given for an qualitative comparison.
Note that, same as in Ref. [47], only several selected sub-
shell-closure nuclei are investigated without pairing correla-
tion, and thus the lines in the figures are plotted only to show
the trends from one nucleus to the other more clearly. From
16O to 22O, the Z = 8 gap calculated by PKA1 increases by
around 2 MeV, which is in a nice agreement with the empirical
trend. Comparing the results with and without tensor, it is
seen that the tensor force produces an enhancement of about
1 MeV, which is also in agreement with the mechanism in
Ref. [10].

In Ref. [47], it was shown that the results by PKA1
with tensor and those by DD-ME2 without tensor give less
difference on the gap evolution. Nevertheless, PKA1 is used
within the RHF scheme, whereas DD-ME2 is used within
the RMF scheme. Their differences not only lie in the tensor
interactions but also exist in all other effects coming from
the Fock terms, such as the central, two-body spin-orbit
interactions, etc. Therefore, such a comparison cannot give us
a clean conclusion about to what extent the tensor force in the
relativistic framework influences the gap evolution. But now,
with the present newly-developed formalism, we can eventu-
ally identify the properties of the tensor force embraced in the

FIG. 2. Proton gap Z = 8 in the O isotopes and the contributions
from the tensor force in each meson-nucleon coupling as a function
of neutron number N , calculated by the RHF theory with the PKA1
effective interaction. The results with and without the tensor con-
tributions are shown with filled and open circles, respectively. The
total tensor contributions are shown with filled squares, while the
contributions from each coupling are denoted with different symbols.
See the text for the details of the empirical values.

effective interaction PKA1. Due to such tensor properties, the
tendency of gap evolution coincides with the empirical trend.

Let us look into the details of each meson-nucleon cou-
pling. As shown in Fig. 2, for 16O with Z = N = 8, all the
couplings give almost vanishing tensor contributions, because
both neutrons and protons are spin saturated, in which case the
tensor contributions from all the states are basically canceled
out by those from their spin partners. The same feature
was also seen in the Skyrme calculations with SLy5 and
SLy5wT and the Gogny calculations with GT2nT and GT2
[47]. Going from 16O to 22O, the tensor contribution from the
π -PV coupling increases by about 1.3 MeV, and the tensor
contributions from the ρ-T and ρ-VT couplings compromise
the π -PV one by around 0.2 MeV each. In contrast, there is no
tensor contribution to the Z = 8 gap from the ω-V coupling
since the isoscalar ω meson cannot mediate the interaction
between neutrons and protons. The tensor contribution from
the ρ-V coupling is negligible mainly due to its small coupling
strength.

The neutron gap N = 8 is determined by the energy differ-
ence between the neutron spin-up 1d5/2 and spin-down 1p1/2

states. The evolution of the N = 8 gap from 14C to 16O is
determined by the occupation of proton spin-down orbital
1p1/2. As shown in Fig. 3, the net tensor effect of PKA1
decreases the N = 8 gap from 12C to 16O by about 0.6 MeV,
and the empirical trend is reproduced well with this reduction.
Similar to the case of the proton gap Z = 8, for the neutron
gap N = 8, the tensor contribution of the π -PV coupling
dominates over all other couplings, but partly canceled by
those of the ρ-T and ρ-VT couplings.

Finally, it is interesting to point out that here the net tensor
effect on the Z = 8 gap from 16O to 22O is about 1 MeV
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FIG. 3. Same as described in the caption of Fig. 2, but for the
neutron gap N = 8 in the N = 8 isotones as a function of proton
number Z.

by PKA1 in the RHF scheme. In contrast, this tensor effect
reaches around 2.5 MeV by SLy5wT and even around 4 MeV
by GT2 in the Skyrme and Gogny theories, respectively [47].
From 14C to 16O, the net tensor effect of PKA1 decreases the
N = 8 gap by about 0.6 MeV, while the corresponding values
are about 1.2 MeV and 3 MeV in the Skyrme SLy5wT and
Gogny GT2 calculations, respectively. This may imply that
the π -PV coupling in PKA1 is somewhat too weak, which can
be kept in mind for the future developments of the relativistic
energy density functionals.

2. Z = 20 isotopes and N = 20 isotones

To clarify the effects of the tensor force on the proton gap
Z = 20, we calculate the Ca isotopes 40Ca, 48Ca, 52Ca, and
54Ca. According to our calculations, the Z = 20 gap in these
isotopes are all determined by the single-particle energies of
the spin-up 1f7/2 and spin-down 1d3/2 states. In 48Ca, the
neutron orbital 1f7/2 is fully occupied, and the Z = 20 gap is
expected to be enhanced by the tensor effects comparing with
40Ca. As shown in Fig. 4, our calculation gives an enhanced
gap and the total tensor contribution also increases the gap.
In 52Ca, another neutron spin-up orbital, 2p3/2, is occupied,
and thus it is expected to further enhance the Z = 20 gap.
Our calculations show such an enhancement but the slope
is very small. From 52Ca to 54Ca, the neutron spin-down
orbital 2p1/2 is occupied and it is expected to weaken the
Z = 20 gap, which is consistent with the present calculated
results. Decomposed into each coupling, same as the cases
of Z = 8 and N = 8, the tensor contribution of the π -PV
coupling is dominant and partially canceled by those of the
other couplings, especially the ρ-T and ρ-VT ones.

For the neutron gap N = 20, we perform the RHF calcu-
lations for 34Si, 36S, and 40Ca, and show the corresponding
results in Fig. 5. The neutron gap N = 20 in these nuclei are
also determined by the 1f7/2 and 1d3/2 states. From 34Si to
36S, the N = 20 gap keeps almost constant, and the tensor
force does not present any remarkable effect. This is because

FIG. 4. Same as described in the caption of Fig. 2, but for the
proton gap Z = 20 in the Ca isotopes.

the two protons occupy only the 2s1/2 state and the s orbitals
give no tensor contribution [10]. From 36S to 40Ca, the net
tensor effect decreases the N = 20 gap by around 0.5 MeV
as the protons occupy the 1d3/2 state. Finally at 40Ca, all
the tensor contributions are basically vanishing because both
neutrons and protons are spin saturated.

It is seen in Figs. 4 and 5 that, on the one hand, the present
results show quite different behaviors from the empirical trend
on the gap evolutions. On the other hand, the present tensor
effects coincide with every details of those by the Skyrme
SLy5wT calculations [47], although the amplitude is somewhat
smaller.

3. Z = 28 isotopes and N = 28 isotones

For the proton gap Z = 28, we perform the RHF calcula-
tions for the Ni isotopes 56Ni, 60Ni, 66Ni, 68Ni, and 78Ni. The

FIG. 5. Same as described in the caption of Fig. 3, but for the
neutron gap N = 20 in the N = 20 isotones.
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FIG. 6. Same as described in the caption of Fig. 2, but for the
proton gap Z = 28 in the Ni isotopes.

Z = 28 gap is determined by the proton 2p3/2 and 1f7/2 states
from 56Ni up to 68Ni, but by the 1f5/2 and 1f7/2 states for 78Ni.
The corresponding results are shown in Fig. 6. It is seen that
the empirical trend of the gap evolution is followed from 56Ni
to 66Ni but not further. For the net tensor effect, it is noted
that the 2p3/2 and 1f7/2 states are both j> states, and thus the
tensor interactions act for the two states in the same direction.
As a result, the net tensor effect on the gap evolution is not
profound at all up to 68Ni. The Z = 28 gap is then determined
by the 1f spin doublets in 78Ni. As a result, a visible but not
large tensor effect is seen from 68Ni to 78Ni.

Another important point is that the protons in the Ni
isotopes are not spin saturated. This makes it possible for the
ω-V coupling to present considerable tensor contribution to
the Z = 28 gap. As seen in Fig. 6, its contributions are up
to around 0.5 MeV, which is comparable with those from the
π -PV coupling. Nevertheless, because of the isoscalar nature
of the ω-V coupling, its tensor contributions remain almost
the same along the isotopes with respect to the change of the
neutron number, as long as the single-particle configurations
remain the same, i.e., from 56Ni to 68Ni.

For the neutron gap N = 28, we perform the RHF calcula-
tions for the isotones 42Si, 44S, 48Ca, and 56Ni. The N = 28
gap is determined by the neutron 2p3/2 and 1f7/2 orbitals
for these considered nuclei. The corresponding results are
shown in Fig. 7. It is interesting to see that although the
overall increasing trend from 42Si to 56Ni can be repro-
duced, the detailed evolution at each sub-shell closure shows
difference. Nevertheless, this is not because of the tensor
effect. Since both the 2p3/2 and 1f7/2 states are the spin-up
states, the tensor interactions act for the two states in the
same direction, and thus the net tensor effects are almost
invisible.

It is also interesting to point out that for the cases of the
Z = 28 and N = 28 gaps, the tensor effects in the present
results are substantially different from those by the Skyrme
SLy5wT and Gogny GT2 calculations [47]. But one conclusion
is in common: The Z = 28 and N = 28 gaps do not seem
suitable for identifying the tensor effects.

FIG. 7. Same as described in the caption of Fig. 3, but for the
neutron gap N = 28 in the N = 28 isotones.

IV. SUMMARY AND PERSPECTIVES

We have identified the tensor force up to the 1/M2 order
in each meson-nucleon coupling in the RHF theory, by the
nonrelativistic reduction for the relativistic two-body inter-
actions. It is found that all the couplings, except the σ -S
one, give rise to the tensor force, which is in agreement
with the realistic Bonn nucleon-nucleon interactions in the
one-boson-exchange picture. The sum rule of the two-body
matrix elements of tensor force has been also verified.

On the one hand, taking the nuclei 48Ca and 208Pb as
examples, we have found that the tensor contributions to
nuclear binding energies are in general tiny. The tensor contri-
bution from the π -PV coupling dominates and makes nuclei
less bound, whereas all the other meson-nucleon couplings
give opposite contributions. In particular, with the effective
interaction PKA1, not only the ρ-T but also ω-V and ρ-VT
couplings show substantial tensor contributions, and these
contributions largely cancel out the π -PV one. As a result,
it is very difficult to determine the proper strengths of tensor
force by fitting to the nuclear masses.

On the other hand, taking the isotopes and isotones
Z, N = 8, 20, and 28 as examples, we have found that the
tensor contributions to the evolutions of the magic gaps are
much more profound. Similar to the case of binding energy,
here the π -PV tensor contribution is dominant and partially
canceled by the ρ-T and ρ-VT ones. The ω-V coupling does
not participate in the proton-neutron channel. With the newly
developed formalism in this work, we are eventually able
to make fair and quantitative comparisons with the corre-
sponding results with and without tensor in the nonrelativistic
Skyrme and Gogny calculations. The present results show the
same conclusions by the nonrelativistic theories in Ref. [47]
that the Z, N = 8 and 20 gaps are the candidates for con-
straining the tensor strengths, but the Z, N = 28 gaps are not.
Moreover, it is found that the total tensor effect in the effective
interaction PKA1 is weaker than those in the Skyrme SLy5wT

and Gogny GT2 effective interactions.
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With the present formalism, we are able to further quan-
titatively evaluate the tensor contributions, from each meson-
nucleon coupling in the relativistic framework, to a variety
of nuclear ground-state and excited-state properties. Those
properties sensitive to the tensor force can be selected, and
then they can serve as efficient constraints for the strengths of
the tensor force in return. In the nonrelativistic framework, the
sensitivities of the tensor force in the excitation energies of the
0− states [82], the electric and magnetic multipole responses
[83], the Gamow-Teller [84] and spin-dipole [85] resonances,
and the β-decay half-lives [86] have been investigated. Very
recently, ab initio relativistic Brueckner-Hartree-Fock calcu-
lations [87–89] based on the realistic nucleon-nucleon in-
teractions showed a systematic and specific pattern in the
evolution of spin-orbit splittings in neutron drops [90,91]. It
was also shown that the tensor force plays a critical role in
reproducing this pattern, and the tensor force in the existing
effective interactions in the RHF theory seems not strong
enough. In addition, it is found that the form factors in the
meson-nucleon couplings play important roles in the RHF
theory [92,93]. All these aspects will promote the develop-
ments of the nuclear density functional theory in the near
future.
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APPENDIX A: DETAILS OF NONRELATIVISTIC
REDUCTION IN THE ZERO-DENSITY LIMIT

In this Appendix, we will show the detailed derivations
for the nonrelativistic reduced two-body interactions V̂0,φ in
the zero-density limit and, in particular, identify their tensor
components V̂ t

0,φ for each meson-nucleon coupling.
First of all, the interaction vertices used in Eq. (20) read

�σ -S(1, 2) = −[gσ ]1[gσ ]2, (A1a)

�ω-V(1, 2) = [gωγμ]1[gωγ μ]2, (A1b)

�ρ-V(1, 2) = [gργμ�τ ]1[gργ
μ�τ ]2, (A1c)

�ρ-T(1, 2) = 1

4M2
[fρq

iσμi �τ ]1[fρqjσ
μj �τ ]2, (A1d)

�ρ-VT(1, 2) = i

2M
[fρσ

μiqi �τ ]1[gργμ�τ ]2 − (1 ↔ 2), (A1e)

�π-PV(1, 2) = −
[

fπ

mπ

γ iqiγ5 �τ
]

1

[
fπ

mπ

γ jqjγ5 �τ
]

2

. (A1f)

They are obtained by applying the interaction vertices in
Eq. (5) on the plane waves Eq. (18) and neglecting the
retardation effect.

From Eqs. (18) and (19), the upper components of the plane
waves in the zero-density limit read

ξ pa
(r ) = Cpa

χ 1
2
(sa )χ 1

2
(τa ) ei pa ·r , (A2)

with Cpa
≡ √

(M + εa )/(2εa ).
Inserting the interaction vertices Eq. (A1) into Eq. (20),

and keeping in mind that the upper components Eq. (A2)
serve as the bra and ket in the right-hand side of Eq. (17),
one can obtain the nonrelativistic reduced interactions V̂0,φ

for each meson-nucleon coupling. Here we will give the key
steps of derivations, and expand the V̂0,φ up to the 1/M2 order.
We define q ≡ pa − pc = pd − pb, k ≡ ( pa + pc )/2, and
k′ ≡ ( pb + pd )/2. For simplicity, the spin and isospin spinors
as well as the isospin operator �τ (1) · �τ (2) for the isovector
mesons are not shown explicitly here.

For the π -PV coupling,

− f 2
π

m2
π

1

m2
π + q2

(Cpa
Cpb

Cpc
Cpd

)−1
[ūaγ · qγ5uc]1[ūbγ · qγ5ud ]2

= − f 2
π

m2
π

1

m2
π + q2

[(
1 − σ · pa

2M

)(σ · q 0
0 −σ · q

)(
1

σ · pc

2M

)]
1

[(
1 − σ · pb

2M

)(σ · q 0
0 −σ · q

)(
1

σ · pd

2M

)]
2

= − f 2
π

m2
π

1

m2
π + q2

(σ 1 · q )(σ 2 · q ). (A3)

In the one-boson-exchange picture [78], f 2
π /m2

π = g2
π/4M2, i.e., this order is regarded as O(1/M2).

For the σ -S coupling,

−g2
σ

1

m2
σ + q2

(Cpa
Cpb

Cpc
Cpd

)−1
[ūauc]1[ūbud ]2

= −g2
σ

1

m2
σ + q2

[(
1 − σ · pa

2M

)( 1
σ · pc

2M

)]
1

[(
1 − σ · pb

2M

)( 1
σ · pd

2M

)]
2
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= −g2
σ

1

m2
σ + q2

[
1 −

(
σ · 2k+q

2

)(
σ · 2k−q

2

)
4M2

]
1

[
1 −

(
σ · 2k′−q

2

)(
σ · 2k′+q

2

)
4M2

]
2

= −g2
σ

1

m2
σ + q2

[
1 − k2 + k′2 − iσ 1 · (k × q ) − iσ 2 · (q × k′)

4M2
+ q2

8M2

]
. (A4)

It should be noticed that there is no tensor component up to this order.
For the ω-V coupling, its time component is similar to the σ -S coupling, which reads

g2
ω

1

m2
ω + q2

(Cpa
Cpb

Cpc
Cpd

)−1
[ūaγ

0uc]1[ūbγ0ud ]2 = g2
ω

1

m2
ω + q2

[
1 + k2 + k′2 − iσ 1 · (k × q ) − iσ 2 · (q × k′)

4M2
− q2

8M2

]
.

(A5)

Its space component is as following,

−g2
ω

1

m2
ω + q2

(Cpa
Cpb

Cpc
Cpd

)−1
[ūaγuc]1 · [ūbγud ]2

= −g2
ω

1

m2
ω + q2

[(
1 − σ · pa

2M

)( 0 σ

−σ 0

)(
1

σ · pc

2M

)]
1

·
[(

1 − σ · pb

2M

)( 0 σ

−σ 0

)(
1

σ · pd

2M

)]
2

= −g2
ω

1

m2
ω + q2

[
(σ · pa )σ + σ (σ · pc )

2M

]
1

·
[

(σ · pb )σ + σ (σ · pd )

2M

]
2

= − g2
ω

4M2

1

m2
ω + q2

[4k · k′ − 2i(q × σ 1) · k′ + 2ik · (q × σ 2) + (σ 1 · σ 2)q2 − (σ 1 · q )(σ 2 · q )]. (A6)

For the ρ-V coupling, it is similar to ω-V coupling except for the isospin part.
For the ρ-T coupling, with

qiσ0i = qjσ
0j = −i

(
0 q · σ

q · σ 0

)
, (A7)

we get its time component as

f 2
ρ

4M2

1

m2
ρ + q2

(Cpa
Cpb

Cpc
Cpd

)−1
[ūaq

iσ0iuc]1[ūbqjσ
0jud ]2

= − f 2
ρ

4M2

1

m2
ρ + q2

[(
1 − σ · pa

2M

)( 0 q · σ

q · σ 0

)(
1

σ · pc

2M

)]
1

[(
1 − σ · pb

2M

)( 0 q · σ

q · σ 0

)(
1

σ · pd

2M

)]
2

= 0, (A8)

because the leading order is of O(1/M4) here. With

qiσki = −qjσ
kj =

(
q × σ 0

0 q × σ

)k

, (A9)

we get its space component as

f 2
ρ

4M2

1

m2
ρ + q2

(Cpa
Cpb

Cpc
Cpd

)−1
[ūaq

iσkiuc]1[ūbqjσ
kjud ]2

= − f 2
ρ

4M2

1

m2
ρ + q2

[
ūa

(
q × σ 0

0 q × σ

)
uc

]
1

[
ūb

(
q × σ 0

0 q × σ

)
ud

]
2

= − f 2
ρ

4M2

1

m2
ρ + q2

[
q × σ − (σ · pa )(q × σ )(σ · pc )

4M2

]
1

[
q × σ − (σ · pb )(q × σ )(σ · pd )

4M2

]
2

= f 2
ρ

4M2

1

m2
ρ + q2

[(σ 1 · q )(σ 2 · q ) − (σ 1 · σ 2)q2]. (A10)
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Following the derivations of ρ-V and ρ-T couplings, one can easily get the corresponding two-body interaction matrix element
of the time component of ρ-VT coupling,

i
fρ (1)gρ (2)

2M

1

m2
ρ + q2

(Cpa
Cpb

Cpc
Cpd

)−1
[ūaσ

0iqiuc]1[ūbγ0ud ]2

− i
gρ (1)fρ (2)

2M

1

m2
ρ + q2

(Cpa
Cpb

Cpc
Cpd

)−1
[ūaγ0uc]1[ūbσ

0iqiud ]2

= fρ (1)gρ (2)

4M2

1

m2
ρ + q2

[−q2 + 2iσ 1 · (q × k)] − gρ (1)fρ (2)

4M2

1

m2
ρ + q2

[q2 + 2iσ 2 · (q × k′)], (A11)

and the corresponding two-body interaction matrix element of the space component of ρ-VT coupling,

i
fρ (1)gρ (2)

2M

1

m2
ρ + q2

(Cpa
Cpb

Cpc
Cpd

)−1
[ūaσ

jiqiuc]1[ūbγjud ]2 − i
gρ (1)fρ (2)

2M

1

m2
ρ +q2

(Cpa
Cpb

Cpc
Cpd

)−1
[ūaγjuc]1[ūbσ

jiqiud ]2

= i
fρ (1)gρ (2)

4M2

1

m2
ρ + q2

(q × σ )1 · (2k′ + iq × σ )2 − i
gρ (1)fρ (2)

4M2

1

m2
ρ + q2

(2k − iq × σ )1 · (q × σ )2

= fρ (1)gρ (2)

4M2

1

m2
ρ + q2

[−2iσ 1 · (q × k′) + (σ 1 · q )(σ 2 · q ) − (σ 1 · σ 2)q2]

+ gρ (1)fρ (2)

4M2

1

m2
ρ + q2

[2iσ 2 · (q × k) + (σ 1 · q )(σ 2 · q ) − (σ 1 · σ 2)q2]. (A12)

In short, up to the 1/M2 order, the nonrelativistic reduced two-body interactions V̂0,φ in the zero-density limit read

V̂0,σ -S = −gσ (1)gσ (2)
1

m2
σ + q2

[
1 − k2 + k′2 − iσ 1 · (k × q ) − iσ 2 · (q × k′)

4M2
+ q2

8M2

]
, (A13a)

V̂0,ω-V = +gω(1)gω(2)
1

m2
ω + q2

[
1 + k2 + k′2 − iσ 1 · (k × q ) − iσ 2 · (q × k′)

4M2
− q2

8M2

]

− gω(1)gω(2)

4M2

1

m2
ω + q2

[
4k · k′ + 2iσ 1 · (q × k′) − 2iσ 2 · (q × k) + 2

3
(σ 1 · σ 2)q2 − S12

]
, (A13b)

V̂0,ρ-V = +�τ (1) · �τ (2)gρ (1)gρ (2)
1

m2
ρ + q2

[
1 + k2 + k′2 − iσ 1 · (k × q ) − iσ 2 · (q × k′)

4M2
− q2

8M2

]

− �τ (1) · �τ (2)
gρ (1)gρ (2)

4M2

1

m2
ρ + q2

[
4k · k′ + 2iσ 1 · (q × k′) − 2iσ 2 · (q × k) + 2

3
(σ 1 · σ 2)q2 − S12

]
, (A13c)

V̂0,π-PV = −�τ (1) · �τ (2)
fπ (1)fπ (2)

m2
π

1

m2
π + q2

[
S12 + 1

3
(σ 1 · σ 2)q2

]
, (A13d)

V̂0,ρ-T = +�τ (1) · �τ (2)
fρ (1)fρ (2)

4M2

1

m2
ρ + q2

[
S12 − 2

3
(σ 1 · σ 2)q2

]
, (A13e)

V̂0,ρ-VT = +�τ (1) · �τ (2)
fρ (1)gρ (2)

4M2

1

m2
ρ + q2

[
−q2 + 2iσ 1 · (q × k) − 2iσ 1 · (q × k′) − 2

3
(σ 1 · σ 2)q2 + S12

]

+ �τ (1) · �τ (2)
gρ (1)fρ (2)

4M2

1

m2
ρ + q2

[
−q2 − 2iσ 2 · (q × k′) + 2iσ 2 · (q × k) − 2

3
(σ 1 · σ 2)q2 + S12

]
. (A13f)

Note that by transfering these results to the center-of-mass frame (k′ = −k), these expressions are consistent with Eqs. (A17)–
(A19) in Ref. [78] for the bare Bonn interactions.

APPENDIX B: NONRELATIVISTIC REDUCTION WITH FINITE DENSITY

In this Appendix, we will show the nonrelativistic reduced two-body interactions V̂φ in the case of finite density. The general
strategy is quite similar to that used in Appendix A, but starting with the Dirac spinor Eq. (27) with the starred quantities instead.
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FIG. 8. Ratio between the starred momentum and its undressed counterpart p∗/ p as a function of p/pF for the (a) symmetric (β = 0) and
(b) asymmetric (β = 0.2) nuclear matter with ρ = 0.1ρsat., 0.5ρsat., and ρsat. calculated by RHF with PKA1.

During the derivations, we further replace the starred momentum p∗ by the undressed one p and adopt the same Dirac mass
M∗ for the two states at one vertex, as justified below. The final results of V̂φ up to the 1/M2 order read

V̂σ -S = −gσ (1)gσ (2)
1

m2
σ + q2

[
1 − 1

4

4k2 − q2 − 4iσ 1 · (k × q )

4M∗(1)M∗(1)
− 1

4

4k′2 − q2 − 4iσ 2 · (q × k′)
4M∗(2)M∗(2)

]
, (B1a)

V̂ω-V = +gω(1)gω(2)
1

m2
ω + q2

[
1 + 1

4

4k2 − q2 − 4iσ 1 · (k × q )

4M∗(1)M∗(1)
+ 1

4

4k′2 − q2 − 4iσ 2 · (q × k′)
4M∗(2)M∗(2)

]

− gω(1)gω(2)

4M∗(1)M∗(2)

1

m2
ω + q2

[
4kk′ + 2iσ 1 · (q × k′) − 2iσ 2 · (q × k) + 2

3
(σ 1 · σ 2)q2 − S12

]
, (B1b)

V̂ρ-V = +�τ (1) · �τ (2)gρ (1)gρ (2)
1

m2
ρ + q2

[
1 + 1

4

4k2 − q2 − 4iσ 1 · (k × q )

4M∗(1)M∗(1)
+ 1

4

4k′2 − q2 − 4iσ 2 · (q × k′)
4M∗(2)M∗(2)

]

− �τ (1) · �τ (2)
gρ (1)gρ (2)

4M∗(1)M∗(2)

1

m2
ρ + q2

[
4kk′ + 2iσ 1 · (q × k′) − 2iσ 2 · (q × k) + 2

3
(σ 1 · σ 2)q2 − S12

]
, (B1c)

V̂π-PV = −�τ (1) · �τ (2)
fπ (1)fπ (2)

m2
π

1

m2
π + q2

[
S12 + 1

3
(σ 1 · σ 2)q2

]
, (B1d)

V̂ρ-T = +�τ (1) · �τ (2)
fρ (1)fρ (2)

4M2

1

m2
ρ + q2

[
S12 − 2

3
(σ 1 · σ 2)q2

]
, (B1e)

V̂ρ-VT = +�τ (1) · �τ (2)
fρ (1)gρ (2)

4MM∗(1)

1

m2
ρ + q2

[−q2 + 2iσ 1 · (q × k)]

+ �τ (1) · �τ (2)
fρ (1)gρ (2)

4MM∗(2)

1

m2
ρ + q2

[
−2iσ 1 · (q × k′) − 2

3
(σ 1 · σ 2)q2 + S12

]

+ �τ (1) · �τ (2)
gρ (1)fρ (2)

4MM∗(2)

1

m2
ρ + q2

[−q2 − 2iσ 2 · (q × k′)]

+ �τ (1) · �τ (2)
gρ (1)fρ (2)

4MM∗(1)

1

m2
ρ + q2

[
+2iσ 2 · (q × k) − 2

3
(σ 1 · σ 2)q2 + S12

]
. (B1f)

In Fig. 8, we show the ratio between the starred momentum and its undressed counterpart p∗/ p as a function of p/pF for
the symmetric (β = 0) and asymmetric (β = 0.2) nuclear matter with ρ = 0.1ρsat., 0.5ρsat., and ρsat.. It is seen that in all these
representative cases the adopted approximation p∗ ≈ p introduces less than 2% errors.

In Fig. 9, we show the momentum dependence of the Dirac mass M∗ for the symmetric (β = 0) and asymmetric (β = 0.2)
nuclear matter with ρ = 0.1ρsat., 0.5ρsat., and ρsat.. It is also seen that the momentum dependence of the Dirac mass M∗ is rather
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FIG. 9. Ratio between the Dirac mass and nucleon mass M∗/M as a function of p/pF for the (a) symmetric (β = 0) and (b) asymmetric
(β = 0.2) nuclear matter with ρ = 0.1ρsat., 0.5ρsat., and ρsat. calculated by RHF with PKA1.

weak. Therefore, it is reasonable to adopt the same value of M∗ for the two states at one vertex. In practice, the value of M∗ is
chosen as the one with the Fermi momentum M∗(pF ).

APPENDIX C: EVALUATION OF TWO-BODY INTERACTION MATRIX ELEMENTS OF TENSOR FORCE

In this Appendix, we will show the alternative ways to carry out the integral in Eq. (33) for the tensor contribution to the
two-body interaction matrix elements.

Since there are only tensor and central terms without any other distracting terms, up to the leading order, in the π -PV and
ρ-T couplings, it inspires us to evaluate the V t

π-PV,αββα and V t
ρ-T,αββα indirectly by excluding the contribution of the central term

from the whole two-body interaction matrix elements of the π -PV and ρ-T channels [42]. The central terms in Eqs. (B1d) and
(B1e) can be divided into two parts, denoted as the zero-range (ZR) and finite-range (FR) parts, respectively, as follows:

(σ 1 · σ 2)
q2

m2
φ + q2

= (σ 1 · σ 2)

(
1 − m2

φ

m2
φ + q2

)
, (C1)

and its Fourier transformation gives the presentation in the coordinate space,

(σ 1 · σ 2)

[
δ(r1 − r2) − m2

φ

4π

e−mφ |r1−r2|

|r1 − r2|

]
. (C2)

Thus, the evaluation of the tensor contributions in the π -PV and ρ-T channels is relatively easy. Based on that, we can actually
find two different ways to evaluate the tensor contributions V t

φ,αββα of each meson-nucleon coupling in the pseudovector (PV)
and tensor (T) forms. It is confirmed that the numerical results by these two different ways are all identical to each other.

1. Pseudovector form

We denote the tensor contributions evaluated in the PV form as V
t,PV
φ,αββα , which can be expressed as

V
t,PV
φ,αββα = V

non,PV
φ,αββα − V

ZR,PV
φ,αββα − V

FR,PV
φ,αββα, (C3)

with

V
non,PV
φ,αββα =

∫∫
d r1 d r2 Fφ (1, 2)ξ †

α (r1)ξ †
β (r2)[σ · ∇]1[σ · ∇]2

1

4π

e−mφ |r1−r2|

|r1 − r2| ξβ (r1)ξα (r2), (C4a)

V
ZR,PV
φ,αββα = 1

3

∫∫
d r1 d r2 Fφ (1, 2)ξ †

α (r1)ξ †
β (r2)(σ 1 · σ 2)δ(r1 − r2)ξβ (r1)ξα (r2), (C4b)

V
FR,PV
φ,αββα = −1

3

m2
φ

4π

∫∫
d r1 d r2 Fφ (1, 2)ξ †

α (r1)ξ †
β (r2)(σ 1 · σ 2)

e−mφ |r1−r2|

|r1 − r2| ξβ (r1)ξα (r2). (C4c)
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These three terms can be further expressed as

∑
mαmβ

V
non,PV
φ,αββα = ĵ 2

a ĵ 2
b

4π

{∫∫
dr1 dr2

Fφ (1, 2)

2r2
1

δ(r1 − r2)(GaGb )1(GaGb )2 − m2
φ

′′∑
L

L̂−4
(
CL0

ja
1
2 jb− 1

2

)2
L±1∑
L1L2

iL2−L1

×
∫∫

dr1 dr2 Fφ (1, 2)
[(

κab + βLL1

)
GaGb

]
1RL1L2 (mφ ; r1, r2)

[(
κab + βLL2

)
GaGb

]
2

}
, (C5a)

∑
mαmβ

V
ZR,PV
φ,αββα = ĵ 2

a ĵ 2
b

4π

∫∫
dr1 dr2

Fφ (1, 2)

2r2
1

δ(r1 − r2)(GaGb )1(GaGb )2, (C5b)

∑
mαmβ

V
FR,PV
φ,αββα = −m2

φ

3

ĵ 2
a ĵ 2

b

4π

′∑
L

∫∫
dr1 dr2 Fφ (1, 2)RLL(mφ ; r1, r2)(GaGb )1(GaGb )2

[
2
(
CL0

la0lb0

)2 − (
CL0

ja
1
2 jb− 1

2

)2]
, (C5c)

where κab = κa + κb and

βLL1 =
{−L for L1 = L − 1,
L + 1 for L1 = L + 1.

(C6)

Note that the isospin operators in Fφ (1, 2) in Table II, 1 or �τ · �τ , here become the isospin factors{
δτaτb

for σ, ω,
2 − δτaτb

for ρ, π.
(C7)

The definition of RL1L2 reads

RL1L2 (mφ ; r1, r2) ≡ mφ

√
1

z1z2

[
IL1+ 1

2
(z1)KL2+ 1

2
(z2)θ (z2 − z1) + KL1+ 1

2
(z1)IL2+ 1

2
(z2)θ (z1 − z2)

]
, (C8)

with z = mφr, I and K the spherical Bessel functions, and θ the step function. The summation
∑′

L (
∑′′

L) means L + la + lb
must be even (odd).

2. Tensor form

We denote the tensor contributions evaluated in the T form as V
t,T
φ,αββα , which can be expressed as

V
t,T
φ,αββα = V

non,T
φ,αββα − V

ZR,T
φ,αββα − V

FR,T
φ,αββα, (C9)

with

V
non,T
φ,αββα = 1

4

∫∫
d r1 d r2 Fφ (1, 2)

∑
μ=±1,0

(−1)μξ †
α (r1)ξ †

β (r2)[[σμ, σ ] · ∇]1[[σ−μ, σ ] · ∇]2
1

4π

e−mφ |r1−r2|

|r1 − r2| ξβ (r1)ξα (r2), (C10a)

V
ZR,T
φ,αββα = −2

3

∫∫
d r1 d r2 Fφ (1, 2)ξ †

α (r1)ξ †
β (r2)(σ 1 · σ 2)δ(r1 − r2)ξβ (r1)ξα (r2), (C10b)

V
FR,T
φ,αββα = 2

3

m2
φ

4π

∫∫
d r1 d r2 Fφ (1, 2)ξ †

α (r1)ξ †
β (r2)(σ 1 · σ 2)

e−mφ |r1−r2|

|r1 − r2| ξβ (r1)ξα (r2). (C10c)

Here [σμ, σ ] and [σ−μ, σ ] are commutators.
These three terms can be further expressed as

∑
mαmβ

V
non,T
φ,αββα = −6m2

φ

ĵ 2
a ĵ 2

b

4π

′′∑
L

∑
J

Ĵ −2
(
CJ 0

ja
1
2 jb− 1

2

)2
L±1∑
L1L2

f
L1
LJ f

L2
LJ

×
∫∫

dr1 dr2 Fφ (1, 2)
(
Bab
JL1

GaGb

)
1

[
−RL1L2 (mφ ; r1, r2) + 1

m2
φr2

1

δ(r1 − r2)

](
Bab
JL2

GaGb

)
2
, (C11a)
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∑
mαmβ

V
ZR,T
φ,αββα = − ĵ 2

a ĵ 2
b

4π

∫∫
dr1 dr2 Fφ (1, 2)

1

r2
1

δ(r1 − r2)(GaGb )1(GaGb )2, (C11b)

∑
mαmβ

V
FR,T
φ,αββα = 2

3

ĵ 2
a ĵ 2

b

4π
m2

φ

′∑
L

∫∫
dr1 dr2 Fφ (1, 2)RLL(mφ, r1, r2)(GaGb )1(GaGb )2

[
2
(
CL0

la0lb0

)2 − (
CL0

ja
1
2 jb− 1

2

)2]
, (C11c)

where

f
L1
LJ = (−1)L1L̂C

L10
L010

{
L1 L 1
1 1 J

}
, (C12)

and

Bab
JL =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−1)ja+la+ 1
2

κab+J+1√J+1
for J = L − 1,

Ĵ ĵ 2
a +(−1)ja+jb−J ĵ 2

b

2
√J (J+1)

for J = L,

(−1)ja+la+ 1
2

κab−J√J for J = L + 1.

(C13)

From the coding point of view, the T form is more complicated than the PV form.
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