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Low-energy Gamow-Teller transitions in deformed N = Z odd-odd nuclei
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We investigated the Gamow-Teller (GT) transitions from 22Ne to 22Na by applying the isospin projected
antisymmetrized molecular dynamics combined with the generator coordinate method. We found that the GT
strength from AZ(J πT ) = 22Ne(0+

1 1) is fragmented into two final states 22Na(1+
1,20), which belong to K = 0 and

K = 1 bands constructed by a prolately deformed 20Ne core with an S = 1 proton-neutron (pn) pair. Coupling
of the intrinsic spin of the pn pair with the core deformation plays an important role in the GT fragmentation.
The symmetry breaking in the intrinsic-spin rotation leads to the SU(4) symmetry breaking of the NN pair and
causes the GT fragmentation. We compare the features of the GT transitions with those for 10Be → 10B and
discuss the link between the SU(4) symmetry and the GT fragmentation in deformed systems.
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I. INTRODUCTION

Proton-neutron (pn) correlation plays important roles in
structure properties of N = Z odd-odd nuclei (see Ref. [1]
and references therein). The Gamow-Teller (GT) transition is
a good probe for isoscalar pn correlations in N = Z odd-odd
nuclei. Effects of the pn pairing on B(GT) have been studied
for N = Z odd-odd nuclei in light- and medium-mass regions
with a three-body model of two nucleons around spherical
cores [2]. One of the interesting features of the GT transitions
obtained in N = Z odd-odd nuclei with the LS-closed core
(4He, 16O, 40Ca) is the remarkably strong GT transition from
JπT = 0+

1 1 to 1+
1 0, almost exhausting the sum-rule value.

The concentration of the GT transition, called the low-energy
super-GT transition (LESGT), is described by the transition
between dineutron (nn) and deuteron-like pn pairs around the
LS-closed core [3].

The GT strength functions of 0+
1 1 → 1+

n 0 transitions in
the pf -shell region have been systematically measured using
(3He, t ) charge-exchange reactions [4]. The measurements
have shown that B(GT; 0+

1 1 → 1+
1 0) is concentrated on the

single 1+0 state in the 42Ca target, but, as the mass number in-
creases from A = 42 to A = 54, the fragmentation of the GT
strengths into many 1+0 states occurs. The GT fragmentation
in this mass region can be understood by configuration mixing
of the particle-hole excited states in the spherical pf shell.

For the GT transitions of 22Mg → 22Na, the observed
strengths show a transient situation between the concentration
and fragmentation of the GT transitions. Namely, the strength
from 22Mg(0+

1 1) is split into two final states, 22Na(1+
1,20), in

the low-energy region [5]. This may imply that a pn pair is
formed in 22Na(1+

1,20) but it is not the ideal deuteron-like pn

pair. For the mirror nucleus, 22Ne, a deformed core of the
16O + α cluster with two valence neutrons has been suggested
by a theoretical study with the antisymmetrized molecular
dynamics (AMD) [6–8]. 22Mg may also have a prolately de-
formed nature with the spin-isospin saturated 16O + α cluster,
and therefore the GT transitions of 22Mg → 22Na should be

dominantly contributed by the GT transitions of two nucleons
at the surface of the deformed nuclei.

The pn pairing in deformed nuclei has been studied
with mean-field approaches such as the generalized Hartree-
Fock-Bogoliubov theories [9,10]. It was pointed out that, in
medium-mass nuclei, the pairing correlations are reduced be-
cause of the nuclear deformation. Recently, the GT strengths
of 24Mg(0+

1 1) → 24Al(1+0) were studied by using the de-
formed quasiparticle random phase approximation (DQRPA)
including pn pairing effects. [11] It was shown that the GT
strengths are scattered in a broad energy region toward the
high energy region by introducing the deformation. Such
competitions between deformation and pn pairing should be
investigated also in N = Z odd-odd nuclei.

Our aim in this paper is to figure out the spin-isospin
nature of the pn pairs in deformed nuclei by comparison
between 10B and 22Na through analysis of the GT transition
strengths. For this aim, we apply the method of T -projected
antisymmetrized molecular dynamics with constraints on the
deformation β and γ parameters (Tβγ -AMD) [12] that can
deal with pn correlations in N = Z odd-odd nuclei and
quadrupole deformations in light nuclei. We investigate the
low-energy GT transitions of 22Ne → 22Na. Particular atten-
tion is paid to the roles of the pn correlation in deformation
effects on the fragmentation of the low-energy GT transitions
from 22Ne(0+

1 1), which have been observed in the mirror
transitions 22Mg → 22Na. We also investigate GT transitions
between excited states in low-energy regions because discus-
sions of the GT transitions between rotational band members
are useful to understand pn correlation in the deformed sys-
tem, though experimental data for such transitions are poor. It
is also worthwhile to present systematic data of theoretical
B(GT) values because they can be helpful for comparison
with future experimental and theoretical works. In order to
discuss universal features of the pn correlation in deformed
nuclei and its effect on the GT transitions, we compare the
GT transitions of 22Ne → 22Na with those of 10Be → 10B.
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The paper is organized as follows. The framework of the
present calculation is explained in Sec. II, and the calcu-
lated results of nuclear properties of energy spectra, B(M1),
B(E2), and B(GT), are shown in Sec. III. single-particle
properties and dependence of B(GT) on deformation are
discussed in Sec. IV. A summary and an outlook are given
in Sec. V.

II. METHOD

A. Tβγ -AMD

We applied the Tβγ -AMD method to calculate 22Na and
10B transition strengths. The method was constructed in or-
der to study pn correlations in N = Z odd-odd nuclei, and
applied for a study of GT transitions of 10Be → 10B. It is
a useful approach to describe pn correlations in deformed
nuclei because the method can control the isospin (T = 0, 1)
and the collective deformation β and γ of N = Z odd-odd
nuclei, simultaneously. In this section, we briefly explain
the mathematical formulations of Tβγ -AMD. For detailed
formulations, the reader is referred to Ref. [12].

Tβγ -AMD is based on antisymmetrized molecular dy-
namics (AMD), in which Slater determinants of Gaussian
wave packets are used as basis wave functions:

|�(β, γ )〉 = A[|φ1〉|φ2〉 · · · |φA〉], (1)

|φi〉 =
(

2ν

π

) 3
4

exp

[
−ν

(
ri − Zi√

ν

)2
]
| ξ i〉|τi〉. (2)

Here, we use ν = 0.16 fm−2 for 22Na, which reproduces radii
of sd-shell nuclei. In order to obtain the optimized wave
functions for parity (π ) and isospin (T ) eigenstates, the π and
T projections are performed before energy variation:

|�πT (β, γ )〉 = P̂ π P̂ T |�(β, γ )〉, (3)

where P̂ π and P̂ T are parity and isospin projection operators,
respectively. For the πT -projected wave function, we perform
the energy variation under the constraints on the deformation
parameters, β and γ , so as to obtain the optimized states
corresponding to each (β, γ ). After the variation, the obtained
wave functions |�πT (β, γ )〉 are projected onto the total angu-
lar momentum J eigenstates: P̂ J

MK |�πT (β, γ )〉. Here P̂ J
MK is

the angular momentum projection operator. Furthermore, we
superpose these JπT eigenstates over the (β, γ ) plane with
the generator coordinate method (GCM) to take into account
the quantum fluctuations for quadrupole deformations:∣∣Jπ

n T ; M
〉 =

∑
iK

ciK
n P̂ J

MK

∣∣�πT (βi, γi )
〉
. (4)

Here, the parameters β and γ are treated as generator coordi-
nates in the GCM, and the K mixing is taken into account. We
call this method Tβγ -AMD+GCM.

B. Effective interactions

We use the Hamiltonian

H = K − Kcm + Vc + VLS + VCoulomb, (5)
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FIG. 1. The low-lying spectra of 22Na in the T = 0, K = 0, 1, 3
bands. Calculated and experimental spectra are shown on the left and
right, respectively. The experimental data are taken from [5].

where K is the kinetic energy, Kcm is the kinetic energy of the
center of mass, and Vc, VLS , and VCoulomb are the central force,
the spin-orbit force, and the Coulomb force, respectively.
For the central force, the Volkov No. 2 force [13] with the
Majorana exchange parameter m = 0.6 is used. The Bartlett
and Heisenberg parameters b = h = 0.06 are adopted, which
are phenomenologically adjusted to the energy difference
between the lowest T = 0 and T = 1 states in 10B [12]. For
VLS , we use the spin-orbit part of the G3RS force [14,15] with
the same strength parameters uls = u1 = −u2 = 1300 MeV
as those used in the previous works [12,16].

III. RESULTS

A. Energy spectra and electromagnetic transitions in 22Na

The energy spectra for the E < 8 MeV states in 22Na
are shown in Figs. 1 and 2 and those in 22Ne are shown
in Fig. 3. The calculation reasonably reproduces low-lying
energy spectra. In particular, the spectra of J � 3 states agree
with the experimental data.

The K = 0, 1, and 3 bands are obtained in the isoscalar
(T = 0) states of 22Na. The ground band is the K = 3 band
consisting of the 3+

1 0, 4+
1 0, and 5+

1 0 states. The calculated
E2 transition strengths are shown in Table I together with the
experimental data and shell-model calculation [17]. It should
be noted that we use the bare charges in the present calculation
instead of the effective charges which are usually used in
shell-model calculations of the E2 transition strengths. As
shown in the table, E2 transitions, 5+

1 0 → 4+
1 0, 4+

1 0 → 3+
1 0,

and 5+
1 0 → 3+

1 0, in the K = 3 band are strong because of the
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FIG. 2. The low-lying spectra of 22Na in the T = 1, K = 0, 2
bands. For each band, calculated and experimental spectra are shown
on the left and right, respectively. The experimental data are taken
from [5].

prolate deformation, consistent with the experimental data.
The bandhead 3+

1 0 obtained with the GCM has the largest
overlap of 89.7% with the JπT = 3+0 and K = 3 projected

-1

0

1

2

3

4

5

6

7

8

Ex
ci

ta
tio

n 
En

er
gy

 (M
eV

)

0 1

2 1

4 1

0 1

2 1

4 1

2 1

4 1

3 1
2 1

4 1

3 1

-AMD

-AMD Exp.

Exp.

(a) 

(b) 

FIG. 3. The low-lying spectra of 22Ne in the K = 0, 2 bands. For
each band, calculated and experimental spectra are shown on the left
and right, respectively. The experimental data are taken from [5].

TABLE I. The electric and magnetic moments and transition
strengths in 22Na. The calculated Q (e fm2) and μ (μN ) moments,
B(E2) (e2 fm4), and B(M1) (μ2

N ) are shown together with the
experimental data from [5] and with the shell-model values from
[17]. The binding energy (MeV) of the ground state 22Na(3+

1 0) is
also shown.

Observable SM Tβγ -AMD Exp.
+GCM

binding energy 173.041 174.1456

Q(3+
1 0) 17.66 18.0(11)

μ(3+
1 0) 1.784 1.746(3)

μ(1+
1 0) 0.622 0.535(10)

K = 3

B(E2; 5+
1 0 → 4+

1 0) 76.9 49.9 58(18)

B(E2; 4+
1 0 → 3+

1 0) 87.9 56.8 91(3)

B(E2; 5+
1 0 → 3+

1 0) 20.1 12.0 19.0(15)

B(M1; 4+
2 1 → 5+

1 0) 2.29

B(M1; 3+
1 1 → 4+

1 0) 3.35

B(M1; 2+
2 1 → 3+

1 0) 3.97

K = 0

B(E2; 3+
2 0 → 1+

1 0) 65.9 35.5 69(7)

B(E2; 5+
2 0 → 3+

2 0) 51.3 41.2 51(22); 5+
3 0 → 3+

2 0

B(M1; 0+
1 1 → 1+

1 0) 5.37 5.00 4.96(18)

B(M1; 2+
1 1 → 3+

2 0) 3.28

B(M1; 4+
1 1 → 3+

2 0) 2.33 0.27 >5.37

B(M1; 4+
1 1 → 5+

2 0) 3.06 3.02 2.2(9); 4+
1 1 → 5+

3 0

K = 1

B(E2; 2+
1 0 → 1+

2 0) 43.9

B(E2; 3+
3 0 → 2+

1 0) 10.2

B(E2; 3+
3 0 → 1+

2 0) 13.9

B(E2; 4+
2 0 → 3+

3 0) 14.0

B(E2; 4+
2 0 → 2+

1 0) 65.9 24.4

B(M1; 0+
1 1 → 1+

2 0) 4.46 4.12 4.3(13)

B(M1; 2+
1 1 → 2+

1 0) 2.21 1.22(16)

K = 0, 1 interband

B(E2; 2+
1 0 → 1+

1 0) 4.1 0.10(7)

B(E2; 3+
2 0 → 1+

2 0) 1.7

B(E2; 1+
1 0 → 1+

2 0) 7.81

B(E2; 2+
1 0 → 3+

2 0) 9.42

basis wave function, P̂ J=3
M3 |�+0(β, γ )〉, at β = 0.29 and γ =

0.19 on the β-γ plane, and shows the K = 3 nature of the
deformed band. As discussed later, this band is understood as
the deformed 20Ne core with a spin-aligned pair of a proton
and a neutron in the lowest valence orbit.

The 1+
1 0 state is the bandhead of the K = 0 band with

the rotational band members 1+
1 0, 3+

2 0, and 5+
2 0 with the

strong E2 transitions of 5+
2 0 → 3+

2 0 and 3+
2 0 → 1+

1 0. The
experimental value of B(E2; 3+

2 0 → 1+
1 0) is consistent with

the calculated value. For the 5+
2 0 state, we tentatively as-

sign the experimental 5+
3 0 state because the experimental

B(E2; 5+
3 0 → 3+

2 0) is of the same order as the calculated
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value of B(E2; 5+
2 0 → 3+

2 0). The bandhead 1+
1 0 state has

the largest overlap (82.7%) with the JπT = 1+0 and K = 0
projected wave function at β = 0.31 and γ = 0.11 and shows
the K = 0 nature of the deformed band. Compared with the
features of the ground K = 3 band, it can be seen that the
K = 0 band has similar deformation but has different nature
of the spin configuration of the valence proton and neutron.

The 1+
2 0 and 2+

1 0 states can be classified in the K = 1
band members because of the strong E2 transition and the
K = 1 nature. The bandhead 1+

2 0 state has the largest overlap
(76.6%) with the JπT = 1+0 and K = 1 projected wave
function at β = 0.29 and γ = 0.19 and almost the same
intrinsic deformation as those of the K = 0 and 3 bands.

It is worthwhile to discuss the interband E2 transitions
to establish the K = 0 and 1 bands. The calculated B(E2)
values for the interband transitions 1+

2 0 → 1+
1 0, 2+

1 0 → 3+
2 0,

2+
1 0 → 1+

1 0, and 1+
2 0 → 3+

2 0 between K = 0 and 1 bands
are generally small. The experimental data of B(E2; 2+

1 0 →
1+

1 0) are small and support our results.
The M1 transition is a good probe for spin configuration

because it is contributed by the spin flip transitions. Similarly
to the GT transitions, the isovector M1 transitions from
T = 1 states are useful observables for spin structure in T = 0
states. In Table I, the calculated strengths of the isovector M1
transitions in 22Na are shown together with the experimental
data. In the table, the theoretical values of the shell-model cal-
culation [17] are also shown. The B(M1) values of the present
calculation are qualitatively similar to the shell model val-
ues except for the B(M1; 4+

1 1 → 3+
2 0). The observed strong

M1 transitions from the T = 1, K = 0 bands are described
well by the present calculation except for B(M1; 4+

1 1 →
3+

2 0). The calculated B(M1; 4+
1 1 → 5+

2 0) in our calculation
is comparable with the experimental B(M1; 4+

1 1 → 5+
3 0). It

supports our assignment of the calculated 5+
2 0 state to the

experimental 5+
3 0 state. For the transition 4+

1 1 → 3+
2 0, the

present calculation underestimates the experimental B(M1).

B. Gamow-Teller transitions and SU(4) symmetry

The GT transition operator is given as

B(GT) = 1

2Ji + 1

∣∣∣∣∣
〈
Jf

∥∥∥∥∥
∑

i

σ iτ i
±

∥∥∥∥∥ Ji

〉∣∣∣∣∣
2

, (6)

which changes the spin and isospin of the initial state to
�S = 1 and �T = 1, and is regarded as the rotation op-
erator in the spin and isospin SU(4) space. In the previous
work [16], we investigated the GT transitions of 10Be →
10B and discussed the spin-isospin partner states connected
with strong GT transitions in 10Be and 10B. For the assigned
partner states, the initial and final states are described by the
S = 0, T = 1 nn and S = 1, T = 0 pn pairs of two valence
nucleons around the 2α core, respectively. This means that
the strong GT transitions are understood by the transitions of
the NN pairs with approximate SU(4) symmetry in the spin
and isospin space. The SU(4) symmetry of the NN pair is
partially broken in 22Na, because the intrinsic spin of the NN
pairs strongly couples to the core deformation because of the
spin-orbit mean potential, and therefore the symmetry of the

TABLE II. The GT transition strengths defined by Eq. (6). of
22Ne → 22Na. The experimental data are taken from [5].

Observable Tβγ -AMD+GCM Exp.

K = 2 → K = 3

B(GT; 4+
2 1 → 5+

1 0) 0.95

B(GT; 3+
1 1 → 4+

1 0) 1.27

B(GT; 2+
2 1 → 3+

1 0) 1.51

K = 0 → K = 0

B(GT; 0+
1 1 → 1+

1 0) 1.98 (0.949(28))

B(GT; 2+
1 1 → 1+

1 0) 0.30

B(GT; 2+
1 1 → 3+

2 0) 1.24

B(GT; 4+
1 1 → 5+

2 0) 1.12

K = 0 → K = 1

B(GT; 0+
1 1 → 1+

2 0) 1.55 (1.43(8))

B(GT; 2+
1 1 → 1+

2 0) 0.37

B(GT; 2+
1 1 → 2+

1 0) 0.82

B(GT; 4+
1 1 → 3+

2 0) 0.12

K = 0 → K = 3

B(GT; 2+
1 1 → 3+

1 0) 0.0015 0.00022

spin rotation is broken. Nevertheless, we can also assign the
spin-isospin partners in the GT transitions of 22Ne → 22Na
for the subspaces of the final states, which are separated by
the deformation effect. Below, we discuss the GT transitions
and assignments of spin-isospin partners in 22Ne → 22Na.

The calculated GT transitions of 22Ne → 22Na are shown
in Table II. We obtained the significant GT transition strengths
from the K = 0 and K = 2 bands of 22Ne to the K = 0,
K = 1, and K = 3 bands of 22Na.

The GT transition strengths from the K = 0 band states of
22Ne are split into the K = 0 and K = 1 band states of 22Na.
The GT transition strengths from the 0+

1 1 are fragmented
into two low-lying 1+0 states, 22Na(1+

1 0) and 22Na(1+
2 0).

The result is consistent with the experimental observations
for the mirror transitions 22Mg(0+

1 1) → 22Na(1+
1,20)). Also,

for the transitions from the initial 2+
1 1, we obtain the GT

strengths fragmented into 2+
1 0 and 3+

2 0. These final states in
the K = 0 and K = 1 bands in 22Na are regarded as spin-
isospin partners of the initial K = 0 band states in 22Ne. As
we show in detail later, the K quanta, K = 0 and K = 1, of
the final states in 22Na are mainly contributed by the intrinsic
spin of the T = 0, S = 1 pn pair; Sz = ±1 contributes to
K = ±1 and Sz = 0 corresponds to K = 0. The GT transi-
tions into the former and the latter bands occur by the spin flip
σ± ∝ σx ± iσy with �Sz = ±1 and nonflip operators σ0 with
�Sz = 0, respectively, because the initial state in the K = 0
band has the dominant Sz = 0 component. This means that
the splitting of the GT transition strengths is a consequence
of the formation of two low-lying bands, K = 0 and K = 1,
because of the T = 0, S = 1 pn pair correlation in the de-
formed system. In other words, because of the symmetry
breaking of the spin rotation of the T = 0, S = 1 pn pair
in 22Na, the GT transition strengths from 22Ne(0+

1 1) do not
concentrate to a single 1+0 state. It is a different situation from
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TABLE III. The single-particle properties of the major component of the 22Na(3+
1 0) ground state at (β, γ ) = (0.29, 0.19). The column

labeled “parity” stands for the fraction of positive parity component in each single-particle state.

Neutron Proton Shell

Energy 〈ĵ 2〉 〈�̂2〉 Parity � � Energy 〈ĵ 2〉 〈�̂2〉 Parity � �

−60.94 0.75 0.00 1.00 0.50 0.02 −55.98 0.75 0.00 1.00 0.50 0.02 s1/2

−59.29 0.75 0.00 1.00 0.50 0.03 −54.38 0.75 0.00 1.00 0.50 0.02

−38.17 3.25 2.03 0.00 0.51 0.21 −33.64 3.26 2.05 0.00 0.51 0.22 p3/2

−36.60 3.29 2.03 0.00 0.52 0.23 −32.16 3.38 2.03 0.00 0.52 0.26
−32.13 3.70 2.07 0.00 1.48 1.00 −27.66 3.65 2.09 0.00 1.46 1.01
−31.12 3.72 2.08 0.00 1.47 1.00 −26.63 3.75 2.09 0.00 1.48 1.00

−27.61 1.53 2.19 0.00 0.63 1.00 −23.66 1.39 2.03 0.00 0.63 0.98 p1/2

−26.26 1.50 2.08 0.00 0.59 0.99 −21.80 1.48 2.09 0.00 0.61 1.00

−18.37 5.42 4.07 0.97 0.56 0.31 −14.14 5.81 4.25 0.97 0.60 0.34 α in sd shell
−17.25 6.12 4.46 0.98 0.60 0.39 −13.07 5.90 4.30 0.97 0.62 0.39

−11.26 7.36 5.75 0.96 1.33 1.06 −7.29 7.32 5.77 0.98 1.38 1.05 ≈[211 3/2]

the super-allowed GT transitions of 6Li and 10B, in which the
spin S = 1 of the pn pair couples weakly with the core and
approximately maintains the SU(4) symmetry.

For the GT transition to the ground K = 3 band in 22Na,
the strong GT transitions from the K = 2 band in 22Ne are
obtained: the strengths from the initial states 2+

2 1, 3+
1 1, and

4+
2 1 concentrate into the final states 3+

1 0, 4+
1 0, and 5+

1 0, re-
spectively. In the initial states, the quanta K = 2 are given by
the orbital angular momenta of the valence S = 0 nn pair. The
K = 3 of the final states are described by the orbital angular
momentum Lz = 2 and the spin S = 1 of the pn pair aligned
to the z direction of the deformed intrinsic state because of the
spin-orbit mean potential. The GT transitions K = 2 → K =
3 occur as the transition S = 0 nn → T = 0, S = 1 pn with
�S = 1 by the spin flip operator σ±. Therefore, the K = 3
states in 22Na are assigned to spin-isospin partners of the
K = 2 states in 22Ne.

IV. DISCUSSION

In this section, we analyze single-particle orbits of valence
protons and neutrons in 22Na and compare the GT transitions
of 22Ne → 22Na with those of 10Be → 10B.

A. Single-particle orbit and Nilsson diagram

We discuss single-particle properties of the K = 0, 1, 3
bands of 22Na analyzing the major components of the band-
head states. In Table III, we show single-particle properties
of the intrinsic wave function at (β, γ ) = (0.29, 0.19), which
is the dominant component of the ground 3+

1 0 state for the
K = 3 band. The single-particle energies, the expectation val-
ues of squared angular momenta and orbital angular momenta,
and positive parity probabilities are shown. In order to discuss
the link with Nilsson orbits, we also show the � and � values
for each single-particle orbit,

� =
√〈

φ
s.p.
i

∣∣ĵ 2
z

∣∣φs.p.
i

〉
, (7)

� =
√〈

φ
s.p.
i

∣∣�̂2
z

∣∣φs.p.
i

〉
. (8)

The lower 20 orbits for 10 protons and 10 neutrons form the
20Ne core, and the last two orbits correspond to the valence
proton and neutron around it. In the 20Ne core, the four
nucleons in the sd shell are not in the ideal d5/2 orbits, but
they form an α cluster at the surface of 16O. As a result, the
intrinsic states of 22Na is well deformed. The four nucleons in
the α cluster do not contribute to the GT transitions because
they form a spin-isospin saturated state. It is a different feature
from the case of four nucleons in the lowest Nilsson orbits in
the N = 2 shell in a deformed mean field.

On the other hand, the single-particle properties of the last
two valence nucleons around the 20Ne core show nature of
the spin-orbit favored Nilsson [Nnz��] = [211 3/2] orbit in
prolate deformation. In the T = 0 states, the K = 3 band is
the lowest because two [211 3/2] nucleons in the intrinsic spin
S = 1 state feel the attraction of the triplet-even nuclear inter-
action. Thus, the intrinsic structure of the ground K = 3 band
of 22Na is simply described by the 20Ne core with two valence
neutrons in the [211 + 3/2]p[211 + 3/2]n configuration.

The deformation and single-particle properties of the in-
trinsic states of K = 0 and K = 1 bands are similar to those
of the K = 3 band. Also in the K = 0 and K = 1 bands, the
20Ne core is formed by the lower 20 orbits for 10 protons
and 10 neutrons. The last two orbits for the valence proton
and neutron around the core have the dominant [211 + 3/2]
component, but they also contain other minor components
such as the [211 − 3/2] and [211 − 1/2] orbits. The K = 0
and K = 1 bands are produced from these minor components
by the Jπ and K projections. Namely, the 1+

1 0 (K = 0)
state contains the [211 + 3/2]p(n)[211 − 3/2]n(p) configura-
tion of two nucleons coupling to S = 1 with Sz = 0. On
the other hand, the 1+

2 0 (K = 1) state is regarded as the
[211 + 3/2]p(n)[211 − 1/2]n(p) configuration of two nucleons
with Sz = 1.

With a similar analysis of the single-particle orbits for
22Ne, the intrinsic state of 22Ne(0+

1 1) is described by two
[211 3/2]-orbit neutrons in the [211 + 3/2]n[211 − 3/2]n

configuration with K = 0 around the 20Ne core.
In the single-particle analysis, it is found that the struc-

tures of the low-lying states of 22Ne and 22Na are approx-
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FIG. 4. The GT transitions K = 2 → K = 3 with large B(GT)
values are shown with solid arrows. The energy is measured from
each ground state.

imately described by Nilsson orbit configurations of two
valence nucleons around the deformed 20Ne core, which
we call the “��-coupling scheme” in this paper. The GT
transitions from 22Ne(0+

1 1) to 22Na(1+
1,20) are mainly con-

tributed by the transitions of two valence neutrons, nn →
pn, around the 20Ne core. In the 0+

1 1 → 1+
1 0 transition

two valence neutrons |n ↑ n ↓〉 decay into |p ↑ n ↓〉 with
�Sz = 0, whereas in the 0+

1 1 → 1+
2 0 transition they de-

cay into |p ↓ n ↓〉 with �Sz = ±1. In the ��-coupling
scheme, the former �Sz = 0 and the latter �Sz = ±1 tran-
sitions correspond to [211 + 3/2]n[211 − 3/2]n → [211 +
3/2]p(n)[211 − 3/2]n(p) and [211 + 3/2]n[211 − 3/2]n →
[211 + 3/2]p(n)[211 − 1/2]n(p), respectively. Thus, the GT
transition from 22Ne(0+

1 1) is split into the spin nonflip and
flip states in 22Na.

B. Comparison of GT transitions of 10Be → 10B
and 22Ne → 22Na

In order to give more general discussions of the low-energy
GT transitions in deformed systems, we compared the GT
transitions of 22Ne → 22Na with those of 10Be → 10B studied
with the same method in the previous work [16], because
10Be and 10B are also deformed nuclei in the p shell with
two valence nucleons around the 2α core. In 10Be → 10B, the
strong GT transitions occur in two valence nucleons from a
nn pair to a pn pair around the core.

In Figs. 4 and 5, the energy spectra and B(GT)
values in 10Be and 10B calculated with the Tβγ -
AMD+GCM are shown. The GT transitions are strong in
10Be(0+

1 1) → 10B(1+
1 0), 10Be(2+

1 1) → 10B(1+
2 0, 2+

1,20, 3+
2 0),

and 10Be(2+
2 1) → 10B(3+

1 0). The initial states of 10Be are in
the K = 0 or K = 2 band. The final states in 10B are regarded
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FIG. 5. The spectra of initial and final states in 10Be → 10B(T =
0). The energy is measured from each ground state. The states having
large B(GT) are connected by arrows.

as the spin-isospin partner states of the K = 0 or K = 2 band
members in 10Be, as discussed in the previous paper [16].

The strong GT transition 10Be(2+
2 1) → 10B(3+

1 0) is re-
garded as the transition from the K = 2 sideband to the
ground K = 3 band, which corresponds well to the GT tran-
sition of 22Ne(2+

2 1) → 22Na(3+
1 0). On the other hand, the

GT transitions from the K = 0 ground band of 10Be show
different features from those of 22Ne. The GT transition from
10Be(0+

1 1) is not split but concentrated on the single 10B(1+
1 0)

state because the final states in 10B do not have definite K
quanta even though they have the deformed 2α core with
two valence nucleons. Instead, they have spatially developed
deuteron-like pn pairs weakly coupling with the 2α core in the
“LS-coupling” scheme rather than the ��-coupling scheme.

In order to see spatial correlations of NN pairs, we visu-
alized the spatial distribution of the S =1, T =0 and S =0,
T =1 NN pairs with two-particle density ρST ( r ) defined as

ρST ( r ) = 〈�T (β, γ ) | ρ̂ST ( r ) | �T (β, γ )〉
〈�T (β, γ ) | �T (β, γ )〉 , (9)

ρ̂ST ( r ) ≡
∑
ij

P̂ S
ij P̂

T
ij δ( r − r̂ i )δ( r − r̂ j ), (10)

where P̂ S
ij and P̂ T

ij are the spin and isospin projection
operators for two nucleons [16]. In Fig. 6, we show
ρNN ( r ) ≡ ρ10( r ) − ρ01( r ) for the major components of
10Be, 10B, 22Ne, and 22Na. Here, ρ01( r ) is subtracted to can-
cel contributions from the core nuclei. In 10Be and 10B, the
2α cluster is elongated along the z axis, as seen in Figs. 6(a)
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FIG. 6. The two-nucleon-pair density ρNN (r ) of (a) 10Be(0+
1 1),

(b) 22Ne(0+
1 1), (c) 10B(1+
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1 0), and (e) 22Na(1+

2 0). The
one-body density distribution ρ( r ) is also shown by (blue) solid
contour lines.

and 6(c). In the 10B(1+
1 0), the T = 0 pn pair distribution

has a remarkable peak at (x, z) = (−2, 0) (fm) and shows
the spatially developed deuteron-like pn pair far from the 2α
core. In contrast, the nn and pn pairs in 22Ne and 22Na are
distributed at the surface of the deformed core and show no
spatial development.

As a result of the 2α cluster formation and the spatial de-
velopment of the deuteron-like pn pair, the 1+

1,20, 2+
1,20, 3+

2 0
states of 10B are constructed by the coupling of the S = 1 pn
pair with orbital angular momentum L of the 2α core as [L =
0, S = 1]J=1 and [Lcore = 2, S = 1]J=1,2,3. Here, both 2+

1,20
states contain [Lcore = 2, S = 1]J=2 component because of
the configuration mixing between the core rotation Lcore = 2
and pn pair rotation Lpn = 2 in the J = 2 state [16]. The
strong GT transition 10Be(0+

1 1) → 10B(1+
1 0) corresponds to

[L = 0, S = 0]J=0 → [L = 0, S = 1]J=1, whereas the sig-
nificant GT transitions of 10Be(2+

1 1) → 10B(1+
2 0, 2+

1,20, 3+
2 0)

are described by the transitions [Lcore = 2, S = 0]J=2 →
[Lcore = 2, S = 1]J=1,2,3. In 10B, the intrinsic spin of the LS-
coupling pn pair weakly couples with the core deformation. In
such a case, the GT transition from the ground state 10Be(0+

1 1)
is not split but concentrated on the single state 10B(1+

1 0)
because both the spin flip and nonflip operators in the GT
transition operator can contribute to the same final state. This
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FIG. 7. The spectra of initial and final states in 22Ne →
22Na(T = 0). The energy is measured from each ground state. The
states having large B(GT) are connected by arrows. The solid
arrows are K = 0 → K = 0 transitions and the dashed arrows are
K = 0 → K = 1 ones.

is a consequence of the SU(4) symmetry of the LS-coupling
pn pair in 10B.

Differently from the GT transition of 10Be(0+
1 1) →

10B(1+
1 0), the GT splitting occurs in 22Ne(0+

1 1) →
22Na(1+

1,20) (see Fig. 7). As already discussed previously,
the origin of the splitting is that the final states of 22Na
have specific K quanta because of the ��-coupling pn
pair around the 20Ne core. The GT transitions to the final
K = 1 and K = 0 bands occur in the nn → pn decays with
�Sz = 0 and �Sz = ±1 in the intrinsic frames, respectively.
The key point is that 22Na(1+

1,20) have the ��-coupling pn

pair with the SU(4)-symmetry breaking, and 10B(1+
1 0) has

the LS-coupling pn pair with SU(4) symmetry.
In order to discuss the roles of pn correlation and core

deformation in the GT splitting (or fragmentation) phenom-
ena, we performed a further analysis of the GT transitions
for the artificially prepared final states with the pn pairs
around deformed cores in the LS-coupling limit and in the
��-coupling case, and in the jj -coupling limit. To this end,
we changed the strength uls of the spin-orbit interaction VLS

to uls = λudefault
ls with the enhancement factor λ from the de-

fault strength udefault
ls = 1300 MeV, and performed the GCM

calculation of 10B and 22Na. In the GCM calculation, we used
the bases {|�πT (βi, γi )〉}i obtained with the default spin-orbit
strength. The uls → 0 limit corresponds to the LS-coupling
scheme with SU(4) symmetry, whereas in the large-uls limit
the system goes to spherical states with jj -coupling nucleons.
In the intermediate case of uls , ��-coupling NN pairs appear

034307-7



HIROYUKI MORITA AND YOSHIKO KANADA-EN’YO PHYSICAL REVIEW C 98, 034307 (2018)

B
(G

T)

1
2
3
4

 = 0.0
0) = 0.41+

1
(1

0) = 0.37+

2
(1

 = 0.0
0) = 0.54+

1
(1

0) = 0.61+

2
(1

B
(G

T)

1
2
3
4

 = 0.5
0) = 0.37+

1
(1

0) = 0.37+

2
(1

 = 0.5
0) = 0.54+

1
(1

0) = 0.52+

2
(1

B
(G

T)

1
2
3
4

 = 1.0
0) = 0.31+

1
(1

0) = 0.29+

2
(1

 = 1.0
0) = 0.52+

1
(1

0) = 0.45+

2
(1

B
(G

T)

1
2
3
4

 = 1.5
0) = 0.31+

1
(1

0) = 0.25+

2
(1

 = 1.5
0) = 0.38+

1
(1

0) = 0.49+

2
(1

5 0 5 10 1

B
(G

T)

0
1
2
3
4

 = 2.0
0) = 0.23+

1
(1

0) = 0.17+

2
(1

Energy (MeV)
5 0 5 10 15

 = 2.0
0) = 0.31+

1
(1

0) = 0.53+

2
(1

0

0

0

0

  Ne→   Na22 22 10  Be→   B10
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by a Gaussian with σ = 0.4 so as to normalize the peak hight to
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tively. The left and right panels show B(GT; 22Ne → 22Na) and
B(GT; 10Be → 10B), respectively.

around the deformed core. By controlling the enhancement
factor in the range of λ = 0–2, we discuss how the GT
transitions are fragmented in the change from the LS-coupling
regime to the jj -coupling regime.

In Fig. 8, we show the B(GT; 22Ne(0+
1 1) → 22Na(1+

n 0))
spectra for λ = 0.0, 0.5, 1.0, 1.5, and 2.0 in comparison
with the B(GT; 10Be(0+

1 1) → 10B(1+
n 0)) spectra. Let us first

discuss the GT transitions of 22Ne(0+
1 1) → 22Na(1+

n 0). In
the λ = 0.0 case for the LS-coupling limit, the pn pair has
SU(4) symmetry and the GT strength is concentrated on the

single lowest state with a large fraction 54.8% of the GT
sum rule value 6. As λ increases, the GT strengths from
22Ne(0+

1 1) are split into a few 1+0 states in the low-energy
region. At the default strength λ = 1.0, the LS-coupling pn
pair around the 20Ne changes to the ��-coupling pair, and
the GT strengths are split mainly to two states 22Na(1+

1,20).
Significant GT strengths still exist in the low-energy region:
The sum of the strengths for these two states exhausts 58.8%
of the sum rule value. This corresponds to partial breaking
of the SU(4) symmetry in sd-shell nucleons because this
symmetry is broken only in the pn pairs but not in the α
cluster. With further increase of λ to λ = 2.0, the deformation
parameter becomes small as β = 0.31 → 0.23 and the GT
strengths are fragmented into many 1+0 states. The major
peak position rises up to the higher energy and the strength
function is widely distributed. In the large-λ case, the α cluster
is broken by the strong spin-orbit force and the system goes to
the jj -coupling regime, in which six nucleons in the sd shell
contribute to the GT transitions.

Next we look into the B(GT; 10Be(0+
1 1) → 10B(1+

n 0))
spectra and compare them with 22Ne(0+

1 1) → 22Na(1+
n 0).

Also, in 10Be(0+
1 1) → 10B(1+

n 0), we find similar behavior of
the GT splitting with the SU(4)-symmetry breaking. In the
small-λ case for the LS-coupling limit, the GT strength from
10Be(0+

1 1) is concentrated on 10B(1+
1 0) with B(GT) ≈ 5.0

which almost exhausts the sum rule value because of the
SU(4) symmetry of the NN pair around the 2α core. As
λ increases, the GT peak is split into two states 1+

1,20 and
shifted toward the high-energy region. One of the remarkable
differences from 22Ne(0+

1 1) → 22Na(1+
n 0) is that, in the case

of 10Be(0+
1 1) → 10B(1+

n 0), the splitting occurs not at λ = 1.0
(the default spin-orbit strength) but at λ = 1.5 because the
NN pairs around the 2α core favor the LS-coupling scheme.
This means that, in the realistic system at λ = 1.0, the SU(4)
symmetry in the pn pair still remains and the GT transition is
concentrated on the single low-lying 10B(1+

1 0).
In the present analysis, we found a universal feature of

the GT fragmentation phenomena in deformed systems. There
are two types of the fragmentation mechanism of the GT
strengths. One is the GT splitting in the K = 0, 1 bands
because of the SU(4)-symmetry breaking in the pn pairs
around a largely deformed core with the spin-isospin saturated
configurations. This corresponds to the partial breaking of
the SU(4) symmetry. The other is the GT fragmentation
in jj -coupling shell orbits in the weakly deformed system.
22Ne(0+

1 1) → 22Na(1+
1,20) is the former case of the partial

breaking phase, whereas 10Be(0+
1 1) → 10B(1+

1 0) is close to
the ideal SU(4)-symmetry phase with no GT splitting.

V. SUMMARY AND OUTLOOK

We have investigated the Gamow-Teller transitions of
22Ne → 22Na with Tβγ -AMD+GCM in order to discuss the
relation between strong GT transitions and pn pair formation
in prolately deformed N = Z odd-odd nuclei. The splitting
of the GT strengths from 22Ne(0+

1 1) → 22Na(1+
1,20) is found,

reproducing the experimental data in the mirror transitions,
22Mg(0+

1 1) → 22Na(1+
1,20). This GT splitting is understood

by introducing the “��-coupling scheme” of the valence NN
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pair around the spin-isospin saturated 20Ne core. By analyzing
the major components of the K bandheads, we have found that
the final states (1+

1 0, 3+
2 0, 5+

2 0) are in the K = 0 band and
other states (1+

2 0, 2+
1 0) are in the K = 1 band. The single-

particle orbits for the two valence particles of the 1+
1 0 (K = 0)

state show that this K quantum is produced by the [211 +
3/2]p(n)[211 − 3/2]n(p) configuration with the intrinsic spins
coupled to S = 1 with Sz = 0. On the other hand, those of
the 1+

2 0 (K = 1) state have the major [211 + 3/2]p(n)[211 −
1/2]n(p) configuration with Sz = ±1. This fact shows that the
GT splitting is caused by the SU(4)-symmetry breaking of the
pn pair into the ��-coupling scheme producing K quanta
in the intrinsic frame. For the final states in the K = 0 and
K = 1 bands with the Sz = 0 and Sz = ±1 pn pairs, the GT
transitions occur in the nn → pn decays with �Sz = 0 (spin
nonfilpflip) and Sz = ±1 (spin flip) in the intrinsic frame,
respectively.

We have also compared the GT transitions in 22Ne → 22Na
with those in 10Be → 10B. The GT splitting in 22Ne(0+

1 1) →
22Na(1+

1,20) occurs as a result of the SU(4)-symmetry break-
ing in the pn pair around a largely deformed core with
the spin-isospin saturated configurations. On the other hand,
10Be(0+

1 1) → 10B(1+
1 0) is close to the SU(4)-symmetry phase

with no GT splitting because the pn pair in 10B is spatially
developed and contains both the K = 0, 1 quanta, though the
2α core is also deformed.

The experimental study to measure B(GT) for
22Ne(0+

1 1) → 22Na(1+0) at the Research Center for Nuclear
Physics (Osaka) is ongoing and new data will come in the
future. For other transitions, it is difficult to experimentally
measure B(GT) because of limitations of present facilities.
Instead, experimental measurements of B(M1) values are
needed as alternative probes for the pn correlation because
B(M1) values shown in this paper have good correspondence
with the GT strengths. Moreover, further theoretical and
experimental studies of the GT transitions for other Z = N
odd-odd nuclei are also important for understanding universal
features of pn correlation in a deformed system.
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