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Signatures of few-body resonances in finite volume
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We study systems of bosons and fermions in finite periodic boxes and show how the existence and properties
of few-body resonances can be extracted from studying the volume dependence of the calculated energy spectra.
We use and briefly review a plane-wave-based discrete variable representation, which allows a convenient
implementation of periodic boundary conditions. With these calculations we establish that avoided level
crossings occur in the spectra of up to four particles and can be linked to the existence of multibody resonances.
To benchmark our method we use two-body calculations, where resonance properties can be determined with
other methods, as well as a three-boson model interaction known to generate a three-boson resonance state.
Finding good agreement for these cases, we then predict three-body and four-body resonances for models using
a shifted Gaussian potential. Our results establish few-body finite-volume calculations as a new tool to study
few-body resonances. In particular, the approach can be used to study few-neutron systems, where such states
have been conjectured to exist.
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I. INTRODUCTION

The study of resonances, i.e., of short-lived, unstable
states, constitutes a very interesting and challenging aspect of
few-body physics. To explore such systems theoretically, we
discuss here the extraction of few-body-resonance properties
from the volume dependence of energy levels in finite boxes
with periodic boundary conditions. Our study is motivated
by recent efforts to observe [1–4] and calculate [5–13] few-
neutron resonances in nuclear physics, but the scope is more
general.

For two-body systems, it was shown by Lüscher [14,15]
that the infinite-volume properties of interacting particles are
encoded in the volume dependence of their (discrete) energy
levels in the box. These methods are commonly used in the
field of lattice QCD [16,17], but also in effective field theories
(EFT) with nucleon degrees of freedom [9,18]. The details
of extending the formalism from the two-body sector to few-
body systems is a topic of very active current research (see,
e.g., Refs. [19–25]). In the two-particle sector, it was shown
that a resonance leads to an avoided crossing of energy levels
as the size L of the box is varied [26]. This technique was
used successfully to extract hadron resonances (see Ref. [17]
for a recent review). The same framework also applies to res-
onances in few-body systems which couple to an asymptotic
two-body channel.
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In the present work, we study the extension of this method
to few-body resonances. In particular, we are interested in
resonances that couple only to asymptotic three- or higher-
body channels. The properties of such systems, which one
could refer to as “genuine” few-body resonances, cannot be
obtained by calculating a standard two-body scattering phase
shift. Because to date there are no formal derivations for this
case, we explore here whether such states again show up
as avoided crossings in the finite-volume few-body energy
spectrum, and how the properties of the resonance state can
be inferred from the position and shape of these avoided
crossings. Beyond establishing this method as a tool for
identifying resonance states, our results are relevant to test
and help extend the ongoing formal work mentioned above, in
particular regarding the derivation of three-body finite-volume
quantization conditions [20–23,25]. We note that in a similar
approach resonances can be studied in spherical boxes; see,
for example, Refs. [27,28].

Our studies require the calculation of several few-body
energy levels in the finite box. An important consequence
of the finite volume is that for any given box size L the
spectrum is discrete, but it is still possible to distinguish
few-body bound states, which have an exponential volume
dependence [24,29]. In contrast, continuum scattering states
have a power-law volume dependence. Resonances are then
identified as avoided crossings between these discrete “scat-
tering” states as L is varied (although we emphasize al-
ready here that in general this signature is expected to be
necessary, but not sufficient, for the existence of resonance
states).

Naturally, such calculations are numerically challenging,
in particular when the number of particles, the number of
desired energy levels, or the size of the volume increases.
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As numerical method we use a discrete variable represen-
tation (DVR) based on an underlying basis of plane-wave
eigenstates of the box, which was previously applied to study
few-nucleon systems in Ref. [30]. The latter allow one to
conveniently implement periodic boundary conditions and
naturally describe scattering states, and the use of the DVR
promises significant advantages in computational efficiency
over other methods [30,31]. We have developed a DVR
framework that solves the finite-volume problem for both
few-fermion and few-boson systems, supporting both small-
scale (running on standard computers) as well as efficient
large-scale (running on high-performance computing clusters)
calculations. An important challenge is to extend the reach
of our method to the very large box sizes that are required
to unambiguously identify the existence of proposed three-
and four-neutron resonances at very low energies. Postponing
studies of few-neutron systems using EFT-based interactions
to future work, we investigate here systems of three and four
bosons and fermions using different model interactions.

This paper is organized as follows. In Sec. II we present the
DVR method applied to finite periodic boxes for both bosons
and fermions, discussing in some detail our numerical imple-
mentation. This also addresses the fact that in the periodic box
one has to account for the breaking of rotational symmetry
to the cubic group, some details of which are given in the
appendix. After discussing signatures of two-body resonances
in Sec. III, we proceed to the multibody case in Sec. IV,
establishing first the validity of our approach using a known
three-body test case before we study bosonic and fermionic
multibody resonances using shifted Gaussian potentials. We
conclude in Sec. V with a brief summary and outlook.

II. NUMERICAL METHOD

A. Discrete variable representation

To avoid contributions from the center-of-mass motion to
the energy of the system, we consider the n-body system in
n−1 relative coordinates, xi = rn − ri for i = 1, . . . , n−1,
where ri denotes the position of the ith particle. These are not
Jacobi coordinates, so the kinetic energy operator Trel contains
mixed derivatives in the position representation. Because such
terms are straightforward to deal with in the DVR represen-
tation, our choice of coordinates is convenient as it keeps
the boundary conditions simple. While the three-dimensional
case is physically the most relevant one, the construction
here is completely general. In d spatial dimensions, the only
difference is that all vectors have d components.

1. One-dimensional case

The basic discussion of the DVR method given here fol-
lows that of Ref. [31], to which we also refer for more details.
To explain the DVR method, we first consider two particles
(with equal mass m and reduced mass μ = m/2) in one spatial
dimension, setting x = x1. Confined to an interval of length L,
periodic boundary conditions are imposed by choosing a basis
of plane waves,

φj (x) = 〈x|φj 〉 = 1√
L

exp(ipjx), with pj = 2πj

L
, (1)

and i = −N/2, . . . , N/2 − 1 with a truncation parameter N
(even) determining the basis size. It is clear that any periodic
solution of the Schrödinger equation,

[Trel + V ]|ψ〉 = E|ψ〉, (2)

can be expanded in the basis (1), and this representation
becomes exact for N → ∞.

Following the DVR construction laid out in Ref. [31], we
consider now pairs (xk,wk ) of grid points xk and associated
weights wk such that

N/2−1∑
k=−N/2

wk φ∗
i (xk )φj (xk ) = δij . (3)

For the plane-wave basis (1), this is obviously satisfied by

xk = L

N
k and wk = L

N
. (4)

If we now define matrices

Uki = √
wkφi (xk ), (5)

then these are unitary according to Eq. (3), and we obtain
the DVR basis functions ψk (x) by rotating the original plane-
wave states:

ψk (x) =
N/2−1∑
i=−N/2

U∗
kiφi (x) (6)

for k = −N/2, . . . , N/2 − 1. The range of indices is the
same as for the original plane-wave states, but whereas in
Eq. (1) they specify a momentum mode, ψk (x) is peaked at
position xk ∈ [−L/2, L/2).

It follows directly from Eqs. (4) and (5) as well as the
transpose UT also being unitary that the DVR states have the
property,

ψk (xj ) = 1√
wk

δkj . (7)

This greatly simplifies the evaluation of the potential matrix
elements:

〈ψk|V |ψl〉 =
∫

dx ψ∗
k (x)V (x)ψl (x),

≈
N/2−1∑

m=−N/2

wm ψ∗
k (xm)V (xm)ψl (xm),

= V (xk )δkl, (8)

so that the potential operator is (approximately) diagonal in
the DVR representation. The approximation here lies in the
second step in Eq. (8), replacing the integral by a sum, which
is possible because the (xk,wk ) defined in Eq. (4) constitute
the mesh points and weights of a trapezoidal quadrature rule.
Note that for this identification it is important that the points
−L/2 and L/2 are identified through the periodic boundary
condition because otherwise the weight w−N/2 would be
incorrect.
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The kinetic energy, given in configuration space by the
differential operator

Trel = − 1

2μ

d2

dx2
, (9)

is not diagonal in the DVR representation (note that we set
here h̄ = 1). However, its matrix elements can be written in
closed form [30]:

〈ψk|Trel|ψl〉 =
⎧⎨
⎩

π2N2

6μL2

(
1 + 2

N2

)
, for k = l,

(−1)k−lπ2

μL2 sin2(π (k−l)/N )
, otherwise.

(10)

While this matrix is dense here, we will see below that it
becomes sparse for d > 1. Alternatively, as pointed out in
Ref. [30], one can use a discrete fast Fourier transform to eval-
uate the kinetic energy in momentum space. This operation
switches from the DVR to the original plane-wave basis (1),
where we have

Trel|φi〉 = p2
i

2μ
|φi〉, (11)

and back.

2. General construction

The construction is straightforward to generalize to the
case of an arbitrary number of particles n and spatial di-
mensions d: The starting point simply becomes a product
of (n − 1) × d plane waves, one for each relative-coordinate
component. The transformation matrices and DVR basis func-
tions are defined via tensor products. Eventually, while a
single index suffices to label the one-dimensional DVR states,
a collection of (n − 1) × d indices defines the general case.
For these states we introduce the notation (generalizing the
1D short-hand form |ψk〉 = |k〉),

|s〉 = |(k1,1, · · · , k1,d ), · · · , (kn−1,1, · · · ); (σ1, · · · , σn)〉.
(12)

Here we have also included additional indices to account for
spin degrees of freedom. If the particles have spin S, then
each σi , labeling the projections, takes values from −S to S.
Additional internal degrees of freedom, such as isospin, can
be included in the same way. The collection of all these states
|s〉 is denoted by B, which is our DVR basis with dimension
dim B = (2S + 1)n × N (n−1)d .

We take the interaction V in Eq. (2) to be a sum of central,
local A-body potentials (with A = 2, . . . , n for an n-body
system). Each contribution to this sum depends only on the
relative distances between pairs of particles. This means that
matrix elements of V between n-particle states depend on
n−1 relative coordinates, and for each of these there is a delta
function in the matrix element,

〈x1, · · · , xn−1|V |x′
1, · · · , x′

n−1〉
= V ({|xi |}, {|xi − xj |}i<j )

∏
i

δ(d )(x′
i − xi ), (13)

so that the interaction remains diagonal in the general DVR
basis. For the evaluation between DVR states |s〉, each

modulus |xi | in Eq. (13) gets replaced with

|si | ≡ L

N

(
d∑

c=1

k2
i,c

)1/2

. (14)

If the potential depends on the spin degrees of freedom, the
potential matrix in our DVR representation acquires nondiag-
onal terms, but these are determined solely by overlaps in the
spin sector, and overall this matrix remains very sparse.

As already pointed out, the kinetic energy matrix is also
sparse in d > 1. To see this, first note that the 1D matrix
elements (10) enter for each component ki,c, multiplied by
Kronecker deltas for each c′ = c and summed for all relative
coordinates i = 1, . . . , n − 1. The only additional complica-
tion, stemming from our choice of simple relative coordinates,
is that the general kinetic energy operator,

T
n-body

rel = − 1

2μ

n−1∑
i=1

i∑
j=1

∂

∂xi

∂

∂xj

, (15)

contains mixed (nondiagonal) terms. As an example to il-
lustrate this, consider the kinetic-energy operator for three
particles in one dimension,

T
3-body

rel = − 1

2μ

(
∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂

∂x1

∂

∂x2

)
. (16)

For this the kinetic-energy matrix elements are given by

〈k1k2|T 3-body
rel |l1l2〉 = 〈k1|Trel;1|l1〉δk2l2 + 〈k2|Trel;2|l2〉δk1l1

+〈k1k2|Trel;12|l1l2〉, (17)

where the first two matrix elements on the right-hand side are
given in Eq. (10) and the last term is a special case of the
general mixed-derivative operator,

Trel;ij = − 1

2μ

∂

∂xi

∂

∂xj

. (18)

The DVR matrix elements for this are given by

〈kikj |Trel;ij |li lj 〉 = − 1

2μ
[〈ki |∂i |li〉〈kj |∂j |lj 〉], (19)

with [32]

〈k|∂|l〉 =

⎧⎪⎨
⎪⎩

−i π
L
, for k = l,

π
L

(−1)k−l exp
(
−i π (k−l)

N

)
sin

(
π (k−l)

N

) , otherwise.
(20)

As for the diagonal terms, for a general state |s〉 these terms
are summed over for all pairs of relative coordinates and
spatial components c, including Kronecker deltas for c′ = c.

Analogous to the one-dimensional case the kinetic energy
can alternatively be implemented by switching to momentum
space with a fast Fourier transform, applying a diagonal
matrix with entries,

T
n-body

rel |s〉 = 1

2μL2

n−1∑
i=1

i∑
j=1

d∑
c=1

ki,ckj,c|s〉, (21)

and then transforming back with the inverse transform.
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3. (Anti)symmetrization and parity

To study systems of identical bosons (fermions), we want
to consider (anti)symmetrized DVR states. The construction
of these can be achieved with the method described, e.g.,
in Ref. [33] (for the stochastic variational model in Jacobi
coordinates):

(1) The transformation from single-particle to relative co-
ordinates is written in matrix form as

xi =
n∑

j=1

Uij rj , (22)

where

Uij =
⎧⎨
⎩

δij , for i, j < n,
−1, for i < n, j = n,
1/n, for i = n.

(23)

Note that for i = n this definition includes the center-
of-mass coordinate.

(2) For the n-particle system there are n! permutations,
constituting the symmetric group Sn. A permutation
p ∈ Sn can be represented as a matrix C(p) with

C(p)ij =
{

1, for j = p(i),
0, otherwise, (24)

acting on the single-particle coordinates ri .
(3) The operation of p ∈ Sn on the relative coordinates is

then given by the matrix

Crel(p) = U C(p) U−1, (25)

with the row and column of the left-hand side dis-
carded, so that Crel(p) is an (n−1) × (n−1) matrix.

Because the indices ki,c correspond directly to positions on
the spatial grid via Eq. (7), acting with Crel(p) on a state |s〉
is now straightforward: The ki,c are transformed according to
the entries Crel(p)ij , where for each i one considers all c =
1, . . . , d at once. In other words, Crel(p) is expanded (by repli-
cation for each c) to a matrix acting in the space of individual
coordinate components. As a final step, to maintain periodic
boundary conditions, any transformed indices that may fall
outside the original range −N/2, . . . , N/2 − 1 are wrapped
back into this interval by adding appropriate multiples of N .
Applying the permutation to the spin indices (σ1, . . . , σn) is
trivial because they are given directly as an n-tuple. The final
result of this process for a given state |s〉 ∈ B and permutation
p is a transformed state,

|s ′〉 = C(p)|s〉 ∈ B, (26)

where

C(p) = Crel(p) Cspin(p) (27)

denotes the total permutation operator in the space of DVR
states. The statement of Eq. (26) is that each p ∈ Sn acts on B
as a whole by permuting the order of elements.

With this, we can now define the symmetrization and
antisymmetrization operators as

S = 1

n!

∑
p∈Sn

C(p) and A = 1

n!

∑
p∈Sn

sgn(p) C(p), (28)

where sgn(p) = ±1 denotes the parity of the permutation
p. Because both of these operators are projections (S2 = S ,
A2 = A), they map our original basis B onto bases BS/A
of, respectively, symmetrized or antisymmetrized states, each
consisting of linear combinations of states in B. An important
feature of these mappings is that each |s〉 ∈ B appears in
at most one state in BS (for symmetrization) or BA (for
antisymmetrization). Thus, to determine BS we can simply
apply S to all |s〉 ∈ B, dropping duplicates, and analogously
for the construction of BA. Moreover, for the practical nu-
merical implementation of this procedure (discussed in more
detail in Sec. II B) it suffices to store a single term for each
linear combination because the full state can be reconstructed
from that through an application of the (anti)symmetrization
operator.

Parity can be dealt with in much the same way: The
parity operator P merely changes the sign of each relative
coordinate, so it can be applied to the DVR states defined in
Eq. (12) by mapping ki,c → −ki,c for all i, c, and, if necessary,
wrapping the result back into the range −N/2, . . . , N/2 − 1.
The spin part remains unaffected by this operation. Projectors
onto positive and negative parity states are given as

P± = 1 ± P . (29)

They have the same properties as S and A (each |s〉 ∈ B
appears in at most one linear combination forming a state with
definite parity), and, importantly, the same is true for the com-
bined operations P±S and P±A. In practice this means that it
is possible to efficiently construct bases of (anti)symmetrized
states with definite parity, where for each element it suffices
to know a single generating element |s〉 ∈ B.

4. Cubic symmetry projection

While permutation symmetry and parity remain unaffected
by the finite periodic geometry, rotational symmetry is lost. In
particular, in d = 3 dimensions (to which the remaining dis-
cussion in this subsection will be limited), angular momentum
l is no longer a good quantum number for the n-body system
in the periodic cubic box. Specifically, the spherical SO(3)
symmetry of the infinite-volume system is broken down to a
cubic subgroup O ⊂ SO(3).

This group has 24 elements and five irreducible repre-
sentations �, conventionally labeled A1, A2, E, T1, and T2.
Their dimensionalities are 1, 1, 2, 3, and 3, respectively, and
irreducible representations Dl of SO(3), determining angular-
momentum multiplets in the infinite volume, are reducible
with respect to O. As a result, a given (infinite-volume)
angular momentum state can contribute to several �. In the
cubic finite volume, one finds the spectrum decomposed into
multiplets with definite �, where an index α = 1, . . . , dim �

further labels the states within a given multiplet.
For our calculations, it is desirable to select spectra by their

cubic transformation properties. To that end, we construct
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projection operators [34],

P� = dim �

24

∑
R∈O

χ� (R)Dn(R), (30)

where χ� (R) denotes the character (tabulated in Ref. [34])
of the cubic rotation R for the irreducible representation �

and Dn(R) is the realization of the cubic rotation in our DVR
space of periodic n-body states. For example, for the one-
dimensional representation � = A1, χA1 (R) = 1 for all cubic
rotations R, so in this case Eq. (30) reduces to an average
over all rotated states. In Appendix A we provide some further
discussion of the cubic group and the construction of the
Dn(R).

B. Implementation details

We use a numerical implementation of the method de-
scribed above written predominantly in C++, with some
smaller parts (dealing with permutations) conveniently imple-
mented in Haskell. For optimal performance, parallelism via
threading is used wherever possible. Our design choice to use
modern C++11 allows us to achieve this by means of the TBB
library [35], which provides high-level constructs for nested
parallelism as well as convenient concurrent data structures.
To support large-scale applications, we also split calculations
across multiple nodes using MPI, so that overall we have a
hybrid parallel framework.

For a fixed setup (given physical system, box size L, DVR
truncation parameter N ), the calculation is divided into three
phases:

(1) Basis setup
(2) Hamiltonian setup
(3) Diagonalization

The last step is the simplest one conceptually, so we start
the discussion from that end. To calculate a given number of
lowest energy eigenvalues we use the parallel ARPACK pack-
age [36], implementing Arnoldi/Lanczos iterations distributed
via MPI. This method requires the calculation of a number of
matrix-vector products,

ψout = Hψin, (31)

applying the DVR Hamiltonian H to state vectors ψin (pro-
vided by the algorithm) until convergence is reached. These
are potentially very large (see Sec. II A 2) and thus are
distributed across multiple nodes. Explicit synchronization
is only required for ψin to evaluate the right-hand side of
Eq. (31). Each node only calculates its local contribution
to ψout.

We note here that while (anti)symmetrization and parity
are directly realized by considering appropriate basis states,
the simplifications discussed in Sec. II A 3 are not possible for
the cubic-symmetry projectors P� introduced in Sec. II A 4.
Instead, the latter are accounted for via the substitution,

H → H + λ(1 − P� ), (32)

where λ is an energy scale chosen much larger than the energy
of the states of interest. This construction applies a shift to
all states which do not possess the desired symmetry, leaving

only those of interest in the low-energy spectrum obtained
with the Lanczos algorithm.

The operator P� is constructed as a large sparse matrix,
which we implement using Intel MKL [37], if available, and
via librsb [38] otherwise. The same holds for the kinetic-
energy matrix when operating in a mode where this matrix is
constructed explicitly (as described in Sec. II A 2) in step 2.

While this mode of operation has good scaling properties
with increasing number of compute nodes, we find it to
be overall more efficient (in particular with respect to the
amount of required memory) to use the Fourier-transform-
based kinetic-energy application, which we implement using
FFTW [39]. Because the transform is defined for the full (not
symmetry-reduced) basis, this method involves transforming
the vectors ψin to the large space, and transforming back after
applying the kinetic-energy operator. These transformations
are again implemented via sparse-matrix multiplications,
where the matrix X that expands from the reduced space to
the full space has entries given by eigenvectors of (appropriate
combinations of) the operators S , A, and P± described in
Sec. II A 3. Reducing back at the end is performed with the
transpose matrix XT . For calculations on multiple nodes using
MPI, individual ranks need only calculate local slices of these
matrices.

In Fourier-transform mode, step 2 consists only of calculat-
ing diagonal matrices for the kinetic energy and the potential
parts of the Hamiltonian, and possibly of setting up the sparse
cubic projection matrix P� . These calculations are based
on determining the symmetry-reduced basis states in step 1,
which can be efficiently parallelized across multiple nodes. In
addition, this requires calculating X and XT .1

III. RESONANCE SIGNATURES

In the two-particle sector it has been shown that a reso-
nance state manifests itself as avoided level crossings when
studying the volume dependence of the discrete energy levels
in a periodic box [26]. Before we move on to establish the
same kind of signature for more than two particles in the fol-
lowing section, we compare here the finite-volume resonance
determination to other methods. As a test case, we consider
two particles interacting via a shifted Gaussian potential,

V (r ) = V0 exp

(
−

(
r − a

R0

)2)
. (33)

This kind of repulsive barrier is very well suited to produce
narrow resonance features without much need for fine tuning.
To illustrate this we show in Fig. 1 S-wave scattering phase
shifts for a = 3, R0 = 1.5, and two different values of V0 (all
in natural units, which besides using h̄ = c = 1 also set m =
1). For V0 = 6.0 the phase shift exhibits a very sharp jump
of approximately 180◦. From the location of the inflection
point of the phase shift we extract the resonance energy ER ,

1On a single node, it is sufficient to calculate just one of these
matrices. For distributed calculations, however, different nodes need
different slices of these matrices so that in order to reduce communi-
cation overhead it is most efficient to store both X and XT .
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V0 = 6.0
V0 = 2.0

δ(
k)

 [
de

g]

0

− 60

− 120

− 180

− 240

− 300

− 360

− 420

E
0 2 4 6 8 10

FIG. 1. S-wave phase shift of two particles interacting via the
potential given in Eq. (33) as a function of the (dimensionless)
relative kinetic energy E for V0 = 6.0 (blue solid curve) and V0 =
2.0 (red dashed curve).

while the width � is given by the value of the derivative at the
resonance energy, [

dδ(E)

dE

]
E=ER

= 2

�
. (34)

We find a very narrow two-body resonance with energy ER =
2.983 and width � = 0.001. When the height of the barrier is
lowered to V0 = 2.0, the jump is much less pronounced, im-
plying that the width of this resonance is broadened. Indeed,
we find resonance parameters of ER = 1.606, � = 0.097 for
this case.

To further check these parameters, we consider Eq. (33)
Fourier transformed to momentum space and look for poles in
the S-wave projected S matrix on the second energy sheet, us-
ing the technique described in Ref. [40]. For V0 = 6.0 we find
a resonance pole at ER − i�/2 = 2.9821(3) − i0.00035(5),

where the uncertainty is estimated by comparing calculations
with 300 and 256 points for a discretized momentum grid with
cutoff 8 (in natural inverse length units). In the same way,
we extract ER − i�/2 = 1.606(1) − i0.047(2) for V0 = 2.0.
Noting that there is no completely unambiguous way to relate
the parameters extracted from the phase shifts (except in the
limit of vanishing background and poles infinitesimally close
to the real axis), we conclude that these pole positions are
in very good agreement with the behavior seen in the phase
shifts.

We now perform finite-volume calculations of two par-
ticles in a three-dimensional box with periodic boundary
conditions using the DVR method discussed in Sec. II. As
avoided level crossings corresponding to a resonance are
only expected for states with the same quantum numbers,
we project onto states that belong to a single irreducible
representation � of the cubic group (see Sec. II A 4) and
definite parity. Specifically, we consider here only A+

1 states,
which to a good approximation correspond to S-wave states
in the infinite volume. As shown in Table II, the next higher
angular momentum contributing to A+

1 is l = 4, which can be
safely neglected for low-energy states.

Our results are shown in Fig. 2. In the spectrum for
V0 = 6.0 (left panel of Fig. 2), a series of extremely sharp
avoided level crossings, forming an essentially horizontal
plateau, is observed at approximately E ≈ 3.0. According to
Ref. [26] the width of the resonance is related to the spacing
of the different levels at the avoided crossing. Therefore, we
conclude that the resonance is very narrow, and find good
qualitative agreement with the parameters extracted from the
phase shift. For the weaker potential (V0 = 2.0, right panel
of Fig. 2), on the other hand, the avoided level crossings are
less sharp, pointing to a larger resonance width. Along with
the observed sequence of plateaus at approximately E = 1.6,
we again find good qualitative agreement with the phase-shift
calculation.

5 6 7 8 9 10
L

0
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8

10
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A+
1 rep.

5 6 7 8 9 10
L
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8

10

E

A+
1 rep.

FIG. 2. Energy spectrum of two particles interacting via the potential given in Eq. (33) in finite volume for different box sizes L. The
left panel shows results for V0 = 6.0 in the A+

1 representation, whereas for the right panel a weaker barrier V0 = 2.0 was used. All crossings
are avoided because the spectrum is fully projected on states with the same quantum numbers. The crosses mark the inflection points used to
extract the resonance energy (see text).
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For a more definite analysis, we determine the inflection
points of the level curves with a plateau shape and interpret
these as an estimate for the resonance energy. For this extrac-
tion, we fit the coefficients {ci} of a polynomial,

E(L) =
imax∑
i=0

ciL
i, (35)

to the plateau region of each curve in Fig. 2 and take the
position of the plateau inflection point as the resonance
energy. In the plots, we indicate these points with crosses.
We vary the number of data points taken into account for
the fit by adjusting the lower and upper boundary of the
fit interval. Furthermore, we vary imax in Eq. (35) until we
find the extracted resonance energy to be independent of
the order of the polynomial. For V0 = 6.0 and V0 = 2.0 we
obtain, respectively, ER = 2.98(3) and ER = 1.63(3), where
the quoted errors correspond to the spread of the extracted
inflection points from different plateau curves. This means
that with the inflection-point method we obtain very good
agreement with the resonance positions from the phase-shift
determination, which justifies the use of this method for the
resonance-energy extraction.

At higher energies the spectra for both V0 = 6.0 and V0 =
2.0 exhibit less pronounced avoided level crossings. These
structures, however, do not show clear plateaus, instead vary-
ing strongly as a function of the box size. Most likely these
finite-volume features correspond to the resonancelike jumps
of the phase shift at E ∼ 6−10 for V0 = 6.0 and E ∼ 3−7
for V0 = 2.0, respectively, which may correspond to broader
resonances.

Altogether, we have demonstrated here that the positions
of narrow two-body resonances can be extracted from finite-
volume calculations with very good quantitative agreement
compared to other methods.

IV. APPLICATIONS TO THREE AND FOUR PARTICLES

We now proceed to explore the method in the three-
and four-body sector, starting with bosonic (spin-0) particles.
Because these lack a spin degree of freedom, we can quite
easily achieve large DVR basis dimensions for these sys-
tems, whereas fermionic systems are more computationally
demanding.

A. Three-body benchmark

To verify our hypothesis that, analogously to the two-
body case, three-particle resonances appear as avoided level
crossings in finite-volume spectra, we start with three identical
spin-0 bosons with mass m = 939.0 MeV (mimicking nucle-
ons) interacting via the two-body potential

V (r ) = V0 exp

(
−

(
r

R0

)2)
+ V1 exp

(
−

(
r − a

R1

)2)
,

(36)

where V0 = −55 MeV, V1 = 1.5 MeV, R0 = √
5 fm, R1 =

10 fm, and a = 5 fm. This setup was studied in Ref. [41],
where Faddeev equations with complex scaling were used

20 25 30 35 40 45
L [fm]

−7
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−2

−1
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1

E
[M

eV
]

↓ ground state at −37.3 MeV

A+
1

E+

T+
2

FIG. 3. Energy spectrum of three bosons in finite volume for
different box sizes L interacting via the potential given in Eq. (36).
States corresponding to the irreducible representation A1 of the cubic
symmetry group are shown as solid lines, whereas E+ and T +

2 states
are indicated as dashed and dotted lines, respectively. The shaded
area indicates the resonance position and width as calculated in
Ref. [42], whereas the cross marks the inflection point used here to
extract the resonance energy (see text).

to calculate resonances, as well as in Ref. [42], which used
slow-variable discretization to extract three-body resonance
parameters. The potential given in Eq. (36) supports a two-
body bound state (dimer) at E = −6.76 MeV [41] and a
three-boson bound state at E = −37.35 MeV [42] (Ref. [41]
obtained E = −37.22 MeV for this state). In addition, it
was found that there is a three-boson resonance at ER =
−5.31 MeV with a half width of 0.12 MeV [42] (ER =
−5.96 MeV and �/2 = 0.40 MeV according to Ref. [41]),
which decays into a dimer-particle state that is overall lower
in energy.

Using Eq. (36) with our DVR method, we find E =
−6.756(1) and E = −37.30(5) for two and three bosons, re-
spectively, in good agreement with the results of Refs. [41,42].
Note that bound-state energies converge exponentially to the
physical infinite-volume values as we increase the box size L
(see, e.g., Refs. [24,29]). In order to look for the three-boson
resonance, we study the positive-parity three-body spectrum
as a function of L. For small box sizes around L ∼ 20 fm, we
find that N = 26 DVR points is sufficient to obtain converged
results. For large box size (L ∼ 40 fm), on the other hand,
we performed calculations using N = 30. The terms “small”
and “large” here refer to the scale set by the range of the
interaction, which is quite sizable for the parameters given
below Eq. (36).

Our combined results are shown in Fig. 3, where we also
indicate the irreducible representations of the energy levels
shown. These assignments were determined by running a set
of cubic-projected calculations at small volumes. The levels
corresponding to A+

1 clearly show an avoided crossing at
about the expected resonance energy from Ref. [42], which
is indicated in Fig. 3 as a shaded horizontal band, the width
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of which corresponds to ER ± �/2. For the other states (with
quantum numbers E+ and T +

2 ) shown in the figure we do not
observe avoided crossings or plateaus. At L ∼ 38 fm there is
an actual crossing between A+

1 and an E+ levels. This is not
a very sharp avoided crossing because the participating levels
belong to different cubic representations.

To extract the resonance energy from the spectrum shown
in Fig. 3 we proceed as described in Sec. III and extract
the inflection points of the curves corresponding to the A+

1
states by fitting polynomials. For the first excited state we
find the fit to be quite sensitive to the number of data points
included in the fit, which reflects the fact that this level does
not exhibit a pronounced plateau. For the second excited
state, however, there is a clearly visible plateau. Applying
our fit method to this state, we extract a resonance energy
ER = −5.32(1) MeV. This means that within the quoted un-
certainty, determined by varying the number of data points
included in the fit as well as the order of the fit polynomial,
we obtain good agreement with the resonance energy obtained
in Ref. [42]. While a determination of the resonance width is
left for future work, we conclude from this result that indeed
finite-volume spectra can be used to reliably determine the
existence and energy of few-body resonances.

B. Shifted Gaussian potentials

1. Three bosons

Having established the validity of the finite-volume method
to extract three-body resonances, we now go back to the
shifted Gaussian potential given in Eq. (33) which was used
in Sec. III to study two-body resonances. Starting again with
the stronger barrier, (V0 = 6.0), we consider the A+

1 spectrum
for three bosons, calculated with N = 10 DVR points and
shown in Fig. 4 as solid lines. We observe a large number of
avoided crossings at E ∼ 7.4 as the box size L is varied, pro-
ducing together an almost horizontal plateau region. Using the
same inflection-point method as discussed above, we extract
E = 7.42(6) as a potential resonance energy. In addition to
this, there are several avoided crossings at lower energies that
have a significant slope with respect to changes in the box
size, which we interpret as two-body resonances (known from
Sec. III to exist at ER ∼ 3.0 for this potential) embedded into
the three-body spectrum. To test this hypothesis we repeat the
calculation with an added short-range three-body force,

V3(x1, x2, x12) = V
(3)

0 exp

(
−

(
x1

R
(3)
0

)2)
exp

(
−

(
x2

R
(3)
0

)2)

× exp

(
−

(
x12

R
(3)
0

)2)
, (37)

where x12 = |x1 − x2| and R
(3)
0 = 1.0 and varying strength

V
(3)

0 . Choosing a set of negative values for V
(3)

0 we find in
Fig. 4 that the lower avoided crossings (and in fact most of
the L-dependent spectrum) remain unaffected, whereas the
upper plateau set is moved downwards as V

(3)
0 is made more

negative.
Because the range R

(3)
0 = 1.0 was chosen small (compared

to the box sizes considered), we expect it to primarily affect
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0 = −2

V
(3)
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FIG. 4. Energy spectrum of three bosons in finite volume for
different box sizes L. The solid lines shows the spectrum for three
bosons interacting purely via the shifted Gaussian potential given in
Eq. (33) with V0 = 6.0 while the dashed and dotted lines show results
with an additional attractive three-body force as in Eq. (37). With
increasing three-body force, the avoided level crossing is shifted to
lower energy, while the rest of the spectrum remains unaffected. For
each choice of the three-body force, all crossings are avoided because
the spectrum is fully projected on states with the same quantum
numbers. The crosses mark the inflection points used to extract the
resonance energy (see text).

states that are localized in the sense that their wave function
is confined to a relatively small region in the finite volume.
Interpreting a resonance as a nearly bound state, its wave
function should satisfy this criterion in the finite volume. On
the other hand, scattering states or states where only two
particles are bound or resonant are expected to have a large
spatial extent. Based on this intuitive picture, we interpret
the action of the three-body force as confirmation that indeed
we have a genuine (because the potential we used does
not support any bound states) three-boson resonance state at
E = 7.42(6).

Similar to the two-body spectrum shown in the left panel
of Fig. 2 we find that Eq. (33) with V0 = 6.0 generates very
sharp features in the three-boson spectrum so that even though
we used a fine L grid to generate Fig. 4 it is difficult to exclude
that some crossings might not actually be avoided crossings.
However, we observe the exact same qualitative behavior for
the potential given in Eq. (33) with V0 = 2.0, only that in this
case the avoided crossings are broader and easily identified.
From the spectrum, shown in Fig. 5, we extract E = 4.18(8)
as the three-boson resonance energy for this case.

2. Four bosons

Looking next at four bosons, we find a very similar pic-
ture. As shown in Fig. 6 for the shifted Gaussian potential
given in Eq. (33) with V0 = 2.0, the L-dependent A+

1 four-
boson spectrum (calculated with N = 8 DVR points in this
case) shows a large number of avoided level crossings that
give rise to plateaus with different slopes. Interpreting the
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FIG. 5. Energy spectrum of three bosons in finite volume for different box sizes L. The solid line shows the spectrum for three bosons
interacting purely via the shifted Gaussian potential given in Eq. (33) with V0 = 2.0 while the dashed and dotted lines show results with an
additional attractive three-body force as in Eq. (37). With increasing three-body force the avoided level crossing is shifted to lower energy,
while the rest of the spectrum remains unaffected. The dashed rectangle in the left panel indicates the zoomed region shown in the right panel.
For each choice of the three-body force, all crossings are avoided because the spectrum is fully projected on states with the same quantum
numbers. The crosses mark the inflection points used to extract the resonance energy (see text).

nearly horizontal set of avoided crossings as a possible four-
boson resonance, we extract its energy as E = 7.26(2) with
the inflection-point method. The more tilted sets of avoided
crossings at lower energies most likely correspond to two-
and three-boson resonance states embedded in the four-boson
spectrum.

3. Three fermions

To conclude our survey, we now turn to fermionic systems.
As the additional spin degree of freedom (we consider here

identical spin-1/2 particles) increases the DVR basis size
[see discussion below Eq. (12)], these calculations are more
computationally demanding, but we can still achieve well-
converged results for the shifted Gaussian potential given in
Eq. (33). Before we turn to the three-body sector, we note
that the results of Sec. III remain correct when we assume
the two fermions to be in the channel with total spin S = 0. In
this case, the spin part of the wave function is antisymmetric
and the spatial part has to be even under exchange. Because
the latter corresponds to the bosonic case with positive parity,
we conclude that for two spin-1/2 fermions the two-body
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FIG. 6. Energy spectrum of four bosons in finite volume for different box sizes L interacting via the shifted Gaussian potential given in
Eq. (33) with V0 = 2.0. The dashed rectangle in the left panel indicates the zoomed region shown in the right panel. All crossings are avoided
because the spectrum is fully projected on states with the same quantum numbers. The crosses mark the inflection points used to extract the
resonance energy (see text).
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FIG. 7. Negative-parity energy spectrum of three fermions in
finite volume for different box sizes L interacting via the shifted
Gaussian potential given in Eq. (33) with V0 = 2.0. All levels shown
in the plot were found to belong to the T −

1 cubic representation by
performing fully projected calculations at selected volumes. Results
are shown in the spin S = 1/2 and S = 3/2 channels. The crosses
mark the inflection points used to extract the resonance energy (see
text).

potential given in Eq. (33) has a resonance state at ER ∼ 1.6
for V0 = 2.0.

For three fermions, on the other hand, the situation is
more involved because the overall antisymmetry of the wave
function can be realized via different combinations of spin and
spatial parts. Indeed, we find the finite-volume spectrum to
look different from the bosonic case. For negative parity, we
find the six lowest levels, shown in Fig. 7, to all belong to the
T −

1 cubic representation, which in this case we determined
by running calculations with full cubic projections at selected
volumes while otherwise only restricting the overall parity.
Because the interaction we consider here is spin independent,
total angular momentum l and spin S are separately good
quantum numbers in infinite volume, and in the finite volume
we likewise have � and S as good quantum numbers. The
latter, which can be S = 1/2 or S = 3/2 for three spin-1/2
fermions, we determine by running calculations with fixed
spin z component at selected volumes, which can be realized
by restricting the set of DVR basis states. Because S = 3/2
states show up with both Sz = 3/2 and Sz = 1/2, whereas
S = 1/2 states are absent for Sz = 3/2, we infer that four of
the six levels shown in Fig. 7 have S = 1/2, whereas the other
two (given by the dashed lines in Fig. 7) have S = 3/2.

For S = 1/2 we observe a sequence of three avoided level
crossings. Within this sequence there is a drift towards lower
energies as L increases, the magnitude of which is comparable
to what we observe also for the three-boson spectra analyzed
in Sec. IV B 1 for the state that we concluded to correspond to
an actual three-body resonance (based on varying the three-
body force). We thus conclude that this effect is likely a
residual volume dependence of an actual resonance state also
in this case. With this interpretation, we extract a resonance

energy ER = 5.7(2) from the spectrum shown in Fig. 7 with
our inflection-point method.

V. SUMMARY AND OUTLOOK

We established the method of analyzing few-body energy
spectra in finite periodic boxes to extract three- and four-
particle resonance energies. Our approach relies on the ob-
servation of avoided level crossings and/or plateaus in the
spectra considered as a function of the box size. Observing
such features in few-body spectra and showing that they can
be used to find and analyze resonance states, thus generalizing
the method introduced in Ref. [26] for two-body systems, is
the central result of this work.

To calculate the finite-volume spectra, which were then
used for the resonance identification, we used a DVR basis
based on plane-wave states in relative coordinates. Resonance
features are expected for finite-volume energies correspond-
ing to scattering states in infinite volume. Unlike bound
states, the energies of which converge exponentially with the
box size L, finite-volume scattering states have a power-law
dependence on L (away from regions with avoided crossing).
Looking at low-energy resonances therefore requires going
to volumes that are sufficiently large for the relevant levels
to come down to the energy range of interest. Because cal-
culations in this regime typically require large DVR basis
sizes and become computationally very demanding, we have
developed a numerical framework to run the calculations on
high-performance computing clusters when necessary. We
have furthermore extended the formalism to include the sym-
metrization (antisymmetrization) to study bosonic (fermionic)
systems, as well as for projecting onto the subspaces be-
longing to parity eigenstates and to the different irreducible
representations of the cubic symmetry group. The latter allows
us to determine the finite-volume quantum numbers of the
resonance states that we find.

After testing our method in the two-body sector, where
we verified the existence of resonances by looking at
characteristic jumps in the scattering phase shifts as well as
by looking for S-matrix poles on the second energy sheet,
we studied three- and four-body systems with different
potentials. First, we used a model potential known to generate
a three-boson resonance that decays into a lower lying
two-body bound state and a free particle. For this system,
the resonance parameters were extracted previously based
on different methods [41,42]. Our results clearly show an
avoided level crossing in the corresponding finite-volume
spectrum and we find good agreement with the resonance
energy of Ref. [42], which we extracted from the inflection
points of the volume-dependent energy levels.

Taking this agreement as confirmation that our method
works both qualitatively and quantitatively, we used shifted
Gaussian potentials (with the same parameters known to
generate two-body resonances) in the three- and four-body
sector. Studying the three-boson finite-volume spectrum,
we showed that an additional short-range three-body force
can be used to move avoided crossings forming a plateau
region whereas other avoided crossings remain unchanged.
We interpret this as confirmation that the observed plateau
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TABLE I. Realization of the 24 cubic rotations acting on a
coordinate tuple in symbolic notation (see text). The second column
indicates the conjugacy class of the rotation.

Index Class Dn(R) Index Class Dn(R)

1 I 1 2 3 13 6C4 2 −1 3
2 3C2 −1 −2 3 14 −2 1 3
3 −1 2 −3 15 3 2 −1
4 1 −2 −3 16 −3 2 1
5 8C3 3 1 2 17 1 −3 2
6 2 3 1 18 1 3 −2
7 −2 3 −1 19 6C ′

2 2 1 −3
8 −3 −1 2 20 −2 −1 −3
9 2 −3 −1 21 3 −2 1
10 −3 1 −2 22 −3 −2 −1
11 −2 −3 1 23 −1 −3 −2
12 3 −1 −2 24 −1 3 2

region indeed corresponds to a three-body resonance (with
a spatially localized wave function so that it “feels” the
three-body forces), whereas the other levels likely correspond
to two-body resonances plus a third particle. For the same
shifted Gaussian potential we were also able to observe
avoided crossings for three fermions and four bosons, from
which we extracted resonance energies via the inflection-point
method. Based on these findings, we conclude that our method
can be used to search for possible three- and four-neutron
resonances in future work.
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APPENDIX: CUBIC SYMMETRY GROUP

In this section, we briefly discuss how the projector on the
irreducible representations of the cubic symmetry group in
Eq. (30) is constructed. For each element of the cubic group
R ∈ O, the realization Dn(R) used in Eq. (30) is given by a
permutation and/or inversion of the components c = 1, 2, 3
of each relative coordinate xi (simultaneously for all i =
1, . . . , n − 1). In Table I we show these operations, where the
notation gives the result of operating on a tuple (ki,1, ki,2, ki,3)

TABLE II. Decomposition of the irreducible representations of
the rotational symmetry group SO(3) into irreducible representa-
tions of the cubic symmetry group O; reproduced in part from
Ref. [43].

l A+
1 A+

2 E+ T +
1 T +

2 A−
1 A−

2 E− T −
1 T −

2

0 1
1 1
2 1 1
3 1 1 1
4 1 1 1 1
5 1 2 1
6 1 1 1 1 2
7 1 1 2 2
8 1 2 2 2
9 1 1 1 3 2
10 1 1 2 2 3

in a short-hand form, e.g., the rotation with index 7 transforms
a tuple to (−ki,2, ki,3,−ki,1). It is understood that, as discussed
in Sec. II A 3, each transformed index ki,c is wrapped back into
the interval −N/2, . . . , N/2 − 1, if necessary.

Cubic symmetry commutes with parity as well as permu-
tation symmetry, so for both bosonic and fermionic systems
we end up with multiplets of the irreducible representations
� = A±

1 , A±
2 , E±, T ±

1 , and T ±
2 , where the superscript indi-

cates the parity. As already mentioned above, the irreducible
representation of the full rotational group SO(3) is reducible
with respect to the cubic group. A basis for the irreducible
representation of SO(3) is given by the angular momentum
multiplets, i.e., spherical harmonics Ylm, labeled by the an-
gular momentum quantum number l and its projection m.
The numerical values in Table II yield the multiplicity of
the cubic irreducible representations in the decomposition
of a given angular momentum multiplet. l = 0 and l = 1
contribute only to A+

1 and T −
1 , respectively, meaning that

an S-wave state is mapped solely onto the single A+
1 state,

while a P -wave state maps onto the three T −
1 states in

finite volume. A D-wave state with its five projections m =
0,±1,±2 is decomposed into the two E+ and three T +

2
states.

To conclude this section, we note that in the case of spin-
dependent interactions, total angular momentum J instead of
l is the relevant good quantum number in the infinite volume.
For example, in the case of spin-1/2 fermions, one has to con-
sider SU (2) broken down to the double cover 2O of the cubic
group, giving three additional irreducible representations that
receive contributions from half-integer J states. For details,
see Ref. [34].
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